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A note on the weighted Khintchine-Groshev
Theorem

par Mumtaz HUSSAIN et Tatiana YUSUPOVA

Résumé. Soit W (m,n;ψ) l’ensemble des points ψ1, . . . , ψn–
approximables dans Rmn. Le théorème classique de Khintchine–
Groshev suppose une condition de monotonicité sur la fonction
approximante ψ. Différents auteurs ont pu supprimer cette condi-
tion pour différents m et n. Mais elle ne peut pas être supprimée
quand m = n = 1, Duffin et Schaeffer ayant donné un contre-
exemple. Nous traitons le seul cas restant m = 2, et donc toutes
les conditions non-nécessaires dans le théorème de Khintchine–
Groshev sont maintenant enlevées.

Abstract. Let W (m,n;ψ) denote the set of ψ1, . . . , ψn–appro-
ximable points in Rmn. The classical Khintchine–Groshev
theorem assumes a monotonicity condition on the approximat-
ing functions ψ. Removing monotonicity from the Khintchine–
Groshev theorem is attributed to different authors for different
cases of m and n. It can not be removed for m = n = 1 as
Duffin–Schaeffer provided the counter example. We deal with the
only remaining case m = 2 and thereby remove all unnecessary
conditions from the Khintchine–Groshev theorem.

1. Introduction

Throughout the paper, m and n are the natural numbers and Imn is the
unit cube [0, 1]mn in Rmn. Take an mn-dimensional point X ∈ Imn, an
integer vector q ∈ Zm and consider their product qX. We may think of
X = (xij) as an m×n matrix with coefficients in I and q = (q1, . . . , qm) as
a row vector, allowing this product to be realized as the system

q1x1j + . . .+ qmxmj (1 6 j 6 n)

of n real linear forms in m variables.
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For every k ∈ N, denote by | · | the standard supremum norm on Rk.
Then, given a collection ψ of n functions ψ1, . . . , ψn : N→ R+ each tending
to 0, let W (m,n;ψ) denote the set of points X ∈ Imn such that the system
of inequalities

(1.1) |q1x1j + . . .+ qmxmj + pj | < ψj(|q|) (1 6 j 6 n)

has infinitely many solutions (p,q) ∈ Zn×Zm\{0}.The functions ψ1, . . . , ψn
will be referred to as approximating functions and the points in W (m,n;ψ)
are said to be ψ-approximable.

The fundamental aim of the paper is to determine the size of the set
W (m,n;ψ) in terms of mn–dimensional Lebesgue measure λ. The measure
of W (m,n;ψ) will necessarily depend on the collection ψ and we provide a
precise criterion.

In the special case ψ1 = . . . = ψn = ψ and m = 1 the set W (m,n;ψ) =
W (1, n;ψ) is well studied since the pioneering work of A. Khintchine [15,
16]. Later, Khintchine’s work was extended by Groshev [11] to cover the
dual cases corresponding to m > 1. The following global statement com-
bines both works, often referred to as the Khintchine-Groshev theorem, and
provides a criterion relating the Lebesgue measure of the set W (m,n;ψ)
to the convergence or divergence of a certain series. This series entirely de-
pends upon the approximating function ψ. We refer the reader to [2, 9, 11,
15, 16, 18] for the proofs as well as the subsequent improvements.

Theorem (Khintchine-Groshev). Let ψ : N→ R+. Then

λ (W (m,n;ψ)) =


0 if

∑∞
q=1 q

m−1ψ(q)n <∞,

1 if
∑∞
q=1 q

m−1ψ(q)n =∞and ψ is monotonic.

The convergence part of the above statement follows immediately from the
Borel-Cantelli lemma from probability theory upon using a simple covering
argument and is free from any assumption on ψ. The divergence part con-
stitutes the main substance of the Khintchine–Groshev theorem. Due to the
latest effort by Beresnevich and Velani [7] it has been shown that the mono-
tonicity condition imposed in the divergence part can be removed from all
but the case m = n = 1. Here, the Duffin-Schaeffer counterexample [10]
shows that monotonicity is vital. We refer the reader to [7] for further de-
tails and to [1] for a detailed account of open problems in classical theory
of metric Diophantine approximation related to the Khintchine–Groshev
theorem.
When ψ contains more then one approximating function, not everything
is known. The case m = 1 (simultaneous approximation) is described by
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Harman ([12]), who showed that while the monotonicity assumption al-
lows us to prove stronger results, it can be interchanged with a condition
on the relationship between functions and the statement analogous to the
Khintchine-Groshev theorem remains true. Schmidt’s quantitative theorem,
provides the measure criterion for m > 3; neither Harman’s nor Schmidt’s
result covers the m = 2 case. By adapting the arguments of Beresnevich
and Velani in [7], we will show that no restrictions are necessary in the
m = 2 case. In doing so, we are able to establish the following best possible
statement.

Theorem 1. Let ψ : N→ R+, m > 1, n > 1. Then

λ
(
W (m,n;ψ)

)
= 1 if

∞∑
q=1

qm−1ψ1(q) · · ·ψn(q) =∞.

The corresponding convergence case follows once more upon application of
Borel–Cantelli lemma and is free from any assumption on the choices of
m,n and the approximating functions. Note also that the proof given here
will not be valid for the m = 1 case, as one needs some more assumptions
on the functions ψ1, . . . , ψn as shown by Harman.
For the sake of completeness we mention that a Hausdorff measure version
of Theorem 1 can be straightforwardly established using the Mass Trans-
ference Principle of [4] along with the ‘slicing’ technique [5]. The slicing
technique is broad ranging and has been successfully employed in various
related settings for a similar purpose [8, 13, 14].

Our paper will be structured as follows. In Section 2, we reduce the proof
of Theorem 1 to establishing the analogous statement for a certain subset
of W (m,n;ψ) and then to a ‘quasi-independence on average’ statement.
In Section 3, we establish various key measure theoretic estimates and in
doing so completes the proof of Theorem 1.
Notation. Throughout, the symbols � and � will be used to indicate an
inequality with an unspecified positive multiplicative constant. If a� b and
a� b we write a � b, and say that the quantities a and b are comparable.
We will denote by ϕ the Euler’s well known totient function.

2. Preliminaries

Consider the set

W ′(m,n;ψ) := {X ∈ Imn : system of inequalities (1.1) holds
for infinitely many (p,q) ∈ Zn × Zm \ {0} with gcd(p,q) = 1},

where gcd(p,q) denote the greatest common divisor of p1, . . . , pn,
q1, . . . , qm. The set W ′(m,n;ψ) differs from W (m,n;ψ) only by the co-
primeness condition imposed on p and q, and so we clearly have that
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W ′(m,n;ψ) ⊂ W (m,n;ψ). In addition, there is no loss of generality in
assuming that
(2.1) ψi(q) < c for all q ∈ N, i = 1, . . . , n, and c > 0 .
To see this, suppose for the moment that this was not the case; i.e. for some
i statement (2.1) is false. Let

ψ̂ : q → ψ̂(q) := min {c, ψi(q)} .
It is easily verified that if

∑
qm−1ψ1(q) · · ·ψi(q) · · ·ψn(q) diverges,

then
∑
qm−1ψ1(q) · · · ψ̂(q) · · ·ψn(q) diverges. Furthermore, W ′(m,n;

ψ1, . . . , ψ̂, . . . , ψm) ⊂W ′(m,n;ψ) and so it suffices to establish Theorem 1
for ψ̂ as defined above.

The limsup nature of the setsW (m,n;ψ) andW ′(m,n;ψ) is vital for the
measure theoretic investigations we shall perform below. As such, it will be
useful to express them in a limsup form. For any point δ := (δ1, . . . , δn) ∈ Rn
with δi > 0 for 1 ≤ i ≤ n and for any q ∈ Zm \ {0}, let

B(q, δ) := {X ∈ Imn : |q1 x1i + . . .+ qm xmi + pi| < δi

for all i = 1, . . . , n and some p ∈ Zn}.
Furthermore, let

B′(q, δ) := {X ∈ Imn : |q1 x1i + . . .+ qm xmi + pi| < δi

for all i = 1, . . . , n and some p ∈ Zn with gcd(p,q) = 1} .

Once more, the set B′(q, δ) differs from B(q, δ) by only the coprimeness
condition. It is easily verified that

W (m,n;ψ) = lim sup
|q|→∞

B(q, ψ(|q|))

and
W ′(m,n;ψ) = lim sup

|q|→∞
B′(q, ψ(|q|)).

The following statement helps us to reduce the proof of Theorem 1 to
showing that W ′(m,n;ψ) is of positive Lebesgue measure.

Lemma 2. For any m, n > 1 and ψ : N→ R+,

λ(W ′(m,n;ψ)) > 0 =⇒ λ(W ′(m,n;ψ)) = 1.

The proof of Lemma 2 follows on combining Theorem 4 of [6] and Lemma
2.2 of [17] as described in [6]. It can also be proven using the “cross-fibering
principle” described in [3], which allowed the authors to establish a Zero-
One Law in the multiplicative setup. The technique is very general and can
have a number of different applications. For the proof of Lemma 2 using
cross-fibering principle we refer the reader to [19].
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Now, in order to prove positive measure, we make use of the following
lemma which is a generalisation of the divergent part of the Borel-Cantelli
lemma, tailored to our needs.

Lemma 3. Let Ek ⊂ Imn be a sequence of measurable sets such that∑∞
k=1 λ(Ek) =∞. Then

λ(lim sup
k→∞

Ek) > lim sup
N→∞

(∑N
s=1 λ(Es)

)2

∑N
s,t=1 λ(Es ∩ Et)

.

3. Proof of Theorem 1

In view of Lemma 3, the desired statement λ(W ′(m,n;ψ)) > 0 will follow
upon showing that the sets B′(q, ψ(|q|)) are quasi-independent on average
and that the sum of their measures diverges. Essentially, we shall prove the
following statement, which we include for clarity and completeness.

Proposition 4 (Quasi-independence on average). Let m > 1, n > 1 and
ψ : N → R+ satisfy ψi(q) < 1/2 for all q ∈ N and all i = 1, . . . , n and∑∞
q=1 q

m−1ψ1(q) · · ·ψn(q) =∞. Then,

(3.1)
∑

q∈Zm\{0}
λ
(
B′(q, ψ(|q|))

)
= ∞ ,

and there exists a constant C > 1 such that for N sufficiently large,∑
|q(1)|6N
|q(2)|6N

λ
(
B′(q(1), ψ(|q(1)|)) ∩B′(q(2), ψ(|q(2)|))

)

6 C
( ∑
|q(1)|6N

λ
(
B′(q(1), ψ(|q(1)|))

))2
.

(3.2)

We first estimates the measure of B′(q, δ). Given δ ∈ Rn with δi > 0 for
every i, q ∈ Zm \ {0} and p ∈ Zn, let

B(q,p, δ) := {X ∈ Imn : |q1x1i + . . .+ qmxmi + pi| < δi}.

Our estimate is a consequence of the following Lemmas (5, 6 and 7) which
are adapted from [7] to the current setup. The proofs are almost identical
therefore we leave the details for the reader.

Lemma 5. Let m > 1, n > 1 and let δ ∈ (0, 1/2)n and q ∈ Zm \ {0}.
Then, for any l| gcd(q)∑

p∈Zn

λ (B(q, lp, δ)) =
(2
l

)n
δ1 · · · δn.
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Lemma 6. Let m > 1, n > 1 and let δ ∈ (0, 1/2)n and q ∈ Zm \ {0}.
Then,

λ
(
B′(q, δ)

)
= 2nδ1 · · · δn

∏
p|d

(1− p−n) .

The product is over prime divisors p of d := gcd(q) and is defined to be
one if d = 1.
The following is a consequence of examining the product term in Lemma 6
and provides us the estimate we want for the measure of B′(q, δ).
Lemma 7. Let m > 1, n > 1 and let q ∈ Zm \ {0}, d := gcd(q) and
δ ∈ (0, 1/2)n. If n = 1, then

λ
(
B′(q, δ1)

)
= 2δ1

ϕ(d)
d

.

If n > 1, then

(3.3) 6
π2 2nδ1 · · · δn 6 λ

(
B′(q, δ)

)
6 2nδ1 · · · δn .

We now turn our attention to estimating the measure of the pairwise
intersection of the sets B′(q, δ) i.e., the intersection of two sets B′(q(1), δ(1))
and B′(q(2), δ(2)) for q(1),q(2) ∈ Zm\{0} and δ(1), δ(2) ∈ Rn with δ(1)

i , δ
(2)
i >

0 ∀ i. Naturally, there are two possibilities to be discussed; the case when
q(1) and q(2) are parallel and the case when they are not parallel. In the
latter case, the following lemma, which can be found in [18], provides the
relevant result. For an alternative proof using torus geometry see [9, p.
83-86].

Lemma 8. Let m, n > 1 and let q(1),q(2) ∈ Zm \ {0} and δ(1) :=
(δ(1)

1 , . . . , δ
(1)
n ), δ(2) := (δ(2)

1 , . . . , δ
(2)
n ) ∈ (0, 1/2)n. Then,

λ
(
B(q(1), δ(1))

)
= 2nδ(1)

1 · · · δ
(1)
n

and

λ
(
B(q(1), δ(1)) ∩B(q(2), δ(2))

)
= λ

(
B(q(1), δ(1))

)
· λ
(
B(q(2), δ(2))

)
if q(1) ∦ q(2).

Here, the notation q(1) ∦ q(2) means that q(1) is not parallel to q(2). To
deal with the case that q(1) ‖ q(2), that is, q(1) and q(2) are parallel, we
prove the following statement.
Lemma 9. Let m > 1, n > 1. There is a constant C > 0 such that for
δ(1), δ(2) ∈ (0, 1/2)n and q(1),q(2) ∈ Zm \ {0} satisfying q(1) 6= ±q(2)

(3.4) λ
(
B′(q(1), δ(1)) ∩B′(q(2), δ(2))

)
6 C

n∏
i=1

δ
(1)
i δ

(2)
i .
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Proof. In view of Lemma 8, we only need to deal with the situation that
q(1) and q(2) are parallel.
It can be verified via geometric considerations that the left hand side of
(3.4) is the product of the measures of the intersection on each axis; that
is

λ
(
B′(q(1), δ(1)) ∩B′(q(2), δ(2))

)
=

n∏
i=1

λ
(
B′(q(1), δ

(1)
i ) ∩B′(q(2), δ

(2)
i )

)
.

Indeed, as the vectors q(1) and q(2) are parallel, the sets B′(q(1), δ(1)) and
B′(q(2), δ(2)) can be visualized as n-dimensional boxes, which are oriented
the same way in the Euclidian space, and the measure of their intersection
can be thought of as the n-dimensional volume of the intersection of these
boxes. The upshot of this is that we can restrict our attention to the case
n = 1 and we will write δ for δ1.
Since the statement of Theorem 1 was only previously unverified in the
case m = 2, we will provide the argument for this value of m. However, we
stress that the same techniques are valid for m > 2, but do require some
more tedious calculations.
Let us consider the two sets of lines

q
(1)
1 x1 + q

(1)
2 x2 = −p1 and q

(2)
1 x1 + q

(2)
2 x2 = −p2 with p1, p2 ∈ Z.

The sets B′(q(1), δ(1)) and B′(q(2), δ(2)) correspond to δ(1)

|q(1)|2
–

neighborhood of the first line and δ(2)

|q(2)|2
–neighborhood of the second line

respectively. Where, | · |2 denotes the standard Euclidean norm. Denote
by 0 < γ 6 π the angle between these lines and the positive direction of
the x1–axis. The aim is to estimate the measure of the intersection of the
neighborhoods of these lines.

Suppose that 0 < γ < π/4. For the other values of γ the argument will be
similar. For the sake of convenience we will rotate each line, including the
boundaries of δ(i)-neighborhoods, clockwise by the angle γ around the point
of its intersection with the x2–axis (when π/4 < γ < π/2 we rotate the lines
anti-clockwise and proceed similarly). This procedure will remove the q(i)

1
coordinates from our inequalities at the cost of altering the measure of the
neighborhoods we are working with. The sets B′(q(1), δ(1)) and B′(q(2), δ(2))
become

S1 = S(q(1), δ(1)) = {X ∈ I2 : |x2q
(1)
2 − p1| <

δ(1)

cos γ
for some p1 ∈ Z, gcd(p1, q

(1)
1 , q

(1)
2 ) = 1}
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and

S2 = S(q(2), δ(2)) = {X ∈ I2 : |x2q
(2)
2 − p2| <

δ(2)

cos γ
for some p2 ∈ Z, gcd(p2, q

(2)
1 , q

(2)
2 ) = 1},

respectively.
Furthermore, λ

(
B′(q(1), δ(1)) ∩B′(q(2), δ(2))

)
= λ (S1 ∩ S2) .

This measure can be estimated as the product of the number of points,
which are sufficiently close to each other, and the measure of intersecting
(δ(i)/q

(i)
2 cos γ)-neighborhoods at each point, i.e.

λ (S1 ∩ S2) 6 1
cos γ min

{
δ(1)

q
(1)
2
,
δ(2)

q
(2)
2

}
·N,

where N is the number of pairs p1, p2 for which the following conditions
hold for given q(1), q(2):

0 6 p1 < q
(1)
2 , 0 6 p2 < q

(2)
2 ,

gcd(p1, q
(1)
1 , q

(1)
2 ) = 1, gcd(p2, q

(2)
1 , q

(2)
2 ) = 1 :

∣∣∣∣∣ p1

q
(1)
2
− p2

q
(2)
2

∣∣∣∣∣ < 2
cos γ max

{
δ(1)

q
(1)
2
,
δ(2)

q
(2)
2

}
.

This condition is equivalent to

0 6 p1 < q
(1)
2 , 0 6 p2 < q

(2)
2 ,(3.5)

gcd(p1, q
(1)
1 , q

(1)
2 ) = 1, gcd(p2, q

(2)
1 , q

(2)
2 ) = 1 :∣∣∣p1 · q(2)

2 − p2 · q(1)
2

∣∣∣ < 2q(1)
2 q

(2)
2

cos γ max
{
δ(1)

q
(1)
2
,
δ(2)

q
(2)
2

}
.

Note that |p1 · q(2)
2 − p2 · q(1)

2 | is non-zero as otherwise the coprimeness
condition would be contravened. To see this, suppose to the contrary that

(3.6) |p1 · q(2)
2 − p2 · q(1)

2 | = 0.
Note that as the vectors q(1) and q(2) are parallel, it is possible to choose
a vector q∗ such that q(1) = kq∗ for some k ∈ Z and q(2) = lq∗ for some
l ∈ Z with gcd(k, l) = 1. Neither k nor l can be equal to 1, as if that
happens it means that one of the vectors q(i) is a multiple of the other one,
say, q(2) = lq(1) and (3.6) only holds when p2 = lp1, which contradicts the
assumption of coprimeness of q(2)

1 , q
(2)
2 and p2. Now, (3.6) trivially holds if

p1 = p2 = 0. In this case both

gcd(q(1)
1 , q

(1)
2 ) = gcd(kq∗1, kq∗2) = k 6= 1
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and
gcd(q(2)

1 , q
(2)
2 ) = gcd(lq∗1, lq∗2) = l 6= 1,

which contradicts the definition of B′. Therefore, suppose that p1 6= 0 (the
proof will be the same for p2 6= 0). Then p1q

(2)
2 − p2q

(1)
2 = 0 if and only if

p1 · lq∗2 − p2 · kq∗2 = 0. Taking the last expression modulo k we get
p1 · l ≡ 0 mod k,

which is equivalent to
p1 ≡ 0 mod k

as k and l are coprime. This gives us p1 = kp∗ with p∗ 6= 0 and
gcd(p1, q

(1)
1 , q

(1)
2 ) = gcd(kp∗, kq∗1, kq∗2) = k 6= 1, which again contradicts

the coprimality condition. Therefore, there are no such values of p1 and p2
for which (3.6) holds.
With this in mind we see that the expression |p1 · q(2)

2 − p2 · q(1)
2 | can take

at most
2q(1)

2 q
(2)
2

gcd(q(1)
2 , q

(2)
2 ) cos γ

max
{
δ(1)

q
(1)
2
,
δ(2)

q
(2)
2

}
integer values in (3.5) and each value can be obtained gcd(q(1)

2 , q
(2)
2 ) times.

This means that

N 6
2q(1)

2 q
(2)
2

cos γ max
{
δ(1)

q
(1)
2
,
δ(2)

q
(2)
2

}
6 4q(1)

2 q
(2)
2 max

{
δ(1)

q
(1)
2
,
δ(2)

q
(2)
2

}
since cos γ > 1/

√
2 (due to the choice of γ). Thus, the measure of the

intersection

λ (S1 ∩ S2)� q
(1)
2 q

(2)
2 max

{
δ(1)

q
(1)
2
,
δ(2)

q
(2)
2

}
min

{
δ(1)

q
(1)
2
,
δ(2)

q
(2)
2

}
= δ(1) · δ(2),

and for n > 1

λ
(
B′(q(1), δ(1)) ∩B′(q(2), δ(2))

)
6 C

n∏
i=1

δ
(1)
i δ

(2)
i ,

as required. �

In view of the fact that B′(q, ψ(|q|)) ⊆ B(q, ψ(|q|)), to complete the
proof of Theorem 1 it remains to establish Proposition 4. The following
two lemmas enable us to accomplish this.

Lemma 10. Letm > 1, n > 1 and ψi(Q) < 1/2 for all Q ∈ N, i = 1, . . . , n.
Then with q ∈ Zm \ {0} and N ∈ N,

(3.7)
∑
|q|6N

λ
(
B′(q, ψ(|q|))

)
�

N∑
Q=1

Qm−1ψ1(Q) · · ·ψn(Q) .
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Proof. The proof splits into two cases: n > 1 and n = 1. We begin by
considering the easy case n > 1. By (3.3) and the fact that the number of
integer points q ∈ Zm with |q| = Q is comparable to Qm−1 (see [18, p.
39]), we have that

∑
q∈Zm\{0}, |q|6N

λ
(
B′(q, ψ(|q|))

)
�

∑
q∈Zm\{0}, |q|6N

ψ1(|q|) · · ·ψn(|q|)

�
N∑
Q=1

∑
|q|=Q

ψ1(|q|) · · ·ψn(|q|)

�
N∑
Q=1

Qm−1ψ1(Q) · · ·ψn(Q) .

This establishes (3.7) in the case n > 1. The case n = 1 is very similar
to the corresponding proof in [7] and therefore omitted. �

A clear implication of Lemma 10 is that
∑

q∈Zm\{0}
λ
(
B′(q, ψ(|q|))

)
=∞; in

other words, statement (3.1) holds subject to the conditions of Proposition
4. The truth of inequality (3.2) is a consequence of the following lemma.

Lemma 11. Let m > 1, n > 1, ψi(Q) < 1/2 for all Q ∈ N and∑
Qm−1ψ1(Q) · · ·ψn(Q) = ∞. Then with q(1),q(2) ∈ Zm \ {0} and N

sufficiently large,∑
|q(1)|6N, |q(2)|6N

λ
(
B′(q(1), ψ(|q(1)|)) ∩B′(q(2), ψ(|q(2)|))

)

�
( N∑
Q=1

Qm−1ψ1(Q) · · ·ψn(Q)
)2

.

(3.8)

Proof. We can express the left hand sum of (3.8) as∑
|q(1)|6N, |q(2)|6N

λ
(
B′(q(1), ψ(|q(1)|)) ∩B′(q(2), ψ(|q(2)|))

)
= M1 +M2,

where

M1 =
∑

|q(1)|6N, |q(2)|6N
q(2)=±q(1)

λ
(
B′(q(1), ψ(|q(1)|)) ∩B′(q(2), ψ(|q(2)|))

)
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and

M2 =
∑

|q(1)|6N, |q(2)|6N
q(2) 6=±q(1)

λ
(
B′(q(1), ψ(|q(1)|)) ∩B′(q(2), ψ(|q(2)|))

)
.

We first deal with the case M1. Since the sum
∑
Qm−1ψ1(Q) · · ·ψn(Q)

diverges, there exists a positive integer N0 such that∑N
Q=1Q

m−1ψ1(Q) · · ·ψn(Q) > 1 for all N > N0. Then, by Lemma 10 it
follows that for N > N0

M1 = 2
∑

|q(1)|6N

λ
(
B′(q(1), ψ(|q(1)|))

)
�

N∑
Q=1

Qm−1ψ1(Q) · · ·ψn(Q)

<

 N∑
Q=1

Qm−1ψ1(Q) · · ·ψn(Q)

2

.

Now we need to obtain a similar estimate for M2. In view of Lemma 9, it
follows that

M2 =
N∑
Q=1

N∑
l=1

∑
|q(1)|=Q, |q(2)|=l

q(2) 6=±q(1)

λ
(
B′(q(1), ψ(|q(1)|)) ∩B′(q(2), ψ(|q(2)|))

)

�
N∑
Q=1

N∑
l=1

∑
|q(1)|=Q,
|q(2)|=l

ψ1(|q(1)|) · · ·ψn(|q(1)|) · ψ1(|q(2)|) · · ·ψn(|q(2)|)

=
N∑
Q=1

N∑
l=1

ψ1(Q) · · ·ψn(Q) · ψ1(l) · · ·ψn(l)
∑

|q(1)|=Q

1
∑
|q(2)|=l

1

�
N∑
Q=1

N∑
l=1

Qm−1ψ1(Q) · · ·ψn(Q) · lm−1ψ1(l) · · ·ψn(l)

�

 N∑
Q=1

Qm−1ψ1(Q) · · ·ψn(Q)

2

.

This completes the proof of Lemma 11 and hence the proof of Theorem 1.
�
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