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An explicit computation of p-stabilized vectors

par Michitaka MIYAUCHI et Takuya YAMAUCHI

Résumé. Nous donnons une méthode concrète pour calculer les
vecteurs p-stables dans l’espace des éléments fixés par un sous-
groupe parahorique d’un groupe réductif p-adique. Nous discu-
tons d’une application globale et, en particulier, nous donnons un
exemple explicite d’un relèvement de Saito-Kurokawa p-stable.

Abstract. In this paper, we give a concrete method to compute
p-stabilized vectors in the space of parahori-fixed vectors for con-
nected reductive groups over p-adic fields. An application to the
global setting is also discussed. In particular, we give an explicit
p-stabilized form of a Saito-Kurokawa lift.

1. Introduction

Let F be a non-archimedean local field, o the ring of integers of F , p the
maximal ideal of o, $ a uniformizer of F , and F = o/p the residue field of
F . We normalize the valuation | · | of F so that |$| = q−1, where q is the
cardinality of F. Let G be a connected reductive group defined over F , B
its standard Borel subgroup and K = G(o) a maximal compact subgroup
of G(F ) whenever it is defined. Let P be a parabolic subgroup of G which
contains B and KP = {g ∈ K| g mod p ∈ P (F)} the parahoric subgroup of
K associated to P .

Let π be an irreducible smooth representation of G(F ) such that the
space πKP of KP -fixed vectors in π is non-trivial. Then the Hecke algebra
HKP of G(F ) associated to KP acts on πKP . In this paper, we first give
a method to compute the eigenvalues for the special elements of HKP on
πKP , which are called “Up-operators". We next give an explicit construction
of simultaneous eigenvectors for these Up-operators, which are called “p-
stabilized vectors".

An idea to compute eigenvalues of Up-operators is to consider the Jacquet
module of π associated to P . When P is the standard Borel subgroup of
G(F ), this has been a well-known method for experts. We extend a result
of Casselman [6] which is proved only for the standard Borel subgroup to
any parabolic subgroup P and any compact open subgroup of G(F ) which
has an Iwahori factorization relative to P in the sense of [6]. Then it can
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be reduced a calculation of the eigenvalues for Up-operators to the same
problem for the actions of the elements corresponding to those operators
on the Jacquet modules (Proposition 2.3).

Our results might give a potential tool to study an arithmetic investiga-
tion of automorphic forms in Iwasawa theory, Hida theory, or deformation
theory of Galois representations [14],[21],[20], though we do not discuss
about this in this paper. In particular, we will know that what kind of p-
stabilized forms can be embedded into a Hida family with respect a specific
parabolic subgroup of G.

This paper is organized as follows. In Section 2, we study the action of
Hecke algebras on the space of parahori-fixed vectors by using Jacquet mod-
ules. In Section 3, we introduce the notion of Up-operators and p-stabilized
vectors. In Section 4, we outline a method to construct p-stabilized vectors
when π has a non-zero K-fixed vector. Without this assumption on π, it
seems to be difficult to check the non-triviality of the vector which we will
construct. In Section 5, 6, and 7, we make up a list of all Up-eigenvalues
and p-stabilized vectors for GL2, U(2, 1), and GSp4. A relation to the global
setting is discussed in Section 8 and then the global p-stabilized forms are
given in the final section in cases of GL2 and GSp4. In particular, we will
give them for Saito-Kurokawa lifts where the existence has been already
discussed in Proposition 4.2.2, p.688 of [20] (see (9.2) and (9.3)).

The authors would like to thank Professor Tomonori Moriyama for help-
ful conversations. The second author is partially supported by JSPS Grant-
in-Aid for Scientific Research No.23740027 and JSPS Postdoctoral Fellow-
ships for Research Abroad No.378.

2. The action of Hecke operators via Jacquet modules

We keep the notation in Section 1. In this section, we study parahori-fixed
vectors of smooth representations of G(F ). We fix a maximal torus T of G
and a minimal parabolic subgroup B of G which contains T . Then we have
the Levi decomposition B = TU , where U is the unipotent radical of B.
Let P be a parabolic subgroup of G containing B with Levi decomposition
P = MN . We denote by N the unipotent radical of the parabolic subgroup
opposite to P .

Henceforth, for any algebraic group H, we sometimes denote by H the
group of F -valued points of H for the sake of simplicity. This should cause
no confusion in the remainder of the paper.

For any smooth representation (π, V ) of G(F ), we define its Jacquet
module (πN , VN ) as follows (cf. Section 3 of [6]): Set V (N) = 〈π(n)v−v |n ∈
N, v ∈ V 〉 and VN = V/V (N). We define a representation (πN , VN ) of M
by

πN (m)rN (v) = δ
− 1

2
P (m)rN (π(m)v), m ∈M, v ∈ V,
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where rN is the natural projection from V to VN and δP is the modulus
character of P (F ).

Let I := {g ∈ K | g mod p ∈ B(o/p)} be the standard Iwahori subgroup
of G(F ). If a smooth representation (π, V ) of G(F ) is admissible, then
by p.7, Theorem of [8], the canonical projection rU : V → VU induces a
C-linear isomorphism

V I ∼−→ (VU )I∩T (F ).(2.1)

The following theorem generalizes this isomorphism to any parabolic sub-
groups.

Theorem 2.1. Let (π, V ) be an admissible representation of G(F ). Sup-
pose that a compact subgroup J of G(F ) contains I and it has an Iwahori
factorization with respect to P in the sense of [6] (see before Proposition
1.4.4 in loc.cit.). Then the canonical projection rN : V → VN induces a
linear isomorphism

V J ∼−→ (VN )J∩M .

Proof. By Theorem 3.3.3 of [6], the map rN : V J −→ (VN )J∩M is surjective.
We now prove the injectivity of this map. By (2.1), we get V I∩V (U) = {0}.
Since I ⊂ J and U ⊃ N , we have V I ⊃ V J and V (U) ⊃ V (N). This gives
us that V J ∩ V (N) ⊂ V I ∩ V (U) = {0}. This implies that rN : V J −→
(VN )J∩M is injective. �

As in Theorem 2.1, let J be a compact subgroup of G(F ) which contains
I. Assume that J has an Iwahori factorization with respect to P .

Definition 2.2. ([5] Definition 6.5) We say that an element m ∈ M is
positive relative to (P, J) if the following conditions are fulfilled:

m(J ∩N)m−1 ⊂ J ∩N, m−1(J ∩N)m ⊂ J ∩N.

We denote by M+ the set of all positive elements in M . We say that an
element m in M is negative relative to (P, J) if m−1 is positive. We write
M− for the set of all negative elements in M .

Given a compact open subgroup J of G(F ), we define the Hecke algebra
HJ := H[G(F )//J ] of G(F ) associated to J to be the space of all com-
pactly supported functions f : G(F ) −→ C which satisfy f(j1gj2) = f(g),
for j1, j2 ∈ J and g ∈ G(F ). Then HJ becomes an algebra under the con-
volution with respect to the Haar measure on G(F ) normalized so that the
volume of J is one. For any g ∈ G(F ), we denote by fg = [JgJ ] ∈ HJ
the characteristic function of JgJ . Since the algebra HJ is generated by
fg, g ∈ G(F ), if we define HJ,Q := Q[fg | g ∈ G(F )], then we have HJ =
HJ,Q ⊗Q C. For any Q-algebra A, we put HJ,A := HJ,Q ⊗Q A.
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If (π, V ) is a smooth representation of G(F ), then the Hecke algebra HJ
acts on V J (cf. [6]). We denote by ZM the center of M . We consider Hecke
operators associated to positive elements in ZM .

Proposition 2.3. Let J be as in Definition 2.2 and (π, V ) an admissible
representation of G(F ). Then for any ζ ∈ ZM ∩M+, we have

rN (π(fζ)v) = δ
− 1

2
P (ζ)πN (ζ)rN (v), v ∈ V J ,

where rN : V J ∼−→ (VN )J∩M is the isomorphism given in Theorem 2.1.

Proof. For ζ ∈ ZM ∩M+ and v ∈ V J , we have

π(fζ)v =
∫
JζJ

π(g)vdg =
∑

k∈J/J∩ζJζ−1

π(kζ)v.

Since we assume that J has an Iwahori factorization, we get J = (J ∩
N)(J ∩M)(J ∩ N). Because ζ is positive and it belongs to ZM , we have
that J ∩ ζJζ−1 = (J ∩ N)(J ∩M)ζ(J ∩ N)ζ−1, so that J/J ∩ ζJζ−1 =
(J ∩N)/ζ(J ∩N)ζ−1. Therefore we obtain

π(fζ)v =
∑

k∈(J∩N)/ζ(J∩N)ζ−1

π(kζ)v.

Since rN (π(kζ)v) = rN (π(ζ)v) = δ
1
2
P (ζ)πN (ζ)rN (v), k ∈ J ∩N and [J ∩N :

ζ(J ∩N)ζ−1] = δ−1
P (ζ), we have

rN (π(fζ)v) = δ
− 1

2
P (ζ)πN (ζ)rN (v),

as required. �

Proposition 2.4. Suppose that a compact open subgroup J of G(F ) has
an Iwahori factorization relative to P . Then fζ1 and fζ2 are commutative,
for any ζ1, ζ2 ∈ ZM ∩M+.

Proof. We shall claim that fζ1 ∗ fζ2 = fζ1ζ2 . Then we obtain
fζ1 ∗ fζ2 = fζ1ζ2 = fζ2ζ1 = fζ2 ∗ fζ1

because ζ1ζ2 = ζ2ζ1. It follows from [5] (6.6) that

[Jζ1J : J ] = [J ∩N : ζ−1
1 (J ∩N)ζ1][J ∩M : ζ−1

1 (J ∩M)ζ1 ∩ (J ∩M)].
Hence we get

[Jζ1J : J ] = [J ∩N : ζ−1
1 (J ∩N)ζ1]

since ζ1 lies in the center of M . Similarly, we obtain [Jζ2J : J ] = [J ∩N :
ζ−1

2 (J ∩ N)ζ2] and [Jζ1ζ2J : J ] = [J ∩ N : (ζ1ζ2)−1(J ∩ N)ζ1ζ2]. Since ζ1
and ζ2 are both positive, we have

J ∩N ⊃ ζ−1
2 (J ∩N)ζ2 ⊃ (ζ1ζ2)−1(J ∩N)ζ1ζ2.



535

So we obtain
[Jζ1ζ2J : J ] = [Jζ1J : J ][Jζ2J : J ],

and hence fζ1 ∗ fζ2 = fζ1ζ2 by Proposition 2.2 in Chapter 3 of [10]. �

3. p-stabilized vectors

For simplicity, we assume that the dimension of the center of G is at
most one. Let π be an irreducible smooth representation of G(F ). Then π
is admissible by [12]. In this section, we give a notion of p-stabilized vectors
(or of p-stabilization ) for parahori-fixed vectors in π.

Let ∆ be the set of all simple roots of (G,T ) which is a subset of the
character group X∗(T ) := Homalg(T,GL1). Let P be a parabolic subgroup
of G containing B, P = MN its Levi decomposition, and KP the parahoric
subgroup which corresponds to P . Let ∆P be the subset of ∆ corresponding
to P . We define T−P to be the semi-group consisting of the elements t in
T (F )/T (o) such that

|α(t)| ≤ 1 for all α ∈ ∆ and t(KP ∩N)t−1 ⊂ KP ∩N.(3.1)
We can choose a complete system of representatives for T−P as elements in
ZM ∩M+. Put mP = ](∆ \ ∆P ). Note that ∆B = ∅. For each α ∈ ∆,
there exists tα ∈ T−B such that ord$α(tα) = 1 and ord$α(tβ) = 0 for all
β ∈ ∆ \ {α}. Put

tmP+1 :=
{
$−1Id, if ZM ⊃ F×

Id, otherwise,
where Id is the identity element of G(F ). We write ∆\∆P = {α1, . . . , αmP }
and ti = tαi for i ∈ {1, . . . ,mP }. Then the semi-group T−P is generated by
t1, . . . , tmP , tmP+1. For anyQ-algebraA which is contained in C, we consider
the subalgebra

UP,A := A[[KP tKP ] | t ∈ T−P ]
of the Hecke algebra HKP ,A over A.

Lemma 3.1. Put UP$,i := [KP tiKP ] ∈ HKP , for i ∈ {1, . . . ,mP +1}. Then
the ring UP,A is a commutative A-algebra generated by UP$,1, . . . , UP$,mP+1.

Proof. Recall that we take a complete system of representatives for T−P
as elements in ZM ∩M+. Then the commutativity follows from Proposi-
tion 2.4. The later claim follows from the fact that T−P is generated by
t1, . . . , tmP , tmP+1. �

Definition 3.2. Let (π, V ) be an irreducible smooth representation of
G(F ) such that V KP 6= {0}. We say that a non-zero vector v in V KP

is a p-stabilized vector with respect to P̂ if it is a simultaneous eigenvector
for all UP$,1, . . . , UP$,mP . Here P̂ is the Langlands dual of P (cf. [3]).
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Remark 3.3. The condition (3.1) on T−P is crucial to get the commutativity
of UP,A. In general, this property does not hold for HKP ,A.

4. Construction of p-stabilized vectors

Let (π, V ) be an irreducible smooth representation of G(F ) which has
a non-zero K-fixed vector. In this section, we give a method to produce
p-stabilized vectors for π. Let P = MN be a parabolic subgroup of G(F )
containing B. Then by Theorem 2.1, the Jacquet functor rN induces an
isomorphism rN : V KP ' (VN )KP∩M . We set W = (VN )KP∩M . Let H
denote the subgroup of ZM generated by t1, . . . , tmP ∈ T−P . As we have
seen before, we may assume H ⊂ ZM ∩M+. For a quasi-character χ of H
and n ∈ N, we define

Wχ,n = {w ∈W | (πN (t)− χ(t))nw = 0 for any t ∈ H}

and put Wχ,∞ =
⋃
n∈NWχ,n. Similarly, we define (VN )χ,∞ for VN . Let S

denote the set of quasi-characters χ of H such that Wχ,∞ 6= {0}. Since W
is a finite-dimensional H-module, we have

W =
⊕
χ∈S

Wχ,∞.

For an element w in W , w is a simultaneous eigenvector for t1, . . . , tmP if
and only if w lies in Wχ,1, for some χ ∈ S.

Let φK be a non-zeroK-fixed vector in V . By the Iwasawa decomposition
G = PK, the element v = rN (φK) generates VN as an M -module, so does
W . Since H is contained in the center of M , we have

VN =
⊕
χ∈S

(VN )χ,∞

as an M -module. We claim that the Wχ,∞-component of v is not zero, for
any χ ∈ S. If theWχ,∞-component of v is zero, then v lies in the properM -
submodule

⊕
χ′ 6=χ(VN )χ′,∞ of VN . This contradicts the fact that v generates

VN as an M -module. So the claim follows.
We fix a character χ of H in S. For any χ′ ∈ S which is different from χ,

there exists an integer 1 ≤ i(χ′) ≤ mP such that χ(ti(χ′)) 6= χ′(ti(χ′)). Put
n(χ′) = dimWχ′,∞. Then

v′ =
∏
χ′ 6=χ

(πN (ti(χ′))− χ′(ti(χ′)))n(χ′)v

is a non-zero vector in Wχ,∞. Therefore, there exist non-negative integers
n(χ, i) for 1 ≤ i ≤ mP such that v′′ :=

∏
1≤i≤mP (πN (ti)− χ(ti))n(χ,i)v′ is a
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non-zero vector in Wχ,1. By Proposition 2.3,

φ =
∏

1≤i≤mP
(δ

1
2
P (ti)π(UP$,i)− χ(ti))n(χ,i)

×
∏
χ′ 6=χ

(δ
1
2
P (ti(χ′))π(UP$,i(χ′))− χ

′(ti(χ′)))n(χ′)φK

is a p-stabilized vector with respect to P̂ , which satisfies

π(UP$,i)φ = δP (ti)−
1
2χ(ti)φ,

for all i ∈ {1, . . . ,mP }.
In the following series of sections, we give examples of p-stabilized vectors

in various settings.

5. GL2-case

Let α be the simple root of GL2 such that α : T −→ F×, diag(a, b) 7→
ab−1. We have a Up-operator UB$,1 = [It1I], where t1 = diag(1, $−1). Let
π = π(χ) be an unramified principal series representation of GL2(F ) where
χ = χ1 ⊗ χ2 and χ1, χ2 are unramified quasi-characters of F×. Then π has
a non-zero K-fixed vector φ0, where K = GL2(o). We shall give an explicit
p-stabilized vector for π. The semisimplification of πU is

χ1 ⊗ χ2 + χ2 ⊗ χ1.

The element t1 acts on each irreducible component of πU by χ2($−1) and
χ1($−1) respectively. If χ1($−1) 6= χ2($−1), then we have πU = (χ1 ⊗
χ2)⊕ (χ2 ⊗ χ1). It follows from Proposition 2.3 and the results in Section
4 that

f1 := (δ
1
2
B(t1)UB$,1 − χ2($−1))φ0, f2 := (δ

1
2
B(t1)UB$,1 − χ1($−1))φ0

are p-stabilized vectors with respect to B with the eigenvalues q
1
2χ1($−1),

q
1
2χ2($−1) respectively.
If χ1($−1) = χ2($−1), then we have χ1 = χ2 since χ1 and χ2 are

unramified. In this case, any irreducible component of πU is isomorphic to
χ1 ⊗ χ1, but πU is not decomposed as (χ1 ⊗ χ1)⊕2. This follows from the
fact that C ' HomGL2(F )(π, π) = HomT (πU , χ1 ⊗ χ1) (Schur’s lemma and

Frobenius reciprocity). In this case, f3 := (δ
1
2
B(t1)UB$,1 − χ1($−1))φ0 is a

p-stabilized vector with respect to B with the eigenvalue q
1
2χ1($−1).

We can express fi in terms of Iwahori fixed vectors as follows. Let φ be
a generator of πK . Choose a basis {φ, φ′ = π(t−1

1 )φ} of πI . Then we have

UB$,1(φ, φ′) = (φ, φ′)
(

a(φ) q
−χ1($−1)χ2($−1) 0

)
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where a(φ) = χ1($−1) + χ2($−1). Therefore we have

χ1($)f1 = φ− q−
1
2χ2($−1)φ′, χ2($)f2 = φ− q−

1
2χ1($−1)φ′

(see Section 9.1 for the relation to the global setting). It is the same for f3.

6. U(2, 1)-case

Let U(2, 1) be the quasi-split unitary group in three variables associated
to an quadratic extension E/F . Put

Φ =

 0 0 1
0 −1 0
1 0 0

 .
We denote by − the conjugate for the non-trivial element in Gal(E/F ). We
realize U(2, 1)(F ) as the subgroup of GL3(E) consisting of all g satisfying
tgΦg = Φ. Let B be the upper triangular Borel subgroup of U(2, 1), T
the diagonal subgroup of B and K = U(2, 1)(F ) ∩ GL3(oE), where oE is
the ring of integers in E. We write E1 for the norm-one subgroup of E/F .
Then T is isomorphic to E× ×E1. Let χ be an unramified quasi-character
of E× and let 1E1 denote the trivial character of E1. Due to [13], the
corresponding parabolically induced representation IndU(2,1)(F )

B(F ) (χ⊗1E1) is
irreducible except for the following cases:

(i) χ = | · |±E , where | · |E denotes the normalized absolute value of E;
(ii) χ|F× = ωE/F | · |±, where ωE/F is the non-trivial character of F×

which is trivial on NE/F (E×);
(iii) χ|F× is trivial and χ is not trivial.

Suppose that π = IndU(2,1)(F )
B(F ) (χ ⊗ 1E1) is irreducible. Then π has a non-

zero K-fixed vector φ0. We shall produce an explicit p-stabilized vector for
π.

We fix a uniformizer $E of E and set

t1 =

 $E 0 0
0 1 0
0 0 $−1

E

 .
Let U be the unipotent radical of B. Then t1 is positive relative to (B,U).
The semisimplification of πU is χ⊗ 1E1 + χ−1 ⊗ 1E1 , where χ denotes the
quasi-character of E× defined by χ(x) = χ(x), for x ∈ E×. The element t1
acts on χ⊗ 1E1 and χ−1 ⊗ 1E1 by χ($E) and χ−1($E) respectively. As in
the GL2-case, by Proposition 2.3 and the results in Section 4,

(δ
1
2
B(t1)UB$,1 − χ−1($E))φ0, (δ

1
2
B(t1)UB$,1 − χ($E))φ0

are p-stabilized vectors with respect to B with the eigenvalues qEχ($E)
and qEχ−1($E) respectively.
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7. GSp4-case

Hereafter we follows the notations in [16]. Put

J =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 .
We realize GSp4(F ) as the subgroup of GL4(F ) consisting of all g such
that tgJg = λJ , for some λ ∈ F×. Let B be the Borel subgroup of GSp4
consisting of the upper triangular elements, T the diagonal subgroup of B
and U the unipotent radical of B. Let P (respectively Q) be the Siegel
(respectively Klingen) parabolic subgroup of GSp4 containing B. Let P =
MPNP and Q = MQNQ be Levi decompositions. Let α1, α2 be simple roots
defined by α1(t) = ab−1 and α2(t) = b2c−1 for t = diag(a, b, cb−1, ca−1),
a, b, c ∈ F×. Note that ∆P = {α1} and ∆Q = {α2}. Thus there exist
two Up-operators UB$,i = [ItiI], i = 1, 2 where t1 = diag(1, 1, $−1, $−1)
and t2 = diag(1, $−1, $−1, $−2). Note that t1, t2 are positive elements in
T−B relative to (B, I), and t1 (respectively t2) is a positive element in T−P
(respectively T−Q ) relative to (P,KP ) (respectively (Q,KQ)). In this section,
we give p-stabilized vectors according to the classification of the parahori-
spherical representations of GSp4(F ) by Roberts and Schmidt [16].

7.1. Iwahori case. In this subsection, we study p-stabilized vectors with
respect to B̂ = B. The strategy taking here is as follows:

(i) Let (π, V ) be an irreducible admissible representation of GSp4(F )
admitting a non-zero Iwahori-fixed vector. Then π is an irreducible
constituent of some unramified principal series representation χ1×
χ2 o σ. We use the classification of such representations in Table
A.15 of [16].

(ii) We make up a list of the simultaneous eigenvalues for Up-operators
UB$,1, UB$,2 in terms of the following Satake parameters of χ1×χ2o
σ:

(7.1) α = χ1χ2σ($−1), β = χ1σ($−1), γ = χ2σ($−1), δ = σ($−1).
By Proposition 2.3, the problem is reduced to the computation of
the simultaneous eigenvalues for t1, t2 on (VU )I∩T . We note that
VU = (VU )I∩T . Table A.3 of [16] gives the semisimplification of
the Jacquet module πNP of π associated to the Siegel parabolic
subgroup P . So we can easily get the semisimplification πss

U of πU
by using the transitivity of Jacquet functors. The elements t1, t2
act on each irreducible component of πss

U by its central character.
Thus we can obtain the set S′ of pairs of simultaneous eigenvalues
for (t1, t2) on VU = (VU )I∩T . It will turns out that S′ is contained
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in S, where S is the set of pairs of simultaneous eigenvalues for
(t1, t2) on (χ1 × χ2 o σ)U = (χ1 × χ2 o σ)I∩TU , that is,

S = {(δ, δγ), (δ, δβ), (α, αβ), (α, αγ), (γ, γδ), (γ, γα), (β, βδ), (β, βα)}.

(iii) Suppose that S′ contains just dimVU -elements. Since t1, t2
generates T/ZG, this implies that (πU )I∩T is a semisimple and
multiplicity-free T -module. We further assume that π has a non-
zero K-fixed vector φK . In this case, given an element (s, t) in S′,
the vector

φs,t :=
∏

(s′,t′)∈S′
s′ 6=s

(δ
1
2
B(t1)UB$,1 − s′)

∏
(s′,t′)∈S′
t′ 6=t

(δ
1
2
B(t2)UB$,2 − t′)φK

is a p-stabilized vector with respect to B̂ = B with the eigenvalues
(δ−

1
2

B (t1)s, δ−
1
2

B (t2)t) because of Proposition 2.3 and the results in
Section 4. We note that Table A. 15 of [16] gives a list of the
K-spherical representations of GSp4(F ).

7.1.1. Case I. Let χ1, χ2, σ be unramified quasi-characters of F×. Then
the corresponding parabolically induced representation π = χ1 × χ2 o σ is
irreducible if and only if χ1 6= ν±1, χ2 6= ν±1 and χ1 6= ν±1χ±1

2 . Here let
us put ν = | · |. Due to Table A. 15 of [16], π has a non-zero K-fixed vector.
The semisimplification of πNP is given in Table A.3 of [16]. We use the
notation in section A.3 of [16]. Let rT,MP

denote the Jacquet functor from
the category of the smooth representations of MP to that of B. Note that
the semisimplification of rT,MP

((χ1×χ2)⊗σ) is (χ1⊗χ2⊗σ)+(χ2⊗χ1⊗σ).
Since rU = rT,MP

◦ rNP , the semisimplification of πU is

(χ1 ⊗ χ2 ⊗ σ) + (χ2 ⊗ χ1 ⊗ σ) + (χ−1
1 ⊗ χ

−1
2 ⊗ χ1χ2σ)

+ (χ−1
2 ⊗ χ

−1
1 ⊗ χ1χ2σ) + (χ1 ⊗ χ−1

2 ⊗ χ2σ) + (χ−1
2 ⊗ χ1 ⊗ χ2σ)

+ (χ2 ⊗ χ−1
1 ⊗ χ1σ) + (χ−1

1 ⊗ χ2 ⊗ χ1σ).

The elements t1, t2 act on each component of the semisimplification of πU
by the following pairs of scalars:

(δ, δγ), (δ, δβ), (α, αβ), (α, αγ), (γ, γδ), (γ, γα), (β, βδ), (β, βα).

The pairs above are pairwise distinct if and only if χ1 6= 1 , χ2 6= 1 and
χ1 6= χ±1

2 .

7.1.2. Case II. Let χ, σ be unramified quasi-characters of F× such that
χ2 6= ν±1 and χ 6= ν±

3
2 . Put χ1 = ν

1
2χ and χ2 = ν−

1
2χ. In what follows,

we consider the irreducible constituents π of χ1 × χ2 o σ.
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Case IIa. Put π = χStGL(2) o σ. Noting that rT,MP
(χStGL(2) ⊗ σ) =

ν
1
2χ⊗ν−

1
2χ⊗σ. It follows from Table A.3 of [16] that the semi-simplification

of πU is

(χ1⊗χ2⊗σ)+(χ−1
2 ⊗χ

−1
1 ⊗χ1χ2σ)+(χ1⊗χ−1

2 ⊗χ2σ)+(χ−1
2 ⊗χ1⊗χ2σ).

Hence the elements t1, t2 act on each irreducible component of πU by

(δ, δγ), (α, αγ), (γ, γδ), (γ, γα)

respectively. The pairs above are pairwise distinct if and only if χ2 6= 1.

Case IIb. If π = χ1GL(2) oσ, then π has a non-zero K-fixed vector. Since
rT,MP

(χ1GL(2) ⊗ σ) = ν−
1
2χ ⊗ ν

1
2χ ⊗ σ, it follows from Table A.3 of [16]

that the semisimplification of πU is

(χ2⊗χ1⊗σ)+(χ−1
1 ⊗χ

−1
2 ⊗χ1χ2σ)+(χ2⊗χ−1

1 ⊗χ1σ)+(χ−1
1 ⊗χ2⊗χ1σ).

The elements t1, t2 act on each component by

(δ, δβ), (α, αβ), (β, βδ), (β, βα)

respectively. The pairs above are pairwise distinct if and only if χ2 6= 1.

7.1.3. Case III. Let χ and ρ be unramified quasi-characters of F×. We
assume that χ 6= 1 and χ 6= ν±2. Put χ1 = χ, χ2 = ν, and σ = ν−

1
2 ρ. Next,

we consider the irreducible constituents π of χ1 × χ2 o σ.

Case IIIa. If π = χo ρStGSp(2), then the semisimplification of πU is

(χ1 ⊗ χ2 ⊗ σ) + (χ2 ⊗ χ1 ⊗ σ) + (χ2 ⊗ χ−1
1 ⊗ χ1σ) + (χ−1

1 ⊗ χ2 ⊗ χ1σ).

The actions of ti, i = 1, 2 on each irreducible component of πU are just

(δ, δγ), (δ, δβ), (β, βδ), (β, βα)

respectively. The pairs above are pairwise distinct if and only if χ 6= ν±1.

Case IIIb. Suppose that π = χ o ρ1GSp(2). Then π admits a non-zero
K-fixed vector and the semisimplification of πU is

(χ−1
1 ⊗ χ

−1
2 ⊗ χ1χ2σ) + (χ−1

2 ⊗ χ
−1
1 ⊗ χ1χ2σ) + (χ1 ⊗ χ−1

2 ⊗ χ2σ)
+ (χ−1

2 ⊗ χ1 ⊗ χ2σ).

Hence the actions of ti, i = 1, 2 on each component are

(α, αβ), (α, αγ), (γ, γδ), (γ, γα)

respectively. The pairs above are pairwise distinct if and only if χ 6= ν±1.
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7.1.4. Case IV. Let ρ be an unramified quasi-character of F×. Put χ1 =
ν2, χ2 = ν, and σ = ν−

3
2 ρ. We will consider the irreducible constituents π

of χ1 × χ2 o σ. In this case, α, β, γ, δ are different from each other. So πU
is a semisimple and multiplicity-free T -module.
Case IVa. Suppose that π = ρStGSp(4). Then we have πU = χ1 ⊗ χ2 ⊗
σ, and the elements t1, t2 act on it by (δ, δγ). Since dim πI = 1, any
non-zero I-fixed vector is itself a p-stabilized vector with the eigenvalues
(δ−

1
2

B (t1)δ, δ−
1
2

B (t2)δγ).

Case IVb. If π = L(ν2, ν−1ρStGSp(2)), then πU is isomorphic to

(χ2 ⊗ χ1 ⊗ σ)⊕ (χ2 ⊗ χ−1
1 ⊗ χ1σ)⊕ (χ−1

1 ⊗ χ2 ⊗ χ1σ).
Hence ti, i = 1, 2 act on each component by

(δ, δβ), (β, βδ), (β, βα)
respectively.

Case IVc. Suppose that π = L(ν
3
2 StGL(2), ν

− 3
2 ρ). Then πU is isomorphic

to
(χ−1

2 ⊗ χ
−1
1 ⊗ χ1χ2σ)⊕ (χ1 ⊗ χ−1

2 ⊗ χ2σ)⊕ (χ−1
2 ⊗ χ1 ⊗ χ2σ),

and the elements t1, t2 act on each irreducible component by
(α, αγ), (γ, γδ), (γ, γα)

respectively.
Case IVd. If π = ρ1GSp(4), then we have dim πI = dim πK = 1, and hence
πI = πK . We also get πU = χ−1

1 ⊗χ
−1
2 ⊗χ1χ2σ, and the elements t1, t2 act

on πU by (α, αβ). Thus any non-zero K-fixed vector is a p-stabilized vector
with the eigenvalues (δ−

1
2

B (t1)α, δ−
1
2

B (t2)αβ).

7.1.5. Case V. Let ξ and ρ be unramified quasi-characters of F×. We
assume that ξ2 = 1 and ξ 6= 1. Put χ1 = νξ, χ2 = ξ, and σ = ν−

1
2 ρ.

We consider the irreducible constituents π of χ1 × χ2 o σ. In this case,
α, β, γ, δ are different from each other. This means that πU is a semisimple
and multiplicity-free T -module.

Case Va. If π = δ([ξ, νξ], ν−
1
2 ρ), then we have

πU = (χ1 ⊗ χ2 ⊗ σ)⊕ (χ1 ⊗ χ−1
2 ⊗ χ2σ).

The elements t1, t2 act on each component by
(δ, δγ), (γ, γδ)

respectively.
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Case Vb. Suppose that π = L(ν
1
2 ξStGL(2), ν

− 1
2 ρ). Then we have

πU = (χ−1
2 ⊗ χ

−1
1 ⊗ χ1χ2σ)⊕ (χ−1

2 ⊗ χ1 ⊗ χ2σ),
and hence the elements t1, t2 act on each irreducible component by

(α, αγ), (γ, γα)
respectively.

Case Vc. In the case when π = L(ν
1
2 ξStGL(2), ξν

− 1
2 ρ), we have

πU = (χ2 ⊗ χ1 ⊗ σ)⊕ (χ2 ⊗ χ−1
1 ⊗ χ1σ).

The elements t1, t2 act on each component by
(δ, δβ), (β, βδ)

respectively.

Case Vd. If π = L(νξ, ξ o ν−
1
2 ρ), then π has a non-zero K-fixed vector.

We have
πU = (χ−1

1 ⊗ χ
−1
2 ⊗ χ1χ2σ)⊕ (χ−1

1 ⊗ χ2 ⊗ χ1σ).
Hence the elements t1, t2 act on each component by

(α, αβ), (β, βα)
respectively.

7.1.6. Case VI. Let ρ be an unramified quasi-character of F×. Put χ1 =
ν, χ2 = 1F× and σ = ν−1/2ρ. Finally, we consider the irreducible con-
stituents π of χ1 × χ2 o σ. In this case, we have α = β, γ = δ and α 6= γ.

Case VIa. Suppose that π = τ(S, ν−
1
2 ρ). Then the semisimplification of

πU is
(χ1χ2 ⊗ χ1 ⊗ σ)⊕2 + (χ2 ⊗ χ1 ⊗ σ).

Hence the actions of ti, i = 1, 2 on each component are
(γ, γ2), (γ, γ2), (γ, γα)

respectively.

Case VIb. If π = τ(T, ν−
1
2 ρ), then we have dim πKP = dim πI = 1 by Ta-

ble A. 15 in [16], and hence πI = πKP . We also get πU = χ2⊗χ1⊗σ, and the
elements t1, t2 act on πU by (γ, γα). Therefore any non-zero KP -spherical
vector is a p-stabilized vector with the eigenvalues (δ−

1
2

B (t1)γ, δ−
1
2

B (t2)γα).

Case VIc. Suppose that π = L(ν
1
2 StGL(2), ν

− 1
2 ρ). Then we get πU =

χ2⊗χ−1
1 ⊗χ1σ, and ti, i = 1, 2 acts on it by (α, γα). By Table A. 15 in [16],

the space πKQ is one-dimensional. Therefore a non-zero KQ-fixed vector is
a p-stabilized vector with the eigenvalues (δ−

1
2

B (t1)α, δ−
1
2

B (t2)γα).
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Case VId. If π = L(ν,1F×oν−1/2ρ), then π has a non-zeroK-fixed vector.
The semisimplification of πU is

(χ−1
1 ⊗ χ2 ⊗ χ1σ)⊕2 + (χ2 ⊗ χ−1

1 ⊗ χ1σ).
Hence the actions of ti, i = 1, 2 on each component are just

(α, α2), (α, α2), (α, γα)
respectively.

In Table 7.1, we list the simultaneous eigenvalues for t1, t2 on πU , where
π is a representation in groups I-V. For a representation in group VI, we
always have α = β, γ = δ and α 6= γ. So for such representations, we list
the multiplicity of the simultaneous eigenvalues for t1, t2 on πU in Table
7.2.

7.2. Siegel parahoric case. In this subsection, we compute the eigenval-
ues of the Up-operator UP$,1, where P denotes the Siegel parabolic subgroup
of GSp4(F ). The strategy is as follows:

(i) We use the classification of the irreducible smooth representations
(π, V ) of GSp4(F ) admitting KP -fixed vectors in Table A.15 of
[16]. As in the previous subsection, we realize π as an irreducible
constituent of some unramified principal series representation χ1×
χ2 o σ. We use the same notation as in subsection 7.1.

(ii) We compute the set S′ of eigenvalues of t1 on (VNP )MP∩KP as
follows: The semisimplification πss

NP
of the Jacquet module πNP

of π associated to P is given in Table A.3 of [16]. We denote by
πNP ,MP∩KP the MP -submodule of πss

NP
spanned by the MP ∩KP -

fixed vectors in πss
NP

. Note that for any irreducible admissible rep-
resentation τ of MP ' GL2(F ) × F×, we have dim τMP∩KP ≤ 1.
Thus the length of πNP ,MP∩KP is equal to dim(VNP )MP∩KP . Since
the element t1 lies in the center of MP , the eigenvalues of t1 on
(VNP )MP∩KP is just those of t1 on πNP ,MP∩KP . So we can easily
compute the eigenvalues of t1 on (VNP )MP∩KP because t1 acts on
each irreducible component of πNP ,MP∩KP by the central charac-
ter. It will turns out that S′ is contained in S = {α, β, γ, δ}, where
α, β, γ, δ are the Satake parameters of χ1×χ2 oσ defined in (7.1).

(iii) We assume that S′ contains just dim(πNP )KP∩MP -elements. Then
(πNP )KP∩MP is a semisimple and multiplicity-free ZMP

-module be-
cause t1 generates ZMP

modulo ZMP
(o). We further assume that

π has a non-zero K-fixed vector φK . Then, given an element s in
S′, the vector

φs :=
∏
s′∈S′
s′ 6=s

(δ
1
2
P (t1)UP$,1 − s′)φK
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is a p-stabilized vector with respect to P̂ = Q with the eigenvalue
δ
− 1

2
P (t1)s because of Proposition 2.3 and the results in Section 4.

7.2.1. Case I. In this case, πNP ,MP∩KP is

(χ1×χ2)⊗σ+(χ−1
1 ×χ

−1
2 )⊗χ1χ2σ+(χ1×χ−1

2 )⊗χ2σ+(χ2×χ−1
1 )⊗χ1σ.

The element t1 acts on each component of πNP ,MP∩KP by

δ, α, γ, β

respectively.

7.2.2. Case II. Case IIa. In this case, we have πNP ,MP∩KP = (χ1 ×
χ−1

2 )⊗ χ2σ. The element t1 acts on it by γ. Since dimV KP = 1, any non-
zero KP -fixed vector is a p-stabilized vector with respect to P̂ .

Case IIb. In this case, we have

πNP ,MP∩KP = χ1GL(2) ⊗ σ + χ−11GL(2) ⊗ χ2σ + (χ2 × χ−1
1 )⊗ χ1σ,

and t1 acts on each component by δ, α, β respectively.

7.2.3. Case III. Case IIIa. In this case, we obtain

πNP ,MP∩KP = (χ1 × χ2)⊗ σ + (χ2 × χ−1
1 )⊗ χ1σ,

and t1 acts on each component by δ and β respectively.

Case IIIb. We get

πNP ,MP∩KP = (χ−1
2 × χ

−1
1 )⊗ χ1χ2σ + (χ1 × χ−1

2 )⊗ χ2σ.

The element t1 acts on each component by α and γ respectively.

7.2.4. Case IV. Case IVa. The representations in case IVa have no KP -
fixed vectors.

Case IVb. We obtain

πNP ,MP∩KP = ν3/21GL(2) ⊗ σ + (χ2 × χ−1
1 )⊗ χ1σ.

The element t1 acts on each component by δ and β respectively.

Case IVc. In this case, t1 acts on πNP ,MP∩KP = (χ1 × χ−1
2 )⊗ χ2σ by γ.

Case IVd. The element t1 acts on πNP ,MP∩KP = ν−3/21GL(2) ⊗ χ1χ2σ by
α.
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7.2.5. Case V. Case Va. In this case, π admits no KP -fixed vectors.

Case Vb. We have πNP ,MP∩KP = ν1/2ξ1GL(2) ⊗ χ2σ, and t1 acts on it by
γ.

Case Vc. The element t1 acts on πNP ,MP∩KP = ν1/2ξ1GL(2) ⊗ σ by δ.

Case Vd. In this case, we obtain

πNP ,MP∩KP = ν−1/2ξ1GL(2) ⊗ χ1σ ⊕ ν−1/2ξ1GL(2) ⊗ χ1χ2σ.

So t1 acts on each component by β and α respectively.

7.2.6. Case VI. Case VIa. In this case, the element t1 acts on the space
πNP ,MP∩KP = ν1/21GL(2) ⊗ σ by γ.

Case VIb. We have πNP ,MP∩KP = ν1/21GL(2) ⊗ σ. The element t1 acts on
it by γ.

Case VIc. In this case, π has no KP -fixed vectors.

Case VId. We get πNP ,MP∩KP = (ν−1/21GL(2) ⊗ χ1σ)⊕2 and t1 acts on
each component by α.

In Table 7.3, we list the eigenvalues for t1 on (πNP )MP∩KP , where π is a
representation in groups I-V. For representations in group VI, we list the
multiplicity of the eigenvalues for t1 on (πNP )MP∩KP in Table 7.4.

representation α β γ δ dim πKP dim πK

I © © © © 4 1
IIa - - © - 1 0
IIb © © - © 3 1
IIIa - © - © 2 0
IIIb © - © - 2 1
IVa - - - - 0 0
IVb - © - © 2 0
IVc - - © - 1 0
IVd © - - - 1 1
Va - - - - 0 0
Vb - - © - 1 0
Vc - - - © 1 0
Vd © © - - 2 1

Table 7.3
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representation α γ dim πKP dim πK

VIa 0 1 1 0
VIb 0 1 1 0
VIc 0 0 0 0
VId 2 0 2 1

Table 7.4

7.3. Klingen parahoric case. In this subsection, we compute the eigen-
values of the Up-operator UQ$,1 = [KQt2KQ]. The strategy is exactly same
to that for the Siegel parahoric case. So we shall be brief here.

(i) According to the classification in Table A.15 of [16], we realize the
representations (π, V ) of GSp4(F ) which admit KQ-fixed vectors
as an irreducible constituent of some unramified principal series
representation χ1 × χ2 o σ.

(ii) We compute the set S′ of eigenvalues of t2 on (VNQ)MQ∩KQ as fol-
lows: The semisimplification πss

NQ
of πNQ is given in Table A.3 of

[16]. We denote by πNQ,MQ∩KQ the MQ-submodule of πss
NQ

gen-
erated by the MQ ∩ KQ-fixed vectors. Note that for any irre-
ducible admissible representation τ of MQ ' F× × GSp2(F ), we
have dim τMQ∩KQ ≤ 1. So the length of πNQ,MQ∩KQ is equal to
dim(VNQ)MQ∩KQ . Since t2 ∈ ZMQ

, the eigenvalues of t2 on
(VNQ)MQ∩KQ is just those of t2 on πNQ,MQ∩KQ . So we can com-
pute the eigenvalues of t2 on (VNQ)MQ∩KQ because t2 acts on each
irreducible component of πNQ,MQ∩KQ by the central character. It
will turns out that S′ is contained in S = {αβ, αγ, δβ, δγ}, where
α, β, γ, δ are the Satake parameters of χ1×χ2 oσ defined in (7.1).

(iii) If S′ contains just dim(πNQ)KQ∩MQ-elements, then (πNQ)KQ∩MQ is
a semisimple and multiplicity-free ZMQ

-module. We further assume
that π has a non-zero K-fixed vector φK . Then, given an element
s in S′, the vector

φs :=
∏
s′∈S′
s′ 6=s

(δ
1
2
Q(t2)UQ$,1 − s′)φK

is a p-stabilized vector with respect to Q̂ = P with the eigenvalue
δ
− 1

2
Q (t2)s because of Proposition 2.3 and the result in Section 4.

7.3.1. Case I. In this case, we have
πNQ,MQ∩KQ =χ1 ⊗ (χ2 o σ) + χ2 ⊗ (χ1 o σ) + χ−1

2 ⊗ (χ1 o χ2σ)
+ χ−1

1 ⊗ (χ2 o χ1σ).
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The element t2 acts on each irreducible component of πNQ,MQ∩KQ by

δγ, βδ, αγ, αβ

respectively.

7.3.2. Case II. Case IIa. In this case, we get πNQ,MQ∩KQ = χ1 ⊗ (χ2 o
σ) + χ−1

2 ⊗ (χ1 o χ2σ). The element t2 acts on each component by δγ and
αγ respectively.

Case IIb. The element t2 acts on each component of πNQ,MQ∩KQ = χ2 ⊗
(χ1 o σ) + χ−1

1 ⊗ (χ2 o χ1σ) by βδ and αβ respectively.

7.3.3. Case III. Case IIIa. In this case, t2 acts on πNQ,MQ∩KQ = χ2 ⊗
(χ1 o σ) by βδ.

Case IIIb. We have πNQ,MQ∩KQ = χ ⊗ ρ1GSp(2) + χ−1 ⊗ χρ1GSp(2) +
χ−1

2 ⊗ (χ1 o χ2σ), and t2 acts on each component of it by δγ, αβ and αγ
respectively.

7.3.4. Case IV. Case IVa. In this case, π has no KQ-fixed vectors.

Case IVb. The element t2 acts on πNQ,MQ∩KQ = χ2 ⊗ (χ1 o σ) by βδ.

Case IVc. We have πNQ,MQ∩KQ = ν2 ⊗ ν−1ρ1GSp(2) + χ−1
2 ⊗ (χ1 o χ2σ),

and t2 acts on each component by δγ and αγ respectively.

Case IVd. The element t2 acts on πNQ,MQ∩KQ = ν−2 ⊗ νρ1GSp(2) by αβ.

7.3.5. Case V. Case Va. In this case, t2 acts on πNQ,MQ∩KQ = χ1 ⊗
(χ2 o σ) by δγ.

Case Vb. In this case, t2 acts on πNQ,MQ∩KQ = χ−1
2 ⊗ (χ1 o χ2σ) by αγ.

Case Vc. The element t2 acts on πNQ,MQ∩KQ = χ2 ⊗ (χ1 o σ) by βδ.

Case Vd. In this case, t2 acts on πNQ,MQ∩KQ = ν−1/2ξ ⊗ (ξ o ν1/2ρ) by
αβ.

7.3.6. Case VI. Case VIa. We have πNQ,MQ∩KQ = χ1 ⊗ (χ2 o σ), and
hence t2 acts on it by γ2.

Case VIb. In this case, π has no KQ-fixed vectors.

Case VIc. The element t2 acts on πNQ,MQ∩KQ = 1F× ⊗ ρ1GSp(2) by αγ.

Case VId. In this case, t2 acts on each component of πNQ,MQ∩KQ = 1F×⊗
ρ1GSp(2) + χ−1

1 ⊗ (χ2 o χ1σ) by αγ and α2 respectively.
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In Table 7.5, we list the eigenvalues for t2 on (πNQ)MQ∩KQ , where π is a
representation in groups I-V. For representations in group VI, we list the
multiplicity of the eigenvalues for t2 on (πNQ)MQ∩KQ in Table 7.6.

representation αβ αγ δβ δγ dim πKQ dim πK

I © © © © 4 1
IIa - © - © 2 0
IIb © - © - 2 1
IIIa - - © - 1 0
IIIb © © - © 3 1
IVa - - - - 0 0
IVb - - © - 1 0
IVc - © - © 2 0
IVd © - - - 1 1
Va - - - © 1 0
Vb - © - - 1 0
Vc - - © - 1 0
Vd © - - - 1 1

Table 7.5

representation α2 αγ γ2 dim πKQ dim πK

VIa 0 0 1 1 0
VIb 0 0 0 0 0
VIc 0 1 0 1 0
VId 1 1 0 2 1

Table 7.6

8. A relation to global objects

In this section, we will be concerned with global objects and give an
answer why we consider the actions of the positive elements in local settings.
Basic references of this section are [15] and [9] (see also Section 5 of II in
[18]).

Let G be a non-compact connected semisimple algebraic group over Q
and K the maximal compact subgroup of G(R). Let KC be the complexi-
fication of K. Put D = G(R)/K. Let λ : KC −→ Aut(Eλ) be an algebraic
representation on a complex vector space Eλ. Then we obtain a homoge-
neous vector bundle Eλ = G(R)×K,λ|K Eλ = IndG(R)

K λ|K on D. Since D is
simply connected, there is a (smooth) trivialization

Eλ
∼−→ D × Eλ.
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With respect to this trivialization, the action of γ ∈ G(R) on D × Eλ is
given by

γ(z, v) = (γz, Jλ(γ, z)v)
for some smooth mapping Jλ : G × D −→ Aut(Eλ) which is so called
an automorphic factor. The action of G(R) induces the cocycle condition
Jλ(γ1γ2, z) = Jλ(γ1, γ2z)Jλ(γ2, z) for all γ1, γ2 ∈ G(R).

For a holomorphic Eλ-valued function f on D, the action of g ∈ G(R) is
defined by

(g−1f)(z) = J−1
λ (g, z)f(gz).

For a discrete subgroup Γ of G(Q) and a finite character χ : Γ −→ C×, we
say that a holomorphic function f : D −→ Eλ is an automorphic form of
weight λ and level Γ with the character χ if it satisfies γf = χ(γ)f for any
γ ∈ Γ. We denote by Mλ(Γ, χ) the space of automorphic forms of weight λ
and level Γ with the character χ.

Next we construct adelic forms from classical automorphic forms. Let G
be a connected reductive group over Q and ZG the center of G. Then its
derived group Gder is a semisimple connected algebraic group. Consider the
following exact sequence

1 −→ Gder −→ G
ν−→ T := G/Gder −→ 1

where T is a torus (cf. p.303 of [15]) . If G = GL2 (respectively GSp2n),
then T = Gm and ν is the determinant map (respectively the similitude
character). Let G(R)+ be the connected component of the identity ele-
ment in G(R) with respect to the real topology. For simplicity, in what
follows we assume that G(R)+ = ZG(R)+Gder(R)+ (for example, G =
GSp2n, GL2, U(p, q), p, q > 0 satisfy this condition).

Let A be the adele ring of Q and Af the finite adele of Q. Let K be
a compact open subgroup of G(Af ). Assume that ν(K) ⊃ T (Ẑ). Then it
follows from the strong approximation theorem for Gder that

(8.1) G(A) = G(Q)G(R)+K = G(Q)ZG(R)+Gder(R)+K.

Set K∞ = Z(R)+K
(1)
∞ , where K(1)

∞ is the maximal compact subgroup of
Gder. Then D := G(R)+/K∞ = Gder(R)/K(1)

∞ is the bounded symmetric
domain endowed with an involution ι. Let I ∈ D be the fixed point of ι.
From the description of D as above, Z(R)+ acts on I trivially. Put Γ =
Gder(Q)∩K. For an automorphic form f ∈Mλ(Γ, χ), we define the function
Ff : G(A) −→ Eλ as follows. By (8.1), it is possible to write a given
g ∈ G(A) as g = az∞g∞k with a ∈ G(Q), z∞ ∈ ZG(R)+ , g∞ ∈ Gder(R)+,
and k ∈ K. Then we put

Ff (g) = J−1
λ (g∞, I)f(g∞I).
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We can check that Ff is an automorphic form on G(A) in the sense of
[4]. Let πf be the maximal irreducible subquotient of the representation of
G(A) generated by Ff .

We now consider Hecke operators and then compare them with those in
local settings. For α ∈ G(Q)+ = G(Q) ∩G(R)+, consider the double coset

T (α) := ΓαΓ =
⋃
i

Γαi.

We write αi = αi,0αi,1, where αi,0 ∈ Z(R)+ and αi,1 ∈ Gder(R)+. Then we
define the action of T (α) on f by

T (α)f(z) = n(α)λ
∑
i

(αi,1f)(z)

where n(α)λ ∈ Q× is a normalized factor depending on λ (and also on
G). Assume that G is unramified at a rational p and the p-component
Kp of K is a compact open subgroup of G(Zp) which contains an Iwahori
subgroup. There exists a compact open subgroup Kp of G(A(p)

f ) such that
K = Kp × Kp. Note that Ff,p is an Iwahori fixed vector of πf,p. For α ∈
G(Q) ∩ T (Qp)/T (Zp), thus we obtain

T (α)Ff (g) = T (α)Ff (g∞) = T (α)J−1
λ (g∞, I)F (g∞I)

= n(α)λ
∑
i

J−1
λ (g∞, I)J−1

λ (αi,1, g∞I)F (αi,1g∞I)

= n(α)λ
∑
i

J−1
λ (αi,1g∞, I)F (αi,1g∞I)

= n(α)λ
∑
i

Ff (αi,1g∞).

Note that

G(Q)ZG(R)+αi,1g∞K = G(Q)ZG(R)+αig∞K

= G(Q)(g∞ZG(R)+ × α−1
i K).

Hence we have

T (α)Ff (g) = n(α)λ
∑
i

Ff (g∞α−1
i ) = n(α)λ

∑
h∈Kα−1K/K

Ff (g∞h)

= n(α)λ
∫
K
Ff (g∞hgf )dgf = n(α)λ

∫
Kα−1K

Ff (g∞gf )dgf

= n(α)λ
∫
G(Af )

T (α−1)KFf (g∞gf )dgf = n(α)λ[Kpα
−1Kp]Ff,p

where dgf is the Haar measure on G(Af ) normalized so that vol(K) = 1
and T (α−1)K := [Kpα

−1Kp]⊗ 1Kp .
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We can naturally define the notion of positive or negative elements in the
global setting. In the global setting, we usually consider Hecke operators
represented by negative elements. By the arguments above, the computa-
tion of such global Hecke operators is reduced to that of Hecke operators
associated to positive elements in the local setting. In the next section, we
will give examples of p-stabilized forms in the global setting.

9. p-stabilized forms

9.1. GL2-case. In this subsection we will refer [19] as a basic reference.
Put G = GL2. In this case, we have Gder = SL2, K = SO(2)(R), KC '
C× and the corresponding Hermitian symmetric space is the upper half-
plane H = {z ∈ C | Im(z) > 0}. The automorphic factor is given by

J(γ, z) = cz + d for γ =
(
a b
c d

)
∈ SL2(R) and for an integer k ≥ 1 we

define the algebraic representation σk : KC −→ C×, z 7→ zk. For an integer
N ≥ 1, we define the congruence subgroup Γ0(N) (respectively Γ1(N)) to

be the group consisting of the elements g =
(
a b
c d

)
∈ SL2(Z) such that

c ≡ 0 mod N (respectively a − 1 ≡ c ≡ 0 mod N). For an integer N ≥ 1
and a Dirichlet character χ : Γ0(N) −→ C× so that χ|Γ1(N) = 1, we define
Mk(Γ0(N), χ) := Mσk(Γ0(N), χ). For a prime p 6 |N , we define the action of
Hecke operator Tp = [Γ0(N)diag(1, p)Γ0(N)] on Mk(Γ0(N), χ) by

Tpf(z) := p
k
2−1 ∑

α∈Γ0(N)\Γ0(N)diag(1,p)Γ0(N)
((p−

1
2α)−1f)(z)

= p
k
2−1 ∑

α∈Γ0(N)\Γ0(N)diag(1,p)Γ0(N)
j(p−

1
2α, z)−kf(p−

1
2αz).

Note that p−
1
2α ∈ SL2(R). If p 6 |N , then we define the action of Up =

[Γ0(pN)diag(1, p)Γ0(pN)] on Mk(Γ0(pN), χ) by

Upf(z) := p
k
2−1 ∑

α∈Γ0(pN)\Γ0(pN)diag(1,p)Γ0(pN)
((p−

1
2α)−1f)(z).

Let f ∈ Mk(Γ0(N), χ) be a normalized cusp form which is an eigenform
for all Tp, p 6 |N with the eigenvalue ap(f). Let αp, βp be the Satake pa-
rameters at p so that ap(f) = αp + βp and αpβp = χ(p)pk−1. Let πf be
the automorphic representation associated to f and πf,p the local compo-
nent at p. Since πf,p is a principal series representation, there exist char-
acters χi : Q×p −→ C×, i = 1, 2 such that πf,p ' π(χ1, χ2). We may
put χ1(p−1)p

k−1
2 = αp, χ2(p−1)p

k−1
2 = βp. We define p-stabilized forms as
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follows:

fαp(z) := f(z)− βpf(pz), fβp(z) := f(z)− αpf(pz).

Then fαp and fβp belong toMk(Γ0(pN), χ), and these are Hecke eigenforms
for T`, ` 6 |pN and Up-eigenforms with the eigenvalues αp, βp respectively.

This can be checked via local computation as follows. By using the strong
approximation theorem, it is easy to see that Ff(pz)(g) = Ff (g · diag(1, p)).
Hence the local component of Ffαp (respectively Ffβp ) at p corresponds to
χ1(p)f1 (respectively χ2(p)f2) of Section 5. By the computation of Section
5 again, we have

Upfαp(z) = p
k
2−1p

1
2χ−1

2 (p)fαp(z) = αpfαp(z)

and
Upfβp(z) = p

k
2−1p

1
2χ−1

1 (p)fβp(z) = βpfβp(z).
We say the above f is p-ordinary if ordp(ap(f)) = 0. If so is f , then we
may assume that ordp(αp) = 0 and ordp(βp) > 0. The above computations
show us that fαp can be embedded into a Hida family if f is p-ordinary.
Note that fβp can be embedded into a Coleman family (cf. [7]).

9.2. GSp4-case. Let ν : G = GSp4 −→ GL1 be the similitude character.

Put Sp4 := Kerν. In this case, we have Gder = Sp4, K =
{(

A B
−B A

)
∈

Sp4(R)
}
' U(2)(R),KC ' GL2(C) and the corresponding Hermitian sym-

metric space is the Siegel upper half-plane H2 = {Z ∈ M2(C)| tZ =
Z, Im(Z) > 0}. For a pair of positive integers k = (k1, k2) such that
k1 ≥ k2, we define the algebraic representation λk of GL2(C) by

λk = Symk1−k2St2 ⊗ detk2St2

where St2 is the standard representation of dimension 2 over C. Then the
corresponding automorphic factor is defined by

Jk(γ, Z) = λk(CZ +D)

for γ =
(
A B
C D

)
∈ Sp4(R) and Z ∈ H2. For an integer N ≥ 1, we define

a principal congruence subgroup Γ(N) to be the group consisting of the
elements g ∈ Sp4(Z) such that g ≡ 1 mod N . We also define the level of Γ to
be the minimal N satisfying (i) gΓg−1 contains Γ(N) for some g ∈ GSp4(Q)
and (ii) all divisors of the denominator or the numerator of the entries of g
divide N . If Γ is of level N , then the closure Γ in Sp4(Af ) satisfies that the
p-component of Γ is Sp4(Zp) for all p 6 |N . For a parabolic subgroup P , let
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IP = ΓP (p) be the group consisting of the elements g ∈ Sp4(Z) such that
(g mod p) ∈ P (Fp). For a discrete subgroup Γ of level N , put ΓIP := Γ∩IP .

For a discrete subgroup Γ of level N and a Dirichlet character χ : Γ −→
C×, we define Mk(Γ, χ) := Mλk(Γ, χ). A function of this space is called a
Siegel modular form of weight k and level Γ with a character χ. If k =
k1 = k2, put Mk(Γ, χ) := M(k,k)(Γ, χ) for short. For a prime p 6 |N and
t′1 = diag(1, 1, p, p), t′2 = diag(1, p, p, p2), we define the action of two Hecke
operators Tp,i = [Γt′1Γ], i = 1, 2 on Mk :=

⋃
(Γ,χ)

Mk(Γ, χ) by

Tp,if(Z) := pi(
k1+k2

2 −3) ∑
α∈Γ\Γt′iΓ

((ν(t′i)−
1
2α)−1f)(Z)

= pi(
k1+k2

2 −3) ∑
α∈Γ\Γt′iΓ

Jk(ν(t′i)−
1
2α,Z)−1f(ν(t′i)−

1
2αZ).

Then Tp,if ∈Mk, but in general, these operators do not preserve Mk(Γ, χ)
(see Lemma 3.1 of [17]). Note that ν(t′i)−

1
2α ∈ Sp4(R). If p 6 |N , then we

define the action of UP,global
p,i = [ΓIP t′iΓIP ], i = 1, 2 on Mk(ΓIP , χ) by

(9.1) UP,global
p,i f(Z) := pi(

k1+k2
2 −3) ∑

α∈ΓI,P \ΓIP t
′
iΓIP

((ν(t′i)−
1
2α)−1f)(Z).

In what follows, we will discuss about a p-stabilized form of
Saito-Kurokawa lift. Let Γ0(N) be the subgroup of Sp4(Z) consisting of

the elements g =
(
Ag Bg
Cg Dg

)
such that Cg ≡ 02 mod N . Fix a finite char-

acter χ : (Z/NZ)× −→ C×. Then we define (and denote it by χ again) the
character on Γ0(N) associated to χ by χ(g) := χ(det(Dg)) for g ∈ Γ0(N).
For a normalized elliptic newform f of weight 2k− 2 ≥ 2 and level N with
the character χ2, there exists a cusp form F = SK(f) in Sk−1(Γ0(N), χ) by
[11] so that F is an eigenform for all Tp,i, p6 |N with the eigenvalue ap,i(F )
and these eigenvalues are written as

ap,1(F ) = χ(p)(pk−1 + pk−2) + ap(f),

ap,2(F ) = ap(f)χ(p)(pk−2 + pk−3) + 2χ2(p)p2k−4 − (p2 + 1)χ2(p)p2k−6

where ap(f) is the eigenvalue of f for Tp in Section 9.1. Let πf (respectively
ΠF ) be the automorphic representation associated to f (respectively F =
SK(f)) and πf,p (respectively ΠF,p) the local component at p. Let χ′ :
A× −→ C× be the character corresponding to χ and denote by χ′p its local
component at p. Since πf,p is a principal series representation, there exist
characters χi : Q×p −→ C×, i = 1, 2 such that πf,p ' π(χ1, χ2) with the
central character χ1χ2 = χ′−2

p . Hence we have χ1χ2(p) = χ′2p (p−1). Then
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by [16], we have ΠF,p ' χ1χ
′1GL2 oχ

−1
1 χ′−2

p which is the case IIb in Section
7.1.2. Then the eigenvalues of UBp,i, i = 1, 2 in the local setting are

(p
3
2 δ, p2δβ), (p

3
2α, p2αβ), (p

3
2β, p2βδ), (p

3
2β, p2βα)

where α = χ1(p−1), β = p
1
2χ′(p), γ = p−

1
2χ′(p) and δ = χ2(p−1). We may

put χ1(p−1)p
2k−3

2 = αp(f), χ2(p−1)p
2k−3

2 = βp(f) where αp(f), βp(f) are
eigenvalues of Tp for f . From (9.1) and the observation in Section 7 (7.1-(iii)
and 7.1.2 Case IIb),

(βp − UB,global
p,1 )(χ′(p)pk−1 − UB,global

p,1 )F(9.2)

is a p-stabilized form with the eigenvalues (αp, pk−2αpχ
′(p)) for UB,global

p,i ,
i = 1, 2. We take the Fourier expansion

F =
∑

T∈Sym2(Z)>0

a(T )e2π
√
−1tr(TZ)

where Sym2(Z)>0 is the subset of M2(Q) consisting of all symmetric ma-
trices which are positive and semi-integral. Then we have

(βp − UB,global
p,1 )(χ′(p)pk−1 − UB,global

p,1 )F =

(9.3)∑
T>0

(
pk−1χ′(p)βpa(T )− (χ′(p)pk−1 + βp)a(pT ) + a(p2T )

)
e2π
√
−1tr(TZ),

since we can choose a complete system of representatives for ΓI,B\ΓIB t′1ΓIB
to be the same as in the case Siegel parabolic and in that case we can
compute the action easily (cf. [2]).

Similarly, (βp − UP,global
p,1 )(χ′(p)pk−1 − UP,global

p,1 )F is also a p-stabilized
form with respect to P̂ = Q with the eigenvalues αp for UP,global

p,1 (see 7.2-
(iii) and 7.2.2 Case IIb). As explained above, we have the same expansion.
Therefore we have

(βp − UB,global
p,1 )(χ′(p)pk−1 − UB,global

p,1 )F

=(βp − UP,global
p,1 )(χ′(p)pk−1 − UP,global

p,1 )F

for t′1. If k ≥ 2, F has p-integral (algebraic) coefficients, then so does
(βp−UB,global

p,1 )(χ′(p)pk−1−UB,global
p,1 )F . We further assume that ordp(αp) =

0 (this implies ordp(βp) > 0). Then by using the relation of Hecke oper-
ators (cf. p.228, Example 4.2.10 of [1]), we see that ordp(a(p2T0)) = 0 if
ordp(a(T0)) = 0 for some T0 ∈ Sym2(Z)>0. Hence under this assumption
(the existence of such T0), (βp − UB,global

p,1 )(χ′(p)pk−1 − UB,global
p,1 )F is not

only preserving p-integrality, but also non-vanishing modulo p.
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