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de Bordeaux 27 (2015), 353–373

Integral points on a certain family of elliptic
curves

par Shabnam AKHTARI

Résumé. Nous utilisons la méthode de Thue-Siegel pour obtenir
une borne supérieure du nombre de solutions entières primitives
d’une famille d’inégalités quartic de Thue. Cela permet de donner
une borne supérieure du nombre de points entiers pour une famille
de courbes elliptiques d’invariant j égal à 1728.

Abstract. The Thue-Siegel method is used to obtain an upper
bound for the number of primitive integral solutions to a family
of quartic Thue’s inequalities. This will provide an upper bound
for the number of integer points on a family of elliptic curves with
j-invariant equal to 1728.

1. Introduction and statements of the main results

A well-known theorem of Siegel, in its simplest form, is the fact that a
nonsingular elliptic curve contains only finitely many integer points. Let

E : y2 = x3 +Ax+B

and
H = max{|A|, |B|}.

Schmidt in [12] established some upper bounds for the number and the size
of integer points on plane curves of genus 1. His work implies, for given
ε > 0, the upper bound

c(ε)H2+ε

upon the number of integral points on y2 = x3+Ax+B, where the constant
c(ε) is effectively computable. Schmidt conjectured that for every ε > 0,
there exists a constant c(ε) such that the number of integral points on
y2 = x3 + Ax + B is bounded above by c(ε)Hε. Evertse and Silverman in
[6] gave an upper bound for the number of integer points on elliptic curves
(1.1) y2 = f(x) = x3 + bx2 + cx+ d,
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which depends on the class number of the splitting field of x3 +bx2 +cx+d.
They showed that for any ε > 0, the number of integer solution to an
equation of the form (1.1), with b, c, d ∈ Z and non-zero discriminant ∆(f),
is bounded by c(ε)|∆(f)|1/2+ε for some effectively computable c(ε) > 0.
Also Helfgott and Venkatesh in [7] provided some nice upper bounds on
the number of integer points (and S-integer points) on elliptic curves. Their
work implies an upper bound in terms of the rank of the elliptic curves.
Moreover, they showed, among other things, that the number of integral
points on any given elliptic curve E is � |∆|θ+ε for every sufficiently small
ε, where ∆ is the discriminant of E and θ = 0.20070 . . ..

In this manuscript we will consider a certain family of elliptic curves with
j-invariant 1728 and use different tools to provide an upper bound for the
number of integer points on such curves. We will improve upon some results
obtained by Walsh in [16]. The results presented here are substantially more
restrictive than those in [6], [7] and [12]. However our results and techniques
are quite different and improve upon the previous results in certain cases.

Elliptic curves with j-invariant 1728 are one of the important families in
the arithmetic theory of elliptic curves. Every such curve has an equation
of the form Y 2 = X3 ± NX, where N is a 4th-power-free positive integer
(see [13], for example). Here we will consider the problem of counting the
number of integral points on curves of this form, though our focus is mainly
on the cubic equation

(1.2) Y 2 = X3 −NX,

where N is a square-free positive integer. In Section 7 we briefly discuss
the problem of counting the integral points on the curve Y 2 = X3 + NX
and explain how this problem is different from our main problem. It turns
out that the integral points on the equation (1.2) can be seen as integral
points on a finite number of curves given by quartic equations of the form

(1.3) X2 −DY 4 = k,

where D > 1 is a square-free integer and k < 0 is a negative integer
relatively prime to D. To study the integral solutions of (1.3), we can look
at the integral solutions of the quadratic equation

X2 −DY2 = k

and detect those with Y a perfect square. For the positive non-square in-
teger D, let

εD = T + U
√
D,

with T,U positive integers, denote the minimal unit greater than 1 in the
ring Z[

√
D]. Notice that Z[

√
D] is an order in the ring of integers of the

number field Q(
√
D), and since we are looking for integer points on various
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curves, we prefer to work with Z[
√
D] instead of the ring of integers of

Q(
√
D).

Theorem 1.1. Let k be a negative integer. The quartic equation (1.3) has
at most

384. 2ω(k)ε
3/2
D

√
|k|/2D

solutions in positive integers X and Y , where ω(k) denotes the number of
prime factors of the integer k.

Theorem 1.2. Let k be a negative integer satisfying

|k| ≥ π

214311/2
ε12
D

D13/2 .

The quartic equation (1.3) has at most

40.2ω(k)

solutions in positive integers X and Y , where ω(k) denotes the number of
prime factors of the integer k.

The unit εD is bounded from above. In fact, we have

(1.4) εD < exp
(
D1/2 (log(4D) + 2)

)
(see [8]). Therefore, in the statement of Theorem 1.2, one can replace the
given lower bound on |k| with an explicit function of D:

|k| ≥ π

214311/2

exp
(
12D1/2 (log(4D) + 2)

)
D13/2 .

Theorem 1.3. Let N be a positive square-free integer. The equation (1.2)
has at most

384
√
N/2

∑
D|N

2ω(N/D)ε
3/2
D

D

solutions in integers X, Y .

The above theorems improve the results in [16]. Walsh in [16] proved
that there are at most 48.2ω(k) integer solutions to (1.3) with

|Y | > 25/4|k|39/4ε
45/4
D

D13/4 .

Then he concluded that, if N is a positive square-free integer, there are at
most 48

∑
D|N 2ω(D) integer solutions to (1.2) with

|X| > max
D|N,D>1

25/2|N/D|39/2ε
45/2
D

D11/2 .
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In order to count the number of integral points on the above cubic and
quartic curves, we will reduce them to a family of quartic Thue equations
F (x, y) = m, where m ∈ Z. Let

F (x, y) = a0x
4 + a1x

3y + a2x
2y2 + a3xy

3 + a4y
4

be a binary quartic form with integer coefficients. The discriminant ∆ of F
is given by

∆ = a6
0(α1 − α2)2(α1 − α3)2(α1 − α4)2(α2 − α3)2(α2 − α4)2(α3 − α4)2,

where α1 , α2, α3 and α4 are roots of the polynomial

F (x, 1) = a0x
4 + a1x

3 + a2x
2 + a3x+ a4.

The ring of invariants of F is generated by two invariants

I = IF = a2
2 − 3a1a3 + 12a0a4,

and
J = JF = 2a3

2 − 9a1a2a3 + 27a2
1a4 − 72a0a2a4 + 27a0a

2
3,

of weights 4 and 6, respectively. Every invariant of F is a polynomial in I
and J . In particular, for the discriminant ∆, we have

27∆ = 4I3 − J2.

In this manuscript we will consider the forms F for which the invariant
J = 0, so that we have

27∆ = 4I3.

We will show

Theorem 1.4. Let F (x, y) be an irreducible binary quartic form with I > 0
and J = 0. Suppose that all four roots of F (X, 1) are real and h is an integer
satisfying h =

√
3 I1/2−ε

π , with 0 < ε < 1
2 . Then the Thue inequality

(1.5) |F (x, y)| ≤ h

has at most

4

 log
(

1
2ε −

1
2

)
log 3

+ 16

solutions in coprime integers x and y with y 6= 0, where [.] denotes the
greatest integer function and (x, y) and (−x,−y) are counted as one solu-
tion.

The upper bound given in the statement of Theorem 1.4 depends on ε
and therefore, on the integer h. Setting ε > 1

4 , for example, in Theorem 1.4
yields the following.
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Corollary 1.1. Let F (x, y) be an irreducible binary quartic form with I > 0
and J = 0. Suppose that all roots of polynomial F (x, 1) are real and h is
an integer satisfying h <

√
3 I5/14

π . Then the inequality
|F (x, y)| ≤ h

has at most 16 solutions in coprime integers x and y, with y 6= 0. Here
(x, y) and (−x,−y) are counted as one solution.

Let G(x, y) ∈ Z[x, y] be a form of degree n that is irreducible over Q and
let h ∈ Z. Bombieri and Schmidt [3] showed that the number of solutions
of G(x, y) = h in co-prime integers x and y is at most

C2 n
1+ω(h),

where C2 is an absolute constant. In [2] the author obtained an upper bound
for the number of integer solutions to the Thue inequality |G(x, y)| ≤ h,
where G is a binary form of degree n ≥ 3 and with non-zero discriminant
∆, and h is an integer smaller than |∆|

1
4(n−1) . One may apply that upper

bound to the quartic Thue inequalities appearing in this manuscript. Using
properties specific to this family, we obtain better upper bounds here. In
particular, the hypergeometric method of Thue and Siegel will be applied
to the specific family of inequalities we are dealing with here. The method
of Thue-Siegel cannot be used in more general cases. We refer the reader
to [4] for an overall study of the Thue-Siegel method. In [1], we showed
that the Thue-Siegel method may be applied to a quartic Thue equation
F (x, y) = h, only if JF = 0.

2. Quartic Thue inequalities and Proof of Theorem 1.4

In this section we will consider Thue inequalities of the shape
|F (x, y)| ≤ h,

where F (x, y) is a quartic binary form. We will provide an upper bound for
the number of co-prime integer solutions (or primitive solutions) to such
inequalities under the assumptions in Theorem 1.4.

We call binary forms F1 and F2 equivalent if they are equivalent under
GL2(Z)-action (i.e. if there exist integers b, c, d and e such that

F1(bx+ cy, dx+ ey) = F2(x, y)
for all x and y, where be−cd = ±1). Denote by NF the number of solutions
in integers x and y of the equation

|F (x, y)| = h.

Note that if F1 and F2 are equivalent, then NF1 = NF2 , IF1 = IF2 and
JF1 = JF2 , where I and J are the invariants defined in the Introduction.
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Let

H(x, y) = d2F

dx2
d2F

dy2 −
(
d2F

dxdy

)2

denote the Hessian associated to the quartic form F (x, y). Then

H(x, y) = A0x
4 +A1x

3y +A2x
2y2 +A3xy

3 +A4y
4,

with

A0 = 3(8a0a2 − 3a2
1),

A1 = 12(6a0a3 − a1a2),
A2 = 6(3a1a3 + 24a0a4 − 2a2

2),(2.1)
A3 = 12(6a1a4 − a2a3),
A4 = 3(8a2a4 − 3a2

3).

Lemma 2.1. Suppose F (x, y) is a quartic form with invariants I and J
and Hessian H(x, y). Let φ be a root of X3 − 3IX + J . Then

−1
9H(x, y) + 4

3φF (x, y) = m(x, y)2,

where m(x, y) is a quadratic covariant of F (x, y).

Proof. See part (vi) of Proposition 6 of [5]. �

Lemma 2.2. Let F (x, y) be a quartic form with real coefficients and leading
coefficient a0. Suppose that F (Z, 1) = 0 has 4 real roots. Let φ1, φ2 and φ3
be the roots of X3 − 3IX + J , with 4a0φ1 > 4a0φ2 > 4a0φ3. Set φ = φ2.
Then m(x, y) is a positive definite quadratic form with real coefficients,
where m(x, y) is the covariant of F (x, y) defined in Lemma 2.1.

Proof. This is part (ii) of Proposition 8 of [5]. Also see Lemma 3.4 of [1]. �

A real quadratic form f(x, y) = ax2 + bxy + cy2 is called reduced if

|b| ≤ a ≤ c.

It is well-known that every positive definite quadratic form is equivalent to
a reduced one. Following Definition 4 of [5], we say that the quartic form
F (x, y) = a0x

4 +a1x
3y+a2x

2y2 +a3xy
3 +a4y

4 with positive discriminant is
reduced if and only if the positive definite quadratic form m(x, y) is reduced.

Suppose that the quartic form F (x, y) is reduced, JF = 0 and IF > 0.
Then in Lemma 2.2, we have φ1, φ3 ∈ {

√
3IF ,−

√
3IF } and φ2 = 0. Taking

φ = 0 in Lemma 2.1, we know that the algebraic covariant −1
9 H(x, y) is the

square of a quadratic form, say
−1
9 H(x, y) = m2(x, y).
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Using the fact that m(Z) = m(Z, 1) assumes a minimum equal to 4AC−B2

4A
at Z = −B

2A , we showed in [1] that when θ1, θ2 ∈ R and θ2 6= 0, we have

(2.2) m(θ1, θ2) ≥ 2
√
Iθ2

2.

The following results from [1] provide an upper bound for the num-
ber of “large” primitive solutions to quartic Thue inequalities of the shape
|F (x, y)| ≤ h. After stating these results, we will obtain an upper bound
for the number of “small” primitive solutions, when h <

√
3I
π . We call

a primitive solution (x, y) small if |H(x, y)| < 4h3√|3IA4|, and large if
|H(x, y)| ≥ 4h3√|3IA4|.

Lemma 2.3. Let F (x, y) ∈ Z[x, y] be a quartic form with J = 0. If F is
reduced then for every (x1, y1) ∈ Z2 we have

|H(x1, y1)| ≥ 36 Iy4
1,

where H(x, y) is the Hessian of F (x, y).

Proof. This is Lemma 3.5 of [1]. �

Proposition 2.1. Let F (x, y) ∈ Z[x, y] be a quartic form with J = 0 that
is irreducible over Q. Then

F (x, y) = 1
8
√

3I|A4|

(
ξ4(x, y)− η4(x, y)

)
,

where ξ(x, y) and η(x, y) are linear forms in x and y, with

ξ4(x, y), η4(x, y) ∈ Q
(√
|A0|I/3

)
[x, y].

Moreover, if all roots of the polynomial F (Z, 1) are real then I > 0, A0 < 0,
and ξ(x, y) and η(x, y) are complex conjugate linear forms.

Proof. This is Lemma 5.1 of [1]. �

The linear forms ξ(x, y) and η(x, y) in Proposition 2.1 are called a pair
of resolvent forms. In what follows we will often write ξ and η for ξ(x, y)
and η(x, y) at a particular point (x, y) when that point is understood. Note
that if (ξ, η) is one pair of resolvent forms then there are precisely three
others, given by (iξ,−iη), (−ξ,−η) and (−iξ, iη), where i =

√
−1. For the

fixed pair of resolvent forms (ξ, η), we have equation (22) of [1]:

(2.3) |ξ(x, y)η(x, y)| =
(
H(x, y)2|A4|

)1/4
√

3
.

Also as a direct consequence of the definition of ξ and η, it is shown in [1]
(equation (25)) that if x1, y1, x2, y2 ∈ Z, with x1y2 − x2y1 6= 0, then

(2.4) |ξ(x1, y1)η(x2, y2)− ξ(x2, y2)η(x1, y1)| ≥ 2
√
I |A4|1/4 .
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From now on, we fix a pair of resolvent forms. Let ω be a fourth root of
unity. We say that the integer pair (x, y) is related to ω if∣∣∣∣ω − η(x, y)

ξ(x, y)

∣∣∣∣ = min
0≤k≤3

∣∣∣∣e2kπi/4 − η(x, y)
ξ(x, y)

∣∣∣∣ .
Let us define z = 1−

(
η(x,y)
ξ(x,y)

)4
, where (ξ, η) is a fixed pair of resolvent forms

(in other words, ηξ is a fourth root of the complex number 1− z). We have

|1− z| = 1 , |z| < 2.
Note that when F (x, y) is irreducible then |z| 6= 2. Because if |z| = 2 then
η4 = −ξ4, so F (x, y) = 1

4
√

3IA4
ξ4(x, y). This implies that F (x, y) has one

root with multiplicity 4 and therefore the discriminant of F (x, y) is 0. This
contradicts the assumption that F (x, y) is irreducible over Q.
Lemma 2.4. Let ω be a fourth root of unity and (x, y) ∈ Z2 satisfy
F (x, y) = 1

8
√

3IA4
(ξ4(x, y)− η4(x, y)) = 1, with∣∣∣∣ω − η(x, y)

ξ(x, y)

∣∣∣∣ = min
0≤k≤3

∣∣∣∣e2kπi/4 − η(x, y)
ξ(x, y)

∣∣∣∣ .
Set z = 1−

(
η(x,y)
ξ(x,y)

)4
. If |z| ≥ 1 then

(2.5)
∣∣∣∣ω − η(x, y)

ξ(x, y)

∣∣∣∣ ≤ π

8 |z|.

If |z| < 1 then

(2.6)
∣∣∣∣ω − η(x, y)

ξ(x, y)

∣∣∣∣ < π

12 |z|.

Proof. This is Lemma 6.1 of [1]. �

Lemma 2.5. Let F (x, y) ∈ Z[x, y] be a reduced quartic form satisfying the
conditions in Proposition 2.1. If all roots of the polynomial F (Z, 1) are real
then the inequality |F (x, y)| ≤ h has at most 12 primitive solutions (x, y)
with

|ξ(x, y)|4 ≥ 4h3
√
|3IA4|.

Proof. This was shown in [1] (see, in particular, equation (29) through
equation (30)). �

Note that in the above lemma, and generally in [1], no restriction is
assumed on the value of h. Instead, the upper bounds are given for the
number of those solutions that are large in terms of h.

Using a standard gap argument, we will establish an upper bound for
the number of solutions (x, y) to (1.5) that satisfy

|ξ(x, y)|4 < 4h3
√
|3IA4|,
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when

h ≤
√

3 I1/2−ε

π
, with 0 < ε <

1
2 .

Suppose there are distinct solutions to |F (x, y)| ≤ h indexed by i, say
(xi, yi), that are related to a fixed fourth root of unity ω with

|ξ(xi+1, yi+1)| ≥ |ξ(xi, yi)|.

Let
F (xi, yi) = hi, F (xi+1, yi+1) = hi+1,

with |hi|, |hi+1| ≤ h. Set

ηi = η(xi, yi) and ξi = ξ(xi, yi).

By Lemma 2.3 and (2.3), for every index i, we have

(2.7) |ξi| ≥ 121/4I1/4|A4|1/8,

provided that yi 6= 0. Using the definition of zi above, then Proposition 2.1
and the assumption that |hi| ≤ h <

√
3I1/2

π , we get

|zi| =
∣∣∣∣∣1− η4(x, y)

ξ4(x, y)

∣∣∣∣∣
=

∣∣∣∣∣8hi
√
|3I A4|
ξ4
i

∣∣∣∣∣
≤ 3I

√
|A4| 8

π|ξ4(x, y)|

≤ 3I
√
|A4| 8

π12I
√
|A4|

= 2/π < 1.

We have

|ξiηi+1 − ξi+1ηi|
= |ξi(ηi+1 − ωξi+1)− ξi+1(ηi − ωξi)|

≤
∣∣∣∣ξiξi+1

(
ηi+1
ξi+1

− ω
)∣∣∣∣+ ∣∣∣∣ξiξi+1

(
ηi
ξi
− ω

)∣∣∣∣ (by the triangle inequality)

≤ π

12 (|ξiξi+1zi+1|+ |ξiξi+1zi|) (from (2.6))

= π

12

(
|ξiξi+1

η4
i+1 − ξ4

i+1
ξ4
i+1

|+ |ξiξi+1
η4
i − ξ4

i

ξ4
i

|
)

≤ 2π
3 h

√
|3I A4|

(
|ξi|
|ξ3
i+1|

+ |ξi+1|
|ξ3
i |

)
(by Proposition 2.1).
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Since we have assumed |ξi| ≤ |ξi+1|, we get

|ξiηi+1 − ξi+1ηi| ≤
4π
3 h

√
|3I A4|

(
|ξi+1|
|ξ3
i |

)
.

Combining this with (2.4), we conclude

(2.8) |ξi+1| ≥
√

3
2πh |A4|1/4 |ξi|

3.

By (2.8) and (2.7), we get

|ξ2| ≥
√

3
2πh |A4|1/4 123/4I3/4|A4|3/8.

Since h = 3I1/2−ε

2 ≥ 3I1/2−ε

π , we obtain

|ξ2| ≥
√

3π
6πI1/2−ε |A4|1/4 123/4I3/4|A4|3/8 = 121/4I1/4+ε|A4|1/8.

Repeating this, we get

|ξk| ≥ 121/4I
1/4+

(
3k−1−1

2

)
ε
|A4|1/8.

In order to have
|ξk| <

√
2h3/4 |3IA4|1/8 ,

the integer k must satisfy

121/4I
1/4+

(
3k−1−1

2

)
ε
|A4|1/8 <

√
2h3/4 |3IA4|1/8 .

Substituting h =
√

3I1/2−ε

2 in the above inequality, we get(8
3

)1/4
I

(
3k−1−1

2 + 3
4

)
ε
< I1/4.

Therefore, since
(

8
3

)1/4
> 1, we obtain

k − 1 <
log

(
1
2ε −

3
2 + 1

)
log 3 .

We conclude that the number of solutions (x, y) related to a fixed fourth
root of unity with

|ξ(x, y)|4 < 4h3
√
|3IA4|,

does not exceed  log
(

1
2ε −

1
2

)
log 3

+ 1.

This, together with Lemma 2.5, completes the proof of Theorem 1.4.
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3. The elliptic curve Y 2 = X3 − NX

letN be a positive square-free integer. An integer solution to the equation

(3.1) Y 2 = X3 −NX = X(X2 −N)

gives rise to a positive integer solution (x, y) to the equation x2−Dy4 = −N
D ,

by taking
X = Dy2, and X2 −N = Dx2.

In the above change of variables D is the square-free part of X and D | N .
From now on, we will focus on the quartic equation

(3.2) X2 −DY 4 = k,

where D > 1 is a square-free integer, N is a positive integer, and k is
a negative integer. Since we assumed that N is square-free, the integer
k is also square-free and is relatively prime to D. We conclude that the
summation

(3.3)
∑
D|N

UD,

wherein UD is an upper bound for the number of solutions to (3.2), will
provide an upper bound for the number of integral solutions to (3.1).

Assume that (x0, y0) ∈ Z2 with x0y0 6= 0 is a point on the curve

(3.4) X2 −DY2 = k.

Let
α = x0 + y0

√
D,

and for i ∈ Z, define xi, yi ∈ Z as follows:

(3.5) xi + yi
√
D = αεiD,

where εD denotes the minimal unit of Z[
√
D] and is defined in the Introduc-

tion. Then each pair (xi, yi) ∈ Z2 is a solution to (3.4). We refer to the set
of all such solutions as the class of solutions to (3.4) associated to (x0, y0).
Assume that (x, y) ∈ Z2 is a solution of (3.4). Sometimes for simplicity, we
call x +

√
Dy a solution of (3.4). It is known [11] that two points (u1, v1)

and (u2, v2) on the curve (3.4) are associated if and only if the numbers
u1u2 − v1v2D

k
and v1u2 − v2u1

k

are both integers.
Among all solutions x + y

√
D of (3.4) belonging to a given class, say

C, we choose a solution x∗ + y∗
√
D in the following way. Let y∗ be the

least positive value of y which occurs in C and let x∗ be a positive integer
satisfying x∗2 −Dy∗2 = k. Then by the way y∗ was chosen, at least one of
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x∗ + y∗
√
D and −x∗ + y∗

√
D belongs to C and is called the fundamental

solution of class C. Nagell in [11] showed the following.

Lemma 3.1. Let εD = T+U
√
D > 1 be the minimal unit in the ring Z[

√
D]

and x∗ + y∗
√
D be the fundamental solution of the equation x2 −Dy2 = k

in a given class. We have

0 < y∗ <
U√

2(T − 1)

√
|k|,

and

0 < |x∗| <

√
(T − 1)|k|

2 .

For a nonzero integer k, ω(k) denotes the number of distinct prime factors
of k. Let n(D, k) denote the number of classes of coprime solutions (x, y) to
the quadratic equation x2 −Dy2 = k. Walsh in [16] showed (see Corollary
3.1 of [16]) that if k is square-free then

(3.6) n(D, k) ≤ 2ω(k).

4. Reduction to quartic Thue Equations

The idea of reducing the problem of counting integral points on elliptic
curves to the problem of counting integral points of a finite number of
quartic Thue equations is not new. Chapter 27 of [10] gives a complete
overview of such reduction.

Throughout this section, D is a fixed positive square-free integer and k is
a fixed negative integer. Let (X,Y ) ∈ Z2 satisfy the equationX2−DY 4 = k,
then X +Y 2√D is a solution to equation (3.4) belonging to a certain class
C of solutions. Let x∗ + y∗

√
D be the fundamental solution of C. Then

(4.1) X + Y 2√D =
(
x∗ + y∗

√
D
)
εiD.

Set
s2 + t2

√
D =

(
x∗ + y∗

√
D
)

if i is even,

s1 + t1
√
D =

(
x∗ + y∗

√
D
)
εD if i is odd.

Therefore, there exists a non-negative integer j, such that

(4.2) X + Y 2√D =
(
s+ t

√
D
)
ε2jD ,

where either s+ t
√
D = s1 + t1

√
D or s+ t

√
D = s2 + t2

√
D. Let

m+ n
√
D = εjD,

where εD = T + U
√
D, with T,U > 0. Then we have

m2 −Dn2 = 1
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and
Y 2 = tm2 + 2smn+ tDn2.

Multiplying the above identity by t, completing the square, and using the
fact that s2 −Dt2 = k, we obtain

(4.3) − (tm+ sn)2 + kn2 + tY 2 = 0.

Walsh in [16] showed the following.

Lemma 4.1. Let a, b, c be nonzero integers with gcd(a, b, c) = 1, and such
that the equation

(4.4) ax2 + by2 + cz2 = 0

has a solution in integers x, y and z not all zero. Then there are integers
R1, S1, T1, R2, S2, T2, z1, depnding only on a, b and c, satisfying the
relations

R1T2 +R2T1 = 2S1S2,

S2
2 −R2T2 = −acz2

1 ,

S2
1 −R1T1 = −bcz2

1

and a nonzero integer δ, depending only on a, b, c, such that for every
nonzero solution (x, y, z) of (4.4), there exist integers Q, u, v and a divisor
P of δ, so that

Px = Q(R1u
2 − 2S1uv + T1v

2) and
Py = Q(R2u

2 − 2S2uv + T2v
2).

The integers R1, R2, T1, T2 satisfy R1T2 −R2T1 = 0.

Applying Lemma 4.1 to (4.3), with a = −1, b = k and c = t, we conclude
that there are integers R1, S1, T1, R2, S2, T2 and z1, depending only on t
and k, satisfying the relations

(4.5) S2
2 −R2T2 = tz2

1 ,

(4.6) S2
1 −R1T1 = −ktz2

1 ,

(4.7) R1T2 +R2T1 = 2S1S2.

and

(4.8) R1T2 −R2T1 = 0.

Also

P (tm+ sn) = Q(R1u
2 − 2S1uv + T1v

2),(4.9)
Pn = Q(R2u

2 − 2S2uv + T2v
2).(4.10)
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Therefore,
tm+ sn

n
=
R1
(
u
v

)2 − 2S1
(
u
v

)
+ T1

R2
(
u
v

)2 − 2S2
(
u
v

)
+ T2

The above identity allows us to compute u
v in terms of m and n, by solving

a quadratic equation. We obtain u
v is equal to one of the following two

possible values:

S1 − S2l ±
√

(S1 − S2l)2 − (R1 −R2l) (T1 − T2l)
R1 −R2l

,

where l = tmn + s. The quantity under the square root in the above line can
be simplified. Using (4.5), (4.6), (4.7) and (4.8), we have

(4.11) u

v
=
S1 − S2

(
tmn + s

)
±
√

2t2z2
1
√
D(tmn + s)

R1 −R2
(
tmn + s

) .

Now solving (4.9) and (4.10) for m and n and using the equation m2 −
Dn2 = 1, it follows that

(4.12) A2
1(u, v)−DA2

2(u, v) = (Pt/Q)2 ,

where

A1(u, v) = (R1 − sR2)u2 − 2(S1 − sS2)uv + (T1 − sT2) v2

and
A2(u, v) = R2tu

2 − 2S2tuv + T2tv
2.

We define

F (u, v) = a0u
4 + a1u

3v + a2u
2v2 + a3uv

3 + a4v
4(4.13)

:= A2
1(u, v)−DA2

2(u, v) = (Pt/Q)2 .

Therefore,

a0 = R2
1 − 2sR1R2 + kR2

2,(4.14)
a1 = −4(R1S1 − sR1S2 − sR2S1 + kR2S2),
a2 = 6(R1T1 − sR2T1 − sR1T2 + kR2T2),
a3 = −4(S1T1 − sS1T2 − sS2T1 + kS2T2),
a4 = T 2

1 − 2sT1T2 + kT 2
2 .

Notice that since m and n are relatively prime, from (4.9) and (4.10), we
have gcd(u, v) = 1 and we are only interested in the primitive solutions of
the Thue equations in (4.13).
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We claim that the roots of polynomial F (Z, 1) are real. The roots of the
polynomial F (z, 1) are

S1 − S2o±
√

(S1 − S2o)2 − (R1 −R2o) (T1 − T2o)
R1 −R2o

.

where o = s+ t
√
D or o = s− t

√
D. After routine simplification and using

identities (4.5), (4.6), (4.7) and (4.8), we have

4
(
S1 − S2(s± t

√
D)
)2

− 4
(
R1 −R2(s± t

√
D)
) (
T1 − T2(s± t

√
D)
)

= 2t2z2
1
√
D(±s+ t

√
D).

Since s2−Dt2 = k < 0, both s+t
√
D and −s+t

√
D are positive. Therefore,

F (z, 1) has 4 real roots

(4.15)
S1 − S2(s± t

√
D)±

√
2t2z2

1
√
D(±s+ t

√
D)

R1 −R2(s± t
√
D)

.

Let (u, v) ∈ Z2 be a solution to our Thue equation that arises from a
solution to the equation X4 −Dy2 = k. By (4.11) and since m and n are
positive integers with

(
m
n

)2 = D + 1
n2 , we conclude that in order to give

a bound upon the number of solutions to X4 −Dy2 = k, we only need to
count the number of solutions to the Thue equation F (u, v) =

(
Pt
Q

)2
that

are associated to the following two real roots:

S1 − S2(s+ t
√
D)±

√
2t2z2

1
√
D(s+ t

√
D)

R1 −R2(s+ t
√
D)

.

5. Quartic Thue equations, proof of Theorems 1.1 and 1.3

In Section 4, we constructed at most 2 Thue equations for each funda-
mental solution of the equation X2 − DY 4 = k (see (4.2) and (4.1)). Let
F (u, v) be the quartic binary form with coefficients given in (4.14). We
showed that F (x, y) splits completely over R (see (4.15)). It turns out that
JF = 0.

Lemma 5.1. Let F (u, v) be the quartic binary form with coefficients given
in (4.14). Then we conclude that

JF = 0 and IF = 48kt3T2R2z
2
1D.

Proof. Walsh in [16] showed that JF = 0. Here we will compute the value
for invariant I. Recall that

IF = 12a0a4 − 3a1a3 + a2
2.
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First we compute the value of each summand in the above summation,
using (4.14) and relations (4.5), (4.6) and (4.7).

12a0a4 = (R2
1 − 2sR1R2 + kR2

2)(T 2
1 − 2sT1T2 + kT 2

2 )
= 12(R2

1T
2
1 − 2sR2

1T1T2 + kR2
1T

2
2

−2sR1R2T
2
1 + 4s2R1R2T1T2 − 2skR1R2T

2
2

+kR2
2T

2
1 − 2ksR2

2T1T2 + k2R2
2T

2
2 ),

−3a1a3 =
−48(R1S1 − sR1S2 − sR2S1 + kR2S2)×

× (S1T1 − sS1T2 − sS2T1 + kS2T2)
= −48

(
R1S

2
1T1 − sR1S

2
1T2 − sR1S1S2T1 + kR1S1S2T2

−sR1S2S1T1 + s2R1S2S1T2 + s2R1S
2
2T1 − skR1S

2
2T2

−sR2S
2
1T1 + s2R2S

2
1T2 + s2R2S1S2T1 − skR2S1S2T2

+ kR2S2S1T1 − ksR2S2S1T2 − ksR2S
2
2T1 + k2R2S

2
2T2

)
,

and

a2
2 = 36(R1T1 − sR2T1 − sR1T2 + kR2T2)2

= 36(R2
1T

2
1 + s2R2

2T
2
1 + s2R2

1T
2
2 + k2R2

2T
2
2

−2sR1R2T
2
1 − 2sR2

1T1T2 + 2kR1R2T1T2

+2s2R1R2T1T2 − 2skR2
2T1T2 − 2kR1T

2
2R2).

Therefore,

IF = 96ksR1T2(S2
2 − T2R2) + 96sR2T1(S2

1 −R1T1)
−48k2R2T2(S2

2 −R2T2)− 48s2R2T2(S2
1 −R1T1)

= 48kT2(S2
2 −R2T2)(2sR1 − kR2)

+48sR2(S2
1 −R1T1)(2T1 − sT2)

= 48ktz2
1T2R2(s2 − k)

= 48kt3T2R2z
2
1D,

where the last identity is because s2 − k = Dt2. �

We recall some results for the number of solutions of the quartic Thue
equations.

Proposition 5.1. Let S be the set of quartic forms F (x, y) ∈ Z[x, y] that
are irreducible over Q with IF > 0 and JF = 0. Let N be an upper bound
for the number of solutions of quartic Thue equations

F (x, y) = 1
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as F varies over the elements of S. Then for h ∈ N and G(x, y) ∈ S, the
equation

G(x, y) = h

has at most
N 4ω(h)

primitive solutions.

Proof. This is essentially a special case of Bombieri and Schmidt’s result
in [3], where they showed that if Nn is an upper bound for the number of
solutions to the equations F (x, y) = 1, as F (x, y) varies over irreducible
binary forms of degree n with integer coefficients then Nnn

ω(h) is an upper
bound for the number of primitive solutions to F (x, y) = h. Bombieri and
Schmidt proved this fact by reducing a given Thue equation F (x, y) = h
modulo every prime factor of the integer h. This reduction is explained in
the proof of Lemma 7 of [3], where the form F (x, y) of degree n is reduced
to some other binary forms of degree n. These reduced forms are basically
obtained through the action of 2× 2 matrices with integer arrays and non-
zero discriminant on the binary form F (x, y). Since J is an invariant, a
quartic form G(x, y) with JF = 0 will be reduced to some quartic forms
with J = 0 under the action of 2 × 2 matrices. Also since IF > 0 is an
invariant of weight 4 (an even number), we will get forms with positive I
under the action of 2× 2 matrices with non-zero discriminant. �

Proposition 5.2. Let F (x, y) ∈ Z[x, y] be a quartic form with positive
discriminant that is irreducible over Q and splits in R. If JF = 0, then
the Diophantine equation |F (x, y)| = 1 possesses at most 12 solutions in
integers x and y (with (x, y) and (−x,−y) regarded as the same).

Proof. This is Theorem 1.1 of [1]. �

From Propositions 5.1 and 5.2, we conclude the following.

Corollary 5.1. Let F (x, y) ∈ Z[x, y] be a quartic form with positive dis-
criminant that is irreducible over Q and splits in R. If JF = 0 and h is a
positive integer, then the Diophantine equation |F (x, y)| = h possesses at
most 12.4ω(h) primitive solutions (with (x, y) and (−x,−y) regarded as the
same).

Lemma 5.1 and Corollary 5.1 imply that the Thue equation F (u, v) =
P 2t2

Q2 , with coefficients given in (4.14), has at most 12.4ω(P
2t2
Q2 ) primitive

solutions. From the proof of Lemma 2.1 of [16] and equation (6.5) and the
two unnumbered equations above (6.5) in [16], we have

|P | = |C|,
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and c0C
2 = t, where C and c0 are integers. Therefore, P |t and ω(P 2t2

Q2 ) ≤
ω(t). By Lemma 3.1 and the definition of t in (4.2), we have

(5.1) t ≤ ε3/2
D

√
|k|/2D.

We have

ω(P
2t2

Q2 ) ≤ ω(t) < 2 + log t/ log 4 ≤ 2 +
log

(
ε
3/2
D

√
|k|/2D

)
log 4 .

Therefore, the Thue equation F (u, v) = P 2t2

Q2 , with coefficients given in
(4.14), has at most 12.16.ε3/2

D

√
|k|/2D primitive solutions. This completes

the proof of Theorem 1.1, as we have 2n(D, k) Thue equations F (u, v) =
P 2t2

Q2 (see (4.13)) associated to equation (1.3) and by (3.6), n(D, k) ≤ 2ω(k).
By (3.3), and since |k| = N/D, the following is an upper bound for the

number of integer solutions of the equation (1.2):∑
D|N

384 .2ω(N/D)ε
3/2
D

√
N/2D2

= 384
√
N/2

∑
D|N

2ω(N/D)ε
3/2
D

D
.

This completes the proof of Theorem 1.3.

6. Proof of Theorem 1.2

In Section 4, we constructed at most 2 Thue equations for each funda-
mental solution of the equation X2 −DY 4 = k (see (4.2) and (4.1)).

Let F (u, v) be the quartic binary form with coefficients given in (4.14).
In Lemma 5.1, we showed that JF = 0 and IF = 48kt3T2R2z

2
1D. Therefore

we may apply Theorem 1.4 to the inequality |F (u, v)| ≤ P 2t2

Q2 by taking
ε = 1

12 . Then by Lemma 5.1, we have

I1/2−ε = I5/12 = 485/12k5/6t5/4D5/12P 5/6y
5/6
1 z

5/6
1 .

Now we observe that

(6.1) h = P 2t2

Q2 ≤ P
5/6t4/3P 7/6t2/3 ≤ P 5/6t4/3t7/12t2/3,

because Q is an integer. From (5.1),

t ≤ ε3/2
D

√
|k|/2D.

We conclude that
h ≤ P 5/6t4/3t5/4 ≤ P 5/6t5/4ε2D(|k|/2D)2/3.
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In order to apply Theorem 1.4 to the inequality |F (u, v)| < P 2t2

Q2 , the fol-
lowing must hold.

h <

√
3 I1/2

π
.

We claim that if we assume

|k| ≥
(

π√
3× 22/3485/12

)6 ε12
D

D13/2 = π

214311/2
ε12
D

D13/2

then we have h ≤
√

3 I5/12

π . This is because under this assumption, we have

|k|1/6 ≥ ε2D(1/2D)2/3 π√
3

1
485/12D5/12 ,

which holds if
ε2D(|k|/2D)2/3 ≤

√
3
π

485/12k5/6D5/12.

This, together with (6.1), implies that

h ≤ C5/6t4/3t7/12t2/3 ≤
√

3 I5/12

π
.

In (4.13), we got 2n(D, k) Thue equations F (u, v) = P 2t2

Q2 . The primitive
solutions to these equations form a subset of the primitive solutions to the
Thue inequalities F (u, v) ≤ P 2t2

Q2 . Taking ε = 1
12 in Theorem 1.4, each of

these inequalities has at most 20 primitive solutions. Therefore, we get at
most 40n(D, k) primitive solutions. This, together with (3.6), completes
the proof of Theorem 1.2.

7. The elliptic curve Y 2 = X3 + NX

Let N be a square-free positive integer. An integer solution to the equa-
tion

Y 2 = X3 +NX

gives rise to a positive integer solution (x, y) to the equation x2−Dy4 = N
D ,

by taking
X = Dy2, and X2 +N = Dx2.

In the above change of variables D is the square-free part of X and D | N .
Tzanakis in [15] showed the following.

Theorem 7.1. Let D and k be positive integers which are not perfect
squares. Then all integers solutions to the equation

X2 −Dy4 = k

can be found by finding the integral solutions to a finite number of quartic
Thue equations of the form

g(u, v) = B2,
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where the polynomial g(Z, 1) has exactly two real roots.

We remark that in Theorem 7.1, the fact that g(Z, 1) has exactly two
real roots for every form g plays a very important role. Let g be irreducible.
Then we may write

Norm(u− vα) = B2,

which is equivalent to a finite number of equations
(7.1) u− vα = βum1 u

n
2 ,

where β runs through a finite set of algebraic integers in Q(α) with

Norm(β) = B2,

and u1 and u2 is a pair of fundamental units in some order ofQ(α). Equation
(7.1) is an exponential equation in unknowns m and n and there are two
equations relating them, which are obtained by equating the coefficients of
α2 and α3 to 0 in um1 un2 . The p-adic method can be applied in this situation
(see, for example, [15], [10] and [9]). One may attempt to diagonalize the
binary form g(u, v), so that

g(u, v) = ξ4(u, v)− η4(u, v).
As opposed to the case in which the binary form splits completely in R, in
this case, where g(z, 1) has 2 real roots and 2 non-real roots, both linear
forms ξ(u, v) and η(u, v) have real coefficients and ξ(u, v) and η(u, v) are
not complex conjugates. Therefore, results such as Lemma 2.4 and the
concomitant gap principles will not work in this case and the method that
we applied to count the number of integer points on Y 2 = X3−NX cannot
be used for the curve Y 2 = X3 +NX.
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