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Effective results for division points
on curves in G2

m

par Attila BÉRCZES

To the memory of Professor Pierre Liardet

Résumé. Soient A := Z[z1, . . . , zr] ⊃ Z un anneau de type fini
sur Z, K son corps de fractions et K∗ le groupe multiplicatif des
éléments non nuls de K. Soit Γ un sous-groupe de type fini de
K∗ et soit Γ le groupe de division de Γ. Soit F (X,Y ) ∈ A[X,Y ]
un pôlynome. En 1974, P. Liardet a prouvé que, sous certaines
conditions naturelles, l’équation

F (x, y) = 0 avec x, y ∈ Γ
n’admet qu’un nombre fini de solutions. La démonstration de Liar-
det est ineffective. En 2009, une variante effective du théorème de
Liardet a été démontrée par Bérczes, Evertse, Győry and Pon-
treau dans le cas Γ ⊂ Q. Dans cet article une variante effective du
théorème de Liardet est prouvée en toute generalité.

Abstract. Let A := Z[z1, . . . , zr] ⊃ Z be a finitely generated
integral domain over Z, let K denote its quotient field, and K∗ the
multiplicative group of non-zero elements of K. Let Γ be a finitely
generated subgroup of K∗, and let Γ denote the division group
of Γ. Let F (X,Y ) ∈ A[X,Y ] be a polynomial. In 1974 P. Liardet
proved that under some natural conditions on F the equation

F (x, y) = 0 with x, y ∈ Γ
has only finitely many solutions. The proof of Liardet was ineffec-
tive. In 2009 an effective version of Liardet’s Theorem has been
proved by Bérczes, Evertse, Győry and Pontreau in the case when
Γ ⊂ Q. In the present paper an effective version of Liardet’s The-
orem is proved in the general case.
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1. Introduction
Let A := Z[z1, . . . , zr] ⊃ Z be a finitely generated integral domain over

Z. In the rest of the paper under finitely generated domain we mean an
integral domain Z[z1, . . . , zr] ⊃ Z. Finiteness results for several kinds of
Diophantine equations over A date back to the middle of the last century.
In his book [16] and paper [15] S. Lang generalized several earlier results
on Diophantine equations over the integers to results over A, including
results concerning unit equations, Thue-equations and integral points on
curves. However, all his results were ineffective. The first effective results
for Diophantine equations over finitely generated domains were published in
the 1980’s, when Győry [13], [14] developed his new effective specialization
method. This enabled him to prove effective results over finitely gener-
ated domains of a special type. He proved such results for unit equations,
norm form equations, index form equations, discriminant form equations
[13] and for polynomials and integral elements of given discriminant [14].
Later Brindza proved such results for superelliptic equations [8] and the
generalized Catalan equation [9], Brindza and Pintér obtained such results
for equal values of binary forms [10], and Brindza, Pintér and Végső [11]
for the Schinzel-Tijdeman equation.

In 2011 Evertse and Győry [12] refined the method of Győry such that
they were able to prove effective results for unit equations ax + by = 1
in x, y ∈ A∗ over arbitrary finitely generated domains A of characteristic
0. Later Bérczes, Evertse and Győry [4] obtained effective results for Thue
equations, hyper- and superelliptic equations and for the Schinzel-Tijdeman
equation over arbitrary finitely generated domains. Lastly Bérczes in [2]
proved an effective result for equations F (x, y) = 0 in x, y ∈ A∗ for arbitrary
finitely generated domains A, thus giving an effective version of the below
result of Lang [15].

Let K denote the quotient field of the domain A, and denote by K∗ the
multiplicative group of non-zero elements of K. Denote by K the algebraic
closure of K and by K∗ its unit group. Let Γ be a finitely generated sub-
group of K∗. Let F (X,Y ) ∈ A[X,Y ] be a polynomial. In 1960 Lang [15]
proved that the equation
(1.1) F (x, y) = 0 in x, y ∈ Γ
has only finitely many solutions, provided F is not divisible by any poly-
nomial of the form
(1.2) XmY n − α or Xm − αY n

where m,n are non-negative integers, not both zero, and any α ∈ Γ. Lang’s
proof of this result is ineffective. The first effective versions of this result of
Lang have been proved by Bombieri and Gubler [7, p. 147, Theorem 5.4.5]
(see Bérczes, Evertse Győry and Pontreau [5] for an explicit version) for
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the number field case and by Bérczes [2] in its full generality, over finitely
generated domains. We mention that the effective results are proved under
a slightly stronger condition than (1.2), namely in (1.2) α ∈ K is assumed
instead of α ∈ Γ.

Denote by Γ the division group of Γ, i.e. the group defined by

Γ :=
{
x ∈ K∗ | ∃ m ∈ N, xm ∈ Γ

}
.

Lang also conjectured ([17], [18], see also [19]) that the above equation has
finitely many solutions in x, y ∈ Γ under the same condition (1.2). Liardet
[20], [21] proved this conjecture of Lang. However, this famous result of
Liardet is also ineffective.

An effective version of Liardet’s Theorem in the number field case is due
to Bérczes, Evertse, Győry and Pontreau [5], however, in the general case
no effective result had been proved.

In the present paper we make effective the above-mentioned finiteness
theorem of Liardet in the general case. Our result is not only effective,
but also quantitative in the sense that an upper bound for the sizes of the
solutions x, y ∈ Γ is provided. The presented result is a common general-
ization of the results of Bombieri and Gubler [7, p. 147, Theorem 5.4.5],
Bérczes, Evertse, Győry and Pontreau [5] and that of Bérczes [2]. Further,
our result is also a generalization of the result of Bérczes, Evertse and
Győry [3] and of Evertse and Győry [12] on unit equations, since taking
F (X,Y ) = aX + bY − 1 in the main result of the present paper we just get
an effective finiteness result for generalized unit equations in two unknowns
over the division group of an arbitrary finitely generated group. The main
tool of the proof is an effective specialization method introduced by Győry
in the 1980’s (see [13], [14]), and improved by Evertse and Győry [12] in
2011. The main difficulty of the proof is that on one hand we have to bound
also the degrees over K of the solutions from Γ, on the other hand we do
not have any convenient representation for the elements of Γ. We also men-
tion that this is the first effective result for Diophantine equations over the
division group of an arbitrary finitely generated group.

The plan of the paper is as follows. Section 2 contains our main result,
while in Section 3 we reduce our main theorem to two propositions. The
rest of the paper is devoted to the proof of these propositions. Section 4
contains auxiliary results, while Section 5 is devoted to a general description
of the specialization method of Evertse and Győry. The last two Sections
contain the proofs of our two propositions stated in Section 3.

Throughout the paper we shall use the notation O(·) to denote a quantity
which is c times the expression between the parentheses, where c is an
effectively computable positive absolute constant which may be different at
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each occurrence of the O-symbol. Further, throughout the paper we write
log∗ a := max(1, log a) for a > 0, and log∗ 0 := 1.

2. Results
Let A := Z[z1, . . . , zr] be a finitely generated domain over Z, and let K

denote its quotient field. Then
(2.1) A ∼= Z[X1, . . . , Xr]/I,
where I denotes the ideal of the polynomial ring R = Z[X1, . . . , Xr] which
consists of those polynomials f ∈ R for which f(z1, . . . , zr) = 0. This
ideal is finitely generated, i.e. we can write I = (f1, . . . , ft) with suitable
polynomials f1, . . . , ft ∈ R. We may view such a set of generators for I
as a representation for the finitely generated domain A. Recall that A is a
domain of characteristic 0 if and only if I is a prime ideal, and I ∩ Z = ∅,
and this property can be checked effectively, given a set of generators for
I.

We say that a polynomial f ∈ R represents α ∈ A if α = f(z1, . . . , zr).
Such a polynomial f is called a representation for α. Similarly, we say
that a pair of polynomials (f, g) ∈ R2 represents β ∈ K if g 6∈ I (i.e.
g(z1, . . . , zr) 6= 0) and β = f(z1,...,zr)

g(z1,...,zr) . Such a pair (f, g) is also called a
representation pair for β.

For a non-zero polynomial f ∈ R we denote by deg f the total degree
of f and by h(f) the absolute logarithmic height of f , i.e. the logarithm of
the maximum of the absolute values of its coefficients. It is convenient for
effective computations to measure an element of A by the degree and height
of a representative of it, since there are only finitely many polynomials in
R with both degree and height below a given bound.

Let γ1, . . . , γs ∈ K∗ be arbitrary non-zero elements of K given by corre-
sponding representation pairs (g1, h1), . . . , (gs, hs). Define the finitely gen-
erated group

(2.2) Γ :=
{
γl11 . . . γlss | l1, . . . , ls ∈ Z

}
,

and its division group

(2.3) Γ :=
{
δ ∈ K | ∃ m ∈ Z>0 : δm ∈ Γ

}
.

Let I ⊂ Z2
≥0 be a non-empty set, and let F (X,Y ) =

∑
(i,j)∈I aijX

iY j ∈
A[X,Y ] be a polynomial which fulfils the following condition:

(2.4)
F is not divisible by any non-constant polynomial of the form
XmY n − α or Xm − αY n,where m,n ∈ Z≥0 and α ∈ K∗.

We mention that this condition is effectively decidable, as is explained in
Section 3.1 of [2]. Let N := degF denote the total degree of F , and assume
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that F is given by specifying a representative ãij of its coefficient aij for
each (i, j) ∈ I.

Further, we assume that

(2.5)
deg f1, . . . ,deg ft,deg g1, . . . ,deg gs,deg h1, . . . ,deg hs,deg ãij ≤ d
h(f1), . . . , h(ft), h(g1), . . . , h(gs), h(h1), . . . , h(hs), h(ãij) ≤ h,

where (i, j) ∈ I and d, h are real numbers with d > 1 and h > 1.

Theorem 2.1. Let A be a finitely generated domain as above, Γ the above-
defined division group and F (X,Y ) ∈ A[X,Y ] a polynomial which fulfils
the condition (2.4). Define the set

(2.6) C := {(x, y) ∈ (Γ)2|F (x, y) = 0}.

(i) Then there exists a positive integer m with

(2.7) m ≤ exp
{
N6(2d)exp{C1(r+s)}(h+ 1)4s

}
with C1 an effectively computable absolute constant such that

xm ∈ Γ and ym ∈ Γ, for every (x, y) ∈ C.

(ii) More precisely, there exists an effectively computable absolute constant
C2, such that for all (x, y) ∈ C there are integers t1,x, . . . , ts,x, t1,y, . . . , ts,y
with

(2.8) ti,x, ti,y ≤ exp
{

exp
{
N12(2d)exp{C2(r+s)}(h+ 1)8s

}}
for i = 1, . . . , s, such that

(2.9) xm = γ
t1,x

1 . . . γts,x
s , ym = γ

t1,y

1 . . . γts,y
s .

3. A reduction
In this section we reduce Theorem 2.1 to two propositions and using a

result of Everste and Győry [12] we show how Theorem 2.1 can be deduced
from these propositions.

Proposition 3.1. Let A be a finitely generated domain as above, Γ the
above-defined division group and F (X,Y ) ∈ A[X,Y ] a polynomial which
fulfils the condition (2.4). Then there exists a suitably large effectively com-
putable constant C3 such that for every (x, y) ∈ C there exists an exponent

m0 < N6(2d)exp{C3(r+s)}(h+ 1)4s

for which we have
xm0 ∈ Γ, ym0 ∈ Γ.



410 Attila Bérczes

We remark that in this proposition the value of the exponent m0, al-
though bounded by (3.1), it may depend on the choice of the pair (x, y) ∈ C.
In contrast, in the statement (i) of Theorem 2.1 the exponent m is uniform,
i.e. it does not depend on the pair (x, y) ∈ C.
Now we deduce statement (i) of Theorem 2.1 from the above Proposition
3.1.

Proof of Theorem 2.1 (i). Let C3 be the constant specified in Proposition
3.1 and define

M0 :=
[
N6(2d)exp{C3(r+s)}(h+ 1)4s

]
.

Put
m := lcm(1, . . . ,M0).

Then by Proposition 3.1 we clearly have
xm, ym ∈ Γ

for every (x, y) ∈ C.
Using the estimate

π(M) ≤ 4
3

M

logM
of Rosser and Schönfeld [22] for the number π(M) of primes up to M we
get

lcm(1, . . . ,M) ≤
∏
p≤M

p[logM/ log p] ≤
∏
p≤M

plogM/ log p

=
∏
p≤M

M ≤Mπ(M) ≤M
4
3

M
log M ≤ e

4
3M .

Thus we have the estimate
m ≤ exp

{
N6(2d)expO(r+s)(h+ 1)4s

}
,

which concludes the proof of (i) of Theorem 2.1. �

Next let us fix m to be the integer specified in (i) of Theorem 2.1 and
consider the set
(3.1) C1 :=

{
(x0, y0) ∈ Γ2 | ∃x, y ∈ Γ : xm = x0, y

m = y0, F (x, y) = 0
}
.

Proposition 3.2. Let (x0, y0) ∈ C1. Then there exist representatives x̃0
and ỹ0 for x0 and y0, respectively, with the property

(3.2)
deg x̃0,deg ỹ0 ≤ exp

{
N6(2d)expO(r+s)(h+ 1)4s

}
h(x̃0), h(ỹ0) ≤ exp

{
exp

{
N12(2d)expO(r+s)(h+ 1)8s

}}
To deduce (ii) of Theorem 2.1 from the above proposition we need the

following result of Evertse and Győry [12].
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Lemma 3.3. Let γ1, . . . , γs ∈ K∗ be multiplicatively independent elements,
and assume that for γ0 ∈ K∗ we have

γ0 = γk1
1 . . . γks

s .

Further, assume that for i = 0, . . . , s we have pairs of representatives
(gi1, gi2) for γi such that

(3.3)
{

deg f1, . . . ,deg ft, deg g0,1,deg g0,2, . . . ,deg gs,1, deg gs,2 ≤ d2

h(f1), . . . , h(ft), h(g0,1), h(g0,2), . . . , h(gs,1), h(gs,2) ≤ h2,

for some real numbers d2, h2 > 1. Then we also have
(3.4) |ki| ≤ (2d2)expO(r+s)(h2 + 1)2s, for i = 1, . . . , s.

Proof. This is Corollary 7.3 of Evertse and Győry [12]. �

Proof of (ii) of Theorem 2.1. Letm be the exponent specified in (i) of The-
orem 2.1. Then by xm ∈ Γ and ym ∈ Γ we have
(3.5) xm = γ

t1,x

1 . . . γts,x
s , ym = γ

t1,y

1 . . . γts,y
s

with certain integer exponents t1,x, . . . , ts,x and t1,y, . . . , ts,y. Now by our as-
sumption on γ1, . . . , γs and by Proposition 3.2 we see that xm, ym, γ1, . . . , γs
have representatives with degrees and heights below the bound

exp
{

exp
{
N12(2d)expO(r+s)(h+ 1)8s

}}
,

which together with Lemma 3.3 applied to the relations (3.5) concludes the
proof of statement (ii) of Theorem 2.1. �

4. Auxilliary results
4.1. Results in the function field case. We recall some definitions and
results concerning function fields in one variable, that are needed in our
proofs.

Let k be an algebraically closed field of characteristic 0, z a transcenden-
tal element over k and M a finite extension of k(z). Denote by gM/k the
genus of M , and byMM the collection of valuations of M/k; these are the
discrete valuations of M with value group Z which are trivial on k. Recall
that these valuations satisfy the sum formula∑

v∈MM

v(α) = 0 for α ∈M∗.

For a finite subset S of MM , an element α ∈ M is called an S-integer if
v(α) ≥ 0 for all v ∈MM \S. The S-integers form a subring of M , denoted
by OS . The (homogeneous) height of a = (α1, . . . , αl) ∈M l relative toM/k
is defined by

H∗M/k(a) = H∗M/k(α1, . . . , αl) := −
∑

v∈MM

min(v(α1), . . . , v(αl)).
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The height of α ∈M relative to M/k is defined by

HM/k(α) := H∗M/k(1, α) = −
∑

v∈MM

min(0, v(α)).

It is clear that HM/k(α) = 0 if and only if α ∈ k.
First we recall a Lemma of [4] which will be useful for bounding the

genus:

Lemma 4.1. Let k be an algebraically closed field, z a transcendental ele-
ment over k and put M = k(z). Let

F = f0X
l + f1X

l−1 + · · ·+ fl ∈M [X]

be a polynomial with f0 6= 0 and with non-zero discriminant. Let L be the
splitting field of F over M . Then we have

gL/k ≤ [L : M ] · lmax(deg f0, . . . ,deg fl).

Proof. This is a special case of Lemma 4.2 of [4]. �

Proposition 4.2. Let k be an algebraically closed field of characteristic 0,
z a transcendental element over k, M a finite extension of k(z), and M
the algebraic closure of M . Denote by gM/k the genus of M and let S be a
finite set of valuations of M . Denote by OS the ring of S-integers of M ,
and by O∗S its unit group. Let F (X,Y ) =

∑
(i,j)∈I aijX

iY j ∈ OS [X,Y ] with
aij ∈ O∗S for (i, j) ∈ I, be a polynomial which fulfils the condition that

(4.1)
F is not divisible by any non-constant polynomial of the form
XmY n − α or Xm − αY n,with m,n ∈ Z≥0, α ∈M.

Assume that HM/k(aij) ≤ H0 for all (i, j) ∈ I. Then for every x, y ∈ O∗S
with

F (x, y) = 0
we have

HM/k(x), HM/k(y) ≤ 2 degF
(
n(F )2 ·

(
|S|+ gM/k

)
+ 2H0

)
,

where n(F ) denotes the number of non-zero terms of F .

Proof. This is Proposition 5.3 of [2]. �

4.2. Results in the number field case. For a number field K the set
of places of K is denoted by MK . For every place v ∈ MK we choose an
absolute value | · |v in such a way that for x ∈ Q we have

|x|v = |x|[Kv :R]/[K:Q] if v is infinite, |x|v = |x|[Kv :Qp]/[K:Q]
p if v is finite,

where p is the prime below v.
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For any finite set of places S of K, containing all infinite places, we define
the ring of S-integers and group of S-units by

OS = {x ∈ K : |x|v ≤ 1 for v ∈MK \ S},
O∗S = {x ∈ K : |x|v = 1 for v ∈MK \ S},

respectively.
The (absolute logarithmic Weil) height of x ∈ Q is defined by picking

any number field K such that x ∈ K and putting

habs(x) :=
∑
v∈MK

max(0, log |x|v);

this does not depend on the choice of K. For a polynomial f we put K :=
Q(a1, . . . , ag) where a1, . . . , ag are the non-zero coefficients of f , and we
define the height of f by

habs(f) :=
∑
v∈MK

log max1≤i≤g |ai|v.

Let Γ be a finitely generated subgroup of (Q∗)2. Denote byK the smallest
number field such that Γ ⊂ (K∗)2, and put d := [K : Q]. Let S be the
minimal finite set of places of K containing all the infinite places of K and
having the property that Γ ⊂ (O∗S)2. Denote by s the cardinality of S.
Define

(4.2) P (v) := 2 if v is infinite, P (v) := #OK/pv if v is finite,

where pv is the prime ideal of OK corresponding to v, and put

(4.3) P := max
v∈S

P (v).

The discriminant of the field K is denoted by DK .
Let f(X,Y ) ∈ Q[X,Y ] be a polynomial which is not divisible by any

non-constant polynomial of the shape αXmY n−β or αXm−βY n for some
α, β ∈ Q, m,n ∈ Z≥0. We mention that in this case f is also not divisible
by any polynomial which depends on exactly one of the variables X,Y ,
since then it would be divisible by a polynomial of the shape (αX − β) or
αY − β, respectively. Write N := deg f for the total degree of f . Let L be
the field extension of K generated by the coefficients of f . Put

δ := degX f + degY f, H := max(1, habs(f)),

c1 :=
(
δ · d · s · log P ·DK(log∗DK)d−1)O(s2) ·P2δ2

.

Let C0 ⊂ (Q∗)2 be the curve defined by f(x, y) = 0.

Proposition 4.3. For every point x = (x, y) ∈ C0 ∩ Γ we have

habs(x) + habs(y) ≤ c1(H + 2N).
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Proof. This is Proposition 6.1 of [2], however, with a slightly different bound
then it was originally obtained in [5]. �

4.3. Analyzing the condition (2.4) posed on F . Let A,K,K be as
in Section 2 and let F (X,Y ) ∈ A[X,Y ] be a bivariate polynomial given by

F (X,Y ) =
∑

(i,j)∈I
aijX

iY j ,

where I ⊂ Z2
≥0 is a finite set, and 0 6= aij ∈ A are fixed. Denote by N the

total degree of F and by n(F ) the number of non-zero coefficients of F .
A partition of the set I is just a tuple P = (I1, . . . , Ik) of subsets of I

with the properties I1 ∪ I2 ∪ · · · ∪ Ik = I, Ii ∩ Ij = ∅ for i 6= j, and Il 6= ∅
for l = 1, . . . , k.

For any partition P = (I1, . . . , Ik) of I with |Il| ≥ 2 for l = 1, . . . , k we
define the Z-module
Λ(F,P) := 〈{(i1, j1)− (i2, j2) | (i1, j1), (i2, j2) ∈ Il for some l = 1, . . . , k}〉
i.e. the Z-module defined by all differences of pairs of exponents (i, j) be-
longing to the same set in the partition P. Let r(F,P) denote the rank of
the Z-module Λ(F,P).

In the sequel, for any solution (x, y) of the equation
(4.4) F (x, y) = 0 in x, y ∈ A∗

we say that a partition P = (I1, . . . , Ik) of I corresponds to F and (x, y) if
(1) x, y is a solution of the following system

(4.5)
∑

(i,j)∈Il

aijx
iyj = 0 for l = 1, . . . , k,

(2) and
∑

(i,j)∈I0 aijx
iyj 6= 0 for any proper subset I0 of any of the sets

Il for l = 1, . . . , k.
In this case we shall also say that (x, y) is associated with the partition P.
We mention that aij 6= 0 for (i, j) ∈ I, x, y ∈ A∗ and (4.5) imply |Il| ≥ 2
for l = 1, . . . , k.

In the case when for a given partition P the rank of Λ := Λ(F,P) is 1 then
we associate a system of polynomials to P as follows: if r(F,P) = 1 then
there exists a pair (m,n) ∈ Z2 with gcd(m,n) = 1 such that for any two
elements (i, j), (i′, j′) ∈ Il for l = 1, . . . , k we have (i, j)− (i′, j′) = t · (m,n)
with t ∈ Z, |t| ≤ N . Fixing an element (il, jl) ∈ Il for l = 1, . . . , k we
get that every (i, j) ∈ Il can be written as (i, j) = (il, jl) + tij(m,n),
for l = 1, . . . , k, with some tij ∈ Z, |tij | ≤ N . Thus the system (4.5) is
equivalent to the system

XilY jl
∑

(i,j)∈Il

aij(XmY n)tij = 0 for l = 1, . . . , k.
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By multiplying these equations by suitable powers of XmY n we see that
(4.5) is equivalent to a system
(4.6) gl(XmY n) = 0 for l = 1, . . . , k,
where
(4.7) gl(X) :=

∑
(i,j)∈Il

aijX
sij ∈ A[X], gl(0) 6= 0 for l = 1, . . . , k

and 0 ≤ sij ≤ 2N for all (i, j). We shall call (g1, . . . , gk) the polynomial
system corresponding to the partition P.

Proposition 4.4. Let F (X,Y ) ∈ A[X,Y ] be a polynomial. Then F satis-
fies condition (2.4) if and only if for each partition P = (I1, . . . , Ik) of I
we have one of the following:

(1) r(F,P) = 2, or
(2) r(F,P) = 1, and the polynomial system (g1, . . . , gk) ∈ A[X]r corre-

sponding to P has the property
gcd(g1, . . . , gr) = 1 in K[X].

Proof. This is Proposition 3.1 of [2]. �

Proposition 4.5. Let F (X,Y ) be a polynomial satisfying (2.4) and fix a
solution (x, y) of (4.4). Let P = (I1, . . . , Ik) be a partition of I correspond-
ing to F and (x, y) and let Λ := Λ(F,P) be the Z-module corresponding to
P. Then we have

r(F,P) = 2.

Proof. This is Proposition 3.2 of [2] �

The above two propositions mean in fact, that for a polynomial fulfilling
condition (2.4) there might exist partitions of I of rank 1, but these are
never partitions corresponding to a solution.

4.4. Effective estimates for the gcd of polynomials.

Lemma 4.6. Let A be a finitely generated domain as in Section 2 and
K its quotient field. Let k, ρ ∈ N be with 2k−1 ≤ ρ ≤ 2k and define the
polynomials

gi(X) :=
δ∑
j=0

xijX
j ∈ A[X] for i = 1, . . . , ρ.

Further, suppose that the coefficients xij ∈ A have representatives x̃ij with
deg x̃ij ≤ d, h(x̃ij) ≤ h,

where d > 1 and h > 1 are given real numbers. Suppose that
gcd(g1, . . . , gρ) = 1 in K[X].



416 Attila Bérczes

Then there exist polynomials u1, . . . , uρ ∈ A[X] and non-zero R ∈ A, such
that

u1g1 + · · ·+ uρgρ = R,

and that R has a representative R̃ with
deg R̃ ≤ d(2δ)k, h(R̃) ≤ (2δ)k+2(d+ 1)rh.

Proof. This is Corollary 3.1 in [2]. �

5. General description of the method for proving effective
results over finitely generated domains

5.1. Extending the domain A. In this section we extend the domain A
to a larger finitely generated domain B in which it will be more convenient
to do effective computations, and which can be chosen in such a way that
several elements of K (chosen according to our needs) will be units in this
extended domain. This latter property will have special importance when
we define our specializations. We also introduce a new representation for
elements of K, which gives rise to a different way of measuring elements of
K than the one using the size of representatives, and this way of measuring
will be more convenient in our proofs.

Let A = Z[z1, . . . , zr] be a finitely generated domain given by (2.1), and
let K be its quotient field. Let q ≥ 0 denote the transcendence degree of K.
We may assume without loss of generality that z1, . . . , zq is a transcendence
basis of K/Q. Put
(5.1) K0 := Q(z1, . . . , zq), A0 := Z[z1, . . . , zq].
For elements f ∈ A0 \ {0} let deg f and h(f) denote the total degree
and logarithmic height of f , respectively, viewed as a polynomial in the
unknowns z1, . . . , zq. In the case q = 0 we define deg f := 0 and h(f) :=
log |f |. Put
(5.2) d0 := max(1, deg f1, . . . ,deg ft), h0 := max(1, h(f1), . . . , h(ft)),
where f1, . . . , ft are the generators of the ideal I in (2.1).

Since the field K is a finite algebraic extension of K0, we can write
K = K0(w) for some w ∈ K. We recall the following result of Evertse and
Győry.

Proposition 5.1. (i) There exists w ∈ A such that K = K0(w), w is
integral over A0 and w has minimal polynomial

F(X) = XD + F1X
D−1 + · · ·+ FD ∈ A0[X]

over K0 such that D ≤ dr−q0 and

(5.3) degFk ≤ (2d0)expO(r), h(Fk) ≤ (2d0)expO(r)(h0 + 1)
for k = 1, . . . , D.
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(ii) Let α1, . . . , αk ∈ K∗ and suppose that αi has representation pair
(ui, vi) with ui, vi ∈ Z[X1, . . . , Xr], vi 6∈ I, for i = 1, . . . , k. Put

d∗∗ := max(d0,deg u1, deg v1, . . . ,deg uk, deg vk),
h∗∗ := max(h0, h(u1), h(v1), . . . , h(uk), h(vk)).

Then there is a non-zero f ∈ A0 such that with B := A0[w, f−1] we have

(5.4)
A ⊆ B,
α1, . . . , αk ∈ B∗.

Further, f can be chosen such that it fulfils
(5.5)

deg f ≤ (k + 1)(2d∗∗)expO(r), h(f) ≤ (k + 1)(2d∗∗)expO(r)(h∗∗ + 1).

Proof. These versions of (i) and (ii) are stated in Proposition 3.1 in [2],
however originally (i) is proved in Evertse and Győry [12], Proposition 3.4
and Lemma 3.2, (i), while (ii) is proved in [12], Lemma 3.6.

�

Now let us describe the above-mentioned representation for the elements
of the field K. Recall that D denotes the degree of K over K0. Since
K = K0(w) for every element α ∈ K there exists a unique representation∑D−1
j=0 Rα,jw

j , where Rα,j ∈ K0. Since A0 is a unique factorization domain
(indeed, z1, . . . , zq are algebraically independent) and K0 is its quotient
field, thus there exist Pα,0, . . . , Pα,D−1, Qα ∈ A0 such that
(5.6)

α = Q−1
α

D−1∑
j=0

Pα,jw
j with Qα 6= 0, gcd(Pα,0, . . . , Pα,D−1, Qα) = 1.

Further, the tuple (Pα,0, . . . , Pα,D−1, Qα) is up to sign uniquely determined.
Now we define

(5.7)
{

degα := max(degPα,0, . . . ,degPα,D−1, degQα)
h(α) := max(h(Pα,0), . . . , h(Pα,D−1), h(Qα)),

if q > 0, and degα = 0 and h(α) = log max(|Pα,0|, . . . , |Pα,D−1|, |Qα|) if
q = 0. These two concepts provide a convenient way to measure elements
of K.

Proposition 5.2. Let α1, . . . , αk ∈ K∗ and suppose that there are d̃ > 1
and h̃ > 1 such that degαi ≤ d̃ and h(αi) ≤ h̃ for i = 1, . . . , k. Then there
is a non-zero f ∈ A0 such that with B := A0[w, f−1] we have

(5.8)
A ⊆ B,
α1, . . . , αk ∈ B∗.
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Further, f can be chosen such that it fulfils

(5.9)
deg f ≤ (2d0)expO(r) + 2kd̃,

h(f) ≤ (2d0)expO(r)(h0 + 1) + 2kh̃+ 2rkd̃.

Proof. This proposition is just a variant of (ii) of Propositions 5.1. To prove
it we only need to slightly modify the proof of Lemma 3.6. in [12]. In
principle, the element f is chosen to be the same as in (ii) of Propositions
5.1 (as constructively given in the proof of Lemma 3.6. in [12]), just the
estimate for the degree and height of f is computed in terms of d0, d̃, h̃
instead of d∗∗ and h∗∗. �

The following two lemmas describe how degα and h(α) and the height
and degree of representatives for α may be bounded in terms of each other.

Lemma 5.3. Let α ∈ K∗ and let (a, b) be a pair of representatives for α
with a, b ∈ Z[X1, . . . , Xr], b 6∈ I. Put

d∗ := max(d0, deg a,deg b) and h∗ := max(h0, h(a), h(b)).

Then

(5.10) degα ≤ (2d∗)expO(r), h(α) ≤ (2d∗)expO(r)(h∗ + 1).

Proof. This is Lemma 3.5 in Evertse and Győry [12]. �

Lemma 5.4. Let α be a nonzero element of A, and put

d̂ := max(d0,degα), ĥ := max(h0, h(α)).

Then α has a representative α̃ ∈ Z[X1, . . . , Xr] such that

(5.11)
{

deg α̃ ≤ (2d̂)expO(r log∗ r)(ĥ+ 1),
h(α̃) ≤ (2d̂)expO(r log∗ r)(ĥ+ 1)r+1.

Proof. This is a special case of Lemma 3.7 of Evertse and Győry [12] with
the choice λ = 1 and a = b = 1. The proof of this lemma is based on work
of Aschenbrenner [1]. �

Using Lemma 5.3 and (2.5) we have the estimates

(5.12) deg γi ≤ (2d)exp(O(r)), h(γi) ≤ (2d)exp(O(r))(h+ 1)

for i = 1 . . . , s, and

(5.13) deg aij ≤ (2d)exp(O(r)), h(aij) ≤ (2d)exp(O(r))(h+ 1).

for (i, j) ∈ I. These estimates will be frequently used in the rest of the
paper.
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5.2. Using function field results for bounding the degree deg of
elements of B. In this subsection we collect the main tools needed to
use results over function fields to bound the deg of elements of B. Recall
that A = Z[z1, . . . , zr] and K denotes the quotient field of A. We keep
our assumption that z1, . . . , zq is a transcendence basis of K/Q, and the
notation A0 := Z[z1, . . . , zq], K0 := Q(z1, . . . , zq). Let w ∈ A0 and f ∈ A0
be the elements specified in Proposition 5.1 and put B := A0[f−1, w]. Then
K = K0(w) and A ⊆ B ⊂ K. Further, let us denote by w(1) = w, . . . , w(D)

the conjugates of w over K0.
Now we fix i ∈ {1, . . . , q} and introduce the following notation:

(5.14)

ki := Q(z1, . . . , zi−1, zi+1, . . . , zq),
ki denotes the algebraic closure of ki,

Mi := ki(zi, w(1), . . . , w(D)),

Bi := ki[zi, f−1, w(1), . . . , w(D)].
Clearly, Mi is the splitting field of the minimal polynomial F(X) of w over
the field ki(zi), and Bi is a subring ofMi containing B. Further, we use the
following notation:

(5.15)
∆i := [Mi : ki(zi)],
gMi denotes the genus of Mi/ki,
HMi denotes the height with respect to Mi/ki.

Put
(5.16) d1 := max{d0, deg f,degF1, . . . ,degFD}.

The following Lemma gives an upper bound for the deg of an element
of K∗ depending on the function field heights with respect to Mi/ki of its
conjugates.
Lemma 5.5. Let α ∈ K∗ and denote by α(1), . . . , α(D) the conjugates of α
corresponding to w(1), . . . , w(D). Then

degα ≤ qDd1 +
q∑
i=1

∆−1
i

D∑
j=1

HMi(α(j)).

Proof. This is Lemma 4.4 in Evertse and Győry [12]. �

Conversely, we have the following:
Lemma 5.6. Let α ∈ K∗ and α(1), . . . , α(D) be as in Lemma 5.5. Then we
have
(5.17) max

i,j
HMi(α(j)) ≤ ∆i

(
2Ddegα+ (2d0)expO(r)

)
.

Proof. This is Lemma 4.4 of [4]. �
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5.3. Specializations. Recall again that

(5.18)
K0 = Q(z1, . . . , zq), K = Q(z1, . . . , zq),
A0 = Z[z1, . . . , zq], B = Z[z1, . . . , zq, w, f

−1],

where w, f are the elements specified in Proposition 5.1, and the minimal
polynomial of w has the form F(X) = XD +F1X

D−1 + · · ·+FD ∈ A0[X],
with degree and coefficients bounded as described in Proposition 5.1.

For every u ∈ Zq the substitution zi → ui for i = 1, . . . , q defines a
mapping from a subring ofK0 to Q. More precisely, we fix u and we consider
the ring homomorphism ϕu from a subring of K0 to Q defined by

ϕu(α) := α(u) = g1(u)
g2(u)

for every α = g1
g2
∈ K0 with g1, g2 ∈ A0, and with the additional property

g2(u) 6= 0. To extend this map to a ring homomorphism from B to Q we
will impose some restrictions on u. Let ∆F denote the discriminant of F
with the convention ∆F = 1 if F is a linear polynomial. Put

H := ∆F · FD · f ∈ A0,

and assume that u is chosen such that H(u) 6= 0. Put

(5.19)
{

d∗0 = max(degF1, . . . ,degFD)
h∗0 = max(h(F1), . . . , h(FD))

{
d∗1 = max(d∗0,deg f)
h∗1 = max(h∗0, h(f)).

Thus we clearly have

(5.20) degH ≤ (2D − 2) · d∗0 + d∗0 + d∗1 ≤ (2D − 1) · d∗0 + d∗1.

Let us fix a tuple u ∈ Zq with H(u) 6= 0. Since H(u) 6= 0 implies ∆F 6= 0
and FD(u) 6= 0, the polynomial

Fu := XD + F1(u)XD−1 + · · ·+ FD(u)

has D distinct non-zero roots, say w(1)(u), . . . , w(D)(u).
Now we extend the map ϕu to the ring B in D different ways. Namely,

for each j = 1, . . . , D we shall define the function ϕu,j on B such that if
α ∈ B is written as

α =
D−1∑
i=1

(Pi/Q)wi,(5.21)

where P0, . . . , PD−1, Q ∈ A0, gcd(P0, . . . , PD−1, Q) = 1,

then

(5.22) ϕu,j(α) = α(j)(u) :=
D−1∑
i=1

(Pi(u)/Q(u))
(
w(j)(u)

)i
.
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Since α ∈ B, the polynomial Q must divide a power of f and hence Q(u) 6=
0, so ϕu,j(α) is well-defined. Clearly, ϕu,j is a ring homomorphism from B

to Q, thus any of the specializations ϕu,j maps any unit of B to a non-zero
element of Q. We mention that ϕu,j is the identity on B ∩ Q. Further, if
α ∈ B ∩Q then ϕu,j(α) is a conjugate of α

For u = (u1, . . . , uq) ∈ Zq, put |u| := max(|u1|, . . . , |uq|). Then for any
g ∈ A0, u ∈ Zq

(5.23) log |g(u)| ≤ q log deg g + h(g) + deg g log max(1, |u|).
Thus, we have

(5.24) h(Fu) ≤ q log d∗0 + h∗0 + d∗0 log max(1, |u|)
and so by Lemma 5.1 of Evertse and Győry [12]

(5.25)
D∑
j=1

h(w(j)(u)) ≤ D + 1 + q log d∗0 + h∗0 + d∗0 log max(1, |u|).

Define the algebraic number fields

(5.26) Ku,j := Q(w(j)(u)) for j = 1, . . . , D,

and denote by ∆Ku,j their discriminant.
The following lemmas of Evertse and Győry [12] summarize important

properties of the above-defined specializations.

Lemma 5.7. Let u ∈ Zq with H(u) 6= 0. Then for j = 1, . . . , D we have
[Ku,j : Q] ≤ D and

|∆Ku,j | ≤ D2D−1
(
(d∗0)qeh∗0 max(1, |u|d∗0)

)2D−2
.

Proof. This is Lemma 5.5 in Evertse and Győry [12]. �

The next lemma bounds the height of α(j)(u) for u ∈ Zq in terms of the
size of α ∈ B and some parameters of B.

Lemma 5.8. Let u ∈ Zq with H(u) 6= 0, and let α ∈ B. Then for j =
1, . . . , D,

h(α(j)(u)) ≤ D2 + q(D log d∗0 + log degα) +
+Dh∗0 + h(α) + (Dd∗0 + degα) log max(1, |u|).

Proof. This is Lemma 5.6 in Evertse and Győry [12]. �

The below lemma shows that if we take a sufficiently large number of
specializations, then there is at least one specialization among them (say
corresponding to u ∈ Zq), such that h(α) for α ∈ B can be bounded by the
heights of the images of α by the specializations ϕu,j for j = 1, . . . , D.
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Lemma 5.9. Let α ∈ B, α 6= 0, and let N0 be an integer with

(5.27) N0 ≥ max(degα, 2Dd∗0 + 2(q + 1)(d∗1 + 1)).

Then the set
S := {u ∈ Zq : |u| ≤ N0,H(u) 6= 0}

is non-empty, and

(5.28) h(α) ≤ 5N4
0 (h∗1 + 1)2 + 2D(h∗1 + 1)H,

where H := max{h(α(j)(u)) : u ∈ S, j = 1, . . . , D}.

Proof. This is Lemma 5.7 in Evertse and Győry [12]. �

6. Proof of Proposition 3.1
We split the proof of Proposition 3.1 into several steps, each being pre-

sented in a separate subsection:
• for (x, y) ∈ C we bound the degree of the field K(x, y) over K;
• we estimate the smallest positive integer exponent M such that for

(x, y) ∈ C we have xM , yM ∈ ΓK , where ΓK denotes the K-closure
of Γ, i.e. the largest subgroup of Γ which belongs to K∗;
• for γ ∈ ΓK we estimate the smallest positive integer exponent m(γ)
such that γm(γ) ∈ Γ;
• we conclude the proof of Proposition 3.1.

6.1. Bounding the degree of K(x, y). Let (x, y) ∈ C. We shall give
a bound on the degree of the field L := K(x, y) over K. Since x, y ∈ Γ,
there exist mx,my ∈ Z>0 such that xmx , ymy ∈ Γ. Take the least common
multiple of mx and my and denote it by mxy. Then xmxy , ymxy ∈ Γ ⊂ K,
so we have

[K(x, y) : K] ≤ mxy.

In order to estimate mxy put Fx,y(X,Y ) := F (xX, yY ). Then for any em-
bedding σ : L ↪→ K, we have F (σ(x), σ(y)) = 0, hence

Fx,y

(
σ(x)
x

,
σ(y)
y

)
= 0.

Since xmx ∈ K we also have σ(x)mx ∈ K, hence(
σ(x)
x

)mxy

= 1,

and similarly, (
σ(y)
y

)mxy

= 1.
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Thus the distinct embeddings σ : K(x, y) ↪→ K give rise to distinct solu-
tions

(
σ(x)
x , σ(y)

y

)
of the equation

Fx,y(ρ1, ρ2) = 0 in ρ1, ρ2 roots of unity.

However, by the result of Beukers and Smyth [6] this equation has at most
22(degF )2 solutions in roots of unity. Thus we have proved that

(6.1) [K(x, y) : K] ≤ 22(degF )2 = 22N2.

6.2. Bounding the exponent M . Let again x, y ∈ C. Let us denote by
ΓK the K-closure of Γ, i.e. the largest subgroup of Γ belonging to K∗. Then
we have Γ ⊆ ΓK ⊆ Γ. Now we shall give an upper bound for the minimal
exponent M such that

xM , yM ∈ ΓK .
Let dx := [K(x) : K]. Then we have dx ≤ 22N2. By x ∈ Γ there exists
mx ∈ N with xmx ∈ Γ. Put γ := xmx . Then the minimal polynomial fx(X)
of x over K divides

Xmx − γ =
mx∏
i=1

(X − ρix),

where ρ is a primitive root of unity of order mx. Thus

fx(X) =
dx∏
j=1

(
X − ρijx

)
∈ K[X]

with suitable distinct choices of ij ∈ {1, . . . ,mx}. Hence there exists a root
of unity ρ such that

ρxdx ∈ K∗.
Now let us estimate the order l of ρ. Clearly, ρ ∈ K(x). Further, since [K :
K0] ≤ dr−q (see Proposition 5.1 (i)) we have [K(x) : K0] ≤ dx ·dr−q, and by
ρ ∈ K(x) this gives the estimate [K(ρ) : K0] ≤ dx·dr−q, which gives [K0(ρ) :
K0] ≤ dx · dr−q. However, since K0 = Q(z1, . . . , zq), with algebraically
independent elements z1, . . . , zq, we have [K0(ρ) : K0] = [Q(ρ) : Q], hence

[Q(ρ) : Q] ≤ dx · dr−q.

On the other hand ρ is a root of unity of order l, so

[Q(ρ) : Q] = ϕ(l),

which gives the estimate
ϕ(l) ≤ dx · dr−q.

Now using the estimate

ϕ(l)� l

log log l
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of Rosser and Schönfeld [22] we infer

l�
(
dxd

r−q)2 ,
where the constants implied by� and� are absolute constants. However,
since ρxdx ∈ K∗ we have (ρxdx)l ∈ K∗ hence xdx·l ∈ K∗, which by dx ≤
22N2 proves that

(6.2) M ≤ dx · l� d3
xd

2(r−q) � N6d2(r−q).

6.3. Bounding the exponent m(γ). The next step is to take an arbi-
trary element

γ ∈ ΓK \ Γ.
Since γ ∈ ΓK ⊆ Γ there exists a minimal natural number m(γ) such that

γm(γ) ∈ Γ.

We now estimate m(γ). Clearly, for such an m(γ) we have

(6.3) γm(γ) = γt11 . . . γtss

and without loss of generality we may suppose that 0 ≤ ti < m(γ) for i =
1, . . . , s. Indeed, if we take vi with vi ≡ ti (mod m(γ)) and 0 ≤ vi < m(γ)
for i = 1, . . . , s, then considering γ′ := γv1

1 . . . γvs
s we have m(γ) = m(γ′),

and for bounding m(γ) we may just replace γ by γ′. So we start with the
relation

(6.4) γm(γ) = γt11 . . . γtss , 0 ≤ ti < m(γ).

Now we first bound deg γ and h(γ).

6.3.1. Bounding deg γ.

Recall that γ1, . . . , γs ∈ K∗ are given by corresponding representation
pairs (g1, h1), . . . , (gs, hs), which fulfil (2.5). First we extend the domain A
to a larger domain B such that the "numerators" and "denominators" of
γ1, . . . , γs are all units of B. More precisely, let γi1 := gi(z1, . . . , zr) and
γi2 := hi(z1, . . . , zr) for i = 1, . . . , s. Then we have the following:

Proposition 6.1. There exists a non-zero f ∈ A0 such that

(6.5) A ⊆ A0[w, f−1] =: B, γi1, γi2 ∈ A0[w, f−1]∗ for i = 1, . . . , s

and

(6.6) deg f ≤ (2s+ 1)(2d)expO(r), h(f) ≤ (2s+ 1)(2d)expO(r)(h+ 1).

Proof. This is a simple consequence of (ii) of Proposition 5.1. Indeed, we
have k = 2s, and in view of (2.5) we may take d∗∗ = d and h∗∗ = h. �
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We use the notation of Section 5.2.
By (5.16), (2.5), (5.3) and (6.6) we have the estimate

(6.7) d1 ≤ (2s+ 1)(2d)expO(r).

By Lemma 5.6 we have

(6.8) max
i,j

HMi

(
γ

(i)
k

)
≤ ∆i

(
2Ddeg γk + (2d0)expO(r)

)
≤ ∆i(2d)expO(r).

Further, by (6.4) we have

mHMi(γ(j)) ≤
s∑

k=1
tkHMi(γ

(j)
k )

which means

HMi(γ(j)) ≤
s∑

k=1

tk
m
HMi(γ

(j)
k ) ≤

s∑
k=1

HMi(γ
(j)
k ) ≤ s∆i(2d)expO(r).

Thus by Lemma 5.5 we get

(6.9)

deg γ ≤ qDd1 +
q∑
i=1

∆−1
i

D∑
j=1

HMi(γ(j))

≤ qD(2s+ 1)(2d)expO(r) +
q∑
i=1

∆−1
i Ds∆i(2d)expO(r)

≤ s(2d)expO(r).

6.3.2. Bounding h(γ).

We shall use the notation of Section 5.3. Let ϕu,j be a specialization
map on the domain B as defined in Section 6.3.1. Then applying ϕu,j to
the relation (6.4) we get

(6.10) γ(j)(u)m(γ) = γ
(j)
1 (u)t1 . . . γ(j)

s (u)ts ,

which gives

m(γ)habs(γ(j)(u)) ≤
s∑
i=1

tihabs(γ(j)
i (u))

leading to the estimate

(6.11) habs(γ(j)(u)) ≤
s∑
i=1

ti
m(γ)habs(γ(j)

i (u)) ≤
s∑
i=1

habs(γ(j)
i (u)).

By Lemma 5.8 and (5.12) we have

(6.12) habs(γ(j)
i (u)) ≤ (2d)exp(O(r)) (h+ 1 + log max(1, |u|)) .



426 Attila Bérczes

Using the domain B specified in Section 6.3.1 by (6.5) we have

(6.13) d∗1 ≤ (2s+ 1)(2d)exp(O(r)), h∗1 ≤ (2s+ 1)(2d)exp(O(r))(h+ 1).

Now in order to use Lemma 5.9 we may choose N0 := (2s+ 1)(2d)exp(O(r))

providing the bound

habs(γ(j)
i (u)) ≤ (2d)exp(O(r))(h+ 1)s,

which together with (6.11) gives

habs(γ(j)(u)) ≤ s2(2d)exp(O(r))(h+ 1),
and the use of Lemma 5.9 leads to the estimate
(6.14) h(γ) ≤ s6(2d)exp(O(r))(h+ 1)2.

6.3.3. Bounding the exponents in (6.4).

Lemma 6.2. Let γ0, γ1, . . . , γs ∈ K∗ be multiplicatively dependent ele-
ments, and assume that for i = 0, . . . , s we have

(6.15) deg γi ≤ (2d)expO(r+s), h(γi) ≤ (2d)expO(r+s)(h+ 1)2.

Then there exist integers k0, . . . , ks not all equal to 0 such that
γk0

0 . . . γks
s = 1

and
(6.16) |ki| ≤ (2d)expO(r+s)(h+ 1)2s, for i = 0, . . . , s.

Proof. This is a variant of Lemma 7.2 of Evertse and Győry in [12]. To
prove this result it would be necessary to redo the long proof of Lemma 7.2
of [12], with most part of it completely unchanged. So here we only indicate
those points which should be changed in the proof of Lemma 7.2 of [12] to
get our Lemma 6.2. The first point is, that after defining the elements γv
we have to estimate their deg , i.e. we get

deg γv ≤
s∑
i=0

videg γi ≤ V · (2d)exp(O(r+s)).

Thus using our Proposition 5.2 we get the same estimate

deg f ≤ V expO(r+s)

as in [12]. From this point we have to redo identically the computation of
the proof of Lemma 7.2 of [12], just with the bounds (6.15) instead of the
bounds given in the proof of Evertse and Győry for deg γi and h(γi), and
finally we get the estimate (6.16). �

Now applying Lemma 6.2 to our identity (6.4) we get the desired bound

(6.17) |m(γ)|, |ti| ≤ (2d)exp(O(r+s))(h+ 1)2s.
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6.4. Concluding the proof of Proposition 3.1. In Section 6.2 we
proved that for a given (x, y) ∈ C there exists an exponent M with (6.2)
such that

xM , yM ∈ ΓK .
Further, by Section 6.3 there exist exponents m(xM ) and m(yM ) with

m(xM ),m(yM ) ≤ (2d)exp(O(r+s))(h+ 1)2s,

such that
(xM )m(xM ), (yM )m(yM ) ∈ Γ.

Put m0 := M ·m(xM ) ·m(yM ). Then we have

m0 ≤ N6(2d)exp(O(r+s))(h+ 1)4s.

Denoting by C3 the constant implied by the O(·) symbol in the last in-
equality the proof of Proposition 3.1 is concluded.

7. Proof of Proposition 3.2
7.1. Bounding the degree. We shall use the notation of Section 5.1
however we shall extend our domain A to a larger domain B in a different
way than we did in Section 6. More precisely, we choose f and thus B as
described in the following proposition:

Proposition 7.1. There exists a non-zero f ∈ A0 with

(7.1)
deg f ≤ sN2(2d)expO(r),

h(f) ≤ sN2(2d)expO(r)(h+ 1),

such that with B := A0[f−1, w]

(7.2)
A ⊆ B,
γi1, γi2 ∈ B∗ for i = 1, . . . , s,
aij ∈ B∗ for (i, j) ∈ I.

Proof. This is a simple consequence of (ii) of Proposition 5.1. Indeed, we
have k := 2s+ |I| ≤ O(sN2), and in view of (2.5) we may take d∗∗ = d and
h∗∗ = h. �

Put B := A0[w, f−1]. Then we clearly have A ⊆ B ⊆ K. Recall that for
a fixed i ∈ {1, . . . , q} in Section 5.2 we introduced the notation

(7.3)

ki := Q(z1, . . . , zi−1, zi+1, . . . , zq),
ki := the algebraic closure of ki,

Mi := ki(zi, w(1), . . . , w(D)),

Bi := ki[zi, f−1, w(1), . . . , w(D)],
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where w is the element specified in Proposition 5.1 and w(1), . . . , w(D) de-
note the conjugates of w over K0. Further, we used the notation

(7.4)
∆i := [Mi : ki(zi)],
gMi := the genus of Mi/ki,
HMi := the height with respect to Mi/ki.

LetMMi denote the set of places of Mi and define

(7.5) Si := {v ∈MMi | v(zi) < 0 or v(f) > 0}.

Then we have the estimates

(7.6)
|Si| ≤ ∆i + ∆i degzi

f ≤ ∆i(1 + deg f)

≤ ∆isN
2(2d)expO(r),

and

(7.7) gMi ≤ ∆iD max
1≤k≤D

degzi
Fk ≤ ∆iD(2d0)expO(r) ≤ ∆i(2d)expO(r).

Now let x, y be such that F (x, y) = 0 and xm, ym ∈ Γ and put M̃i :=
Mi(x, y). Denote by S̃i the set of places of Mi lying above places of Si and
denote by gM̃i

the genus of the extension M̃i/ki. By (6.1) we clearly have

[M̃i : Mi] ≤ 22N2.

Now we wish to bound gM̃i
and |S̃i|. By the Riemann-Hurwitz formula we

have

2gM̃i
− 2 = [M̃i : Mi] · (2gMi − 2) +

∑
v∈MMi

∑
V |v

V ∈M
M̃i

(e(V | v)− 1).

The valuations v 6∈ Si do not ramify, i.e. e(V | v) = 1 for V above v, hence

2gM̃i
− 2 = [M̃i : Mi] · (2gMi − 2) +

∑
v∈Si

∑
V |v

V ∈S̃i

(e(V | v)− 1)

= [M̃i : Mi] · (2gMi − 2) +
∑
v∈Si

[M̃i : Mi]− |S̃i|

= [M̃i : Mi] · (2gMi − 2) + |Si|[M̃i : Mi]− |S̃i|.

This gives us

2gM̃i
+ |S̃i| = [M̃i : Mi] · (2gMi − 2 + |Si|) + 2,

which provides at the same time the upper bounds for gM̃i
and |S̃i| given

below:

(7.8) gM̃i
≤ 22N2(2gMi + |Si|) ≤ ∆isN

4(2d)expO(r),
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and similarly,

(7.9) |S̃i| ≤ ∆isN
4(2d)expO(r).

We will use Proposition 4.2 to bound HM̃i
(x) and HM̃i

(y) by

(7.10) HM̃i
(x), HM̃i

(y) ≤ 2N
[
(N + 1)4(|S̃i|+ gM̃i

) + 2H0
]
,

where H0 is an upper bound for HM̃i
(a(j)
uv ). By Lemma 5.6 and by (5.13)

we get

HM̃i
(a(j)
uv ) ≤ [M̃i : ki(zi)] ·

(
2Ddeg auv + (2d0)expO(r)

)
≤ 22N2∆i(2d)expO(r) ≤ N2∆i(2d)expO(r) =: H0

This together with (7.10) provides the estimate

(7.11) HM̃i
(x), HM̃i

(y) ≤ ∆isN
9(2d)expO(r),

which together with (2.7) proves

HM̃i
(x0) = HM̃i

(xm) ≤ mHM̃i
(x) ≤ ∆i exp

{
N6(2d)expO(r+s)(h+ 1)4s

}
,

and the same bound for HM̃i
(y0). Now using HM̃i

(x0) = [M̃i : Mi] ·HMi(x0)
and HM̃i

(y0) = [M̃i : Mi] ·HMi(y0) we obtain

HMi(x0), HMi(y0) ≤ ∆i exp
{
N6(2d)expO(r+s)(h+ 1)4s

}
,

which together with Lemma 5.5 proves the desired estimate

(7.12) deg x0,deg y0 ≤ exp
{
N6(2d)expO(r+s)(h+ 1)4s

}
.

7.2. Preparations for bounding the height.

Lemma 7.2. Let R be an integral domain, H(X) :=
∑n
i=0 ciX

i ∈ R[X] be
a polynomial, and ρ a primitive mth root of unity. Then we have

m∏
j=1

H(ρjX) ∈ R[Xm].

Proof. There is no loss of generality, to assume that R = Z[c0, . . . , cn],
where c0, . . . , cn are independent variables. Let Kc := Q(c0, . . . , cn) and Kc

the algebraic closure of Kc. We may write

H(X) = cn

n∏
k=1

(X − αk),
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where α1, . . . , αn ∈ Kc. Thus
m−1∏
j=0

H(ρjX) = cmn

n∏
k=1

m−1∏
j=0

(ρjX − αk) = cmn ρ
nm(m−1)/2

n∏
k=1

(Xm − ρ−jαmk )

= cmn (−1)n(m−1)
n∏
k=1

(Xm − αmk ).

Since the coefficients of
∏n
k=1(Xm−αmk ) are elementary symmetric polyno-

mials with integral coefficients in αi’s, they are in fact elements of
Z[c0/cn, . . . , cn−1/cn]. Hence

∏m−1
j=0 H(ρjX) =: G(Xm) with G ∈ Kc[X].

But the coefficients of G are integral over R, and R is integrally closed
closed, hence they belong to R. �

Proposition 7.3. Let ρ be a primitive mth root of unity. Then there exists
a polynomial G(U, V ) =

∑
(i,j)∈J bijU

iV j ∈ A[U, V ] with bij 6= 0 for (i, j) ∈
J , such that

(7.13) G(Xm, Y m) =
m−1∏
k=0

m−1∏
l=0

F (ρkX, ρlY ),

and such that the coefficients bij of G have representatives b̃ij with
(7.14) deg b̃ij ≤ m2d, h(b̃ij) ≤ m2(h+ 2 log(N + 1))

Proof. Put R0 := Z[apq : (p, q) ∈ I], where we adjoin all coefficients
apq, (p, q) ∈ I of F to Z. First we consider the polynomial H(X,Y ) :=∏m−1
l=0 F (X, ρlY ) as a polynomial in one variable (namely in Y ) over the

integral domain R := R0[X]. Then by Lemma 7.2 we see that H(X,Y ) ∈
R[Y m]. Using again Lemma 7.2 for the polynomial

m−1∏
k=0

m−1∏
l=0

F (ρkX, ρlY ) =
m−1∏
k=0

H(ρkX,Y ),

and the ring R1 := R0[Y m] we infer that
m−1∏
k=0

m−1∏
l=0

F (ρkX, ρlY ) ∈ R0[Xm, Y m],

so we clearly have
∏m−1
k=0

∏m−1
l=0 F (ρkX, ρlY ) ∈ A[Xm, Y m], thus the exis-

tence of a polynomial G(U, V ) ∈ A[U, V ] with (7.13) is proved.
Now we have to prove the estimates for the coefficients of G. Recall that

F (X,Y ) =
∑

(p,q)∈I apqX
pY q, and by assumption (see (2.5)) we are given

representatives ãpq such that
deg ãpq ≤ d, h(ãpq) ≤ h.

Put
F̃kl := F̃ (ρkX, ρlY ).
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For a polynomial F with complex coefficients let us denote by ||F ||1 the
one-norm of F , i.e. the sum of the absolute values of the coefficients of F .

Then we have
||F̃kl||1 = ||F̃ ||1 =

∑
(p,q)∈I

||ãpq||1

and

||G̃||1 ≤
m−1∏
k=0

m−1∏
l=0
||F̃kl||1 ≤ ||F̃ ||m

2
1 .

This shows that
h(G̃) ≤ m2 log ||F ||1 ≤ m2(h(F̃ ) + log |I|) ≤ m2(h+ 2 log(N + 1)),

and this proves
h(b̃ij) ≤ m2(h+ 2 log(N + 1)).

Further, the coefficient bkl is a sum of products of the terms apq, each
summand consisting of at most m2 multiplicands, so we have

deg b̃ij ≤ m2d.

�

Lemma 7.4. Let G(X,Y ) be the polynomial defined in Proposition 7.3.
Then G(X,Y ) is divisible by a non-constant polynomial of the form XaY b−
α or Xa − αY b with α ∈ K∗, a, b ∈ Z≥0 if and only if F (X,Y ) is divisible
by a non-constant polynomial of the form XuY v − β or Xu − βY v with
β ∈ K∗, u, v ∈ Z≥0.

Proof. Clearly we may assume gcd(a, b) = 1, otherwise we factorize XaY b−
α or Xa−αY b and we get a similar factor of G with the property (a, b) = 1.
Then XmaY mb−α or Xma−αY mb divides G(Xm, Y m), which also means
that XaY b−α′ or Xa−α′Y b divides G(Xm, Y m) with a suitable α′ ∈ K∗.
However, by gcd(a, b) = 1 we know thatXaY b−α′ orXa−α′Y b is absolutely
irreducible, so if it divides G(Xm, Y m) then it divides one of Fkl(X,Y ), but
this means that ρ−kaXρ−lbY −α′ or ρ−kaX−α′ρ−lbY divides F (X,Y ). The
converse is trivial, so this concludes the proof of the Lemma. �

Lemma 7.5. The set C1 defined in (3.1) is equal to the set

(7.15)
{

(x0, y0) ∈ Γ2 | G(x0, y0) = 0
}
.

Proof. Denote the set in (7.15) by C2. If (x0, y0) ∈ C1 then there exist
x, y ∈ Γ with xm = x0, ym = y0 such that F (x, y) = 0. So clearly

0 =
m−1∏
k=0

m−1∏
l=0

F (ρkx, ρly) = G(xm, ym) = G(x0, y0),

thus (x0, y0) ∈ C2.
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Conversely, if (x0, y0) ∈ C2 then we have G(x0, y0) = 0. All the mth roots
of x0 and y0 are zeros of the polynomials

Xm − x0 =
m−1∏
k=0

(X − ρkx1/m
0 )

and

Xm − y0 =
m−1∏
l=0

(X − ρly1/m
0 ),

respectively, with any fixed choice x1/m
0 and y1/m

0 of an mth roots of x0 and
y0. Then we have

m−1∏
k=0

m−1∏
l=0

Fkl
(
x

1/m
0 , y

1/m
0

)
= G

(
(x1/m

0 )m, (y1/m
0 )m

)
= 0,

so there exist k, l ∈ {0, . . . ,m− 1} with

Fkl
(
x

1/m
0 , y

1/m
0

)
= 0,

i.e. we have
F
(
ρkx

1/m
0 , ρly

1/m
0

)
= 0.

Thus by the choice x = ρkx
1/m
0 and y = ρly

1/m
0 there exist x, y ∈ Γ with

xm = x0, ym = y0 and F (x, y) = 0, however these conditions just mean
that (x0, y0) ∈ C1. This concludes the proof of our Lemma. �

7.3. Bounding the height of elements of C1. Now we will use the
specialization method to bound h(x0), h(y0) for any (x0, y0) ∈ C1. More
precisely, we prove

Proposition 7.6. If (x0, y0) ∈ C1 then we have

deg x0, deg y0 ≤ exp
{
N6(2d)expO(r+s)(h+ 1)4s

}
(7.16)

h(x0), h(y0) ≤ exp
{

exp
{
N12(2d)expO(r+s)(h+ 1)8s

}}
(7.17)

This sub-section is devoted to the proof of Proposition 7.6. Recall that
the coefficients bij of G have representatives b̃ij with

deg b̃ij ≤ m2d, h(b̃ij) ≤ m2(h+ 2 log(N + 1)).

Thus by Lemma 5.3 and by (2.7) we have

(7.18) deg bij , h(bij) ≤ exp
{
N6(2d)expO(r+s)(h+ 1)4s

}
.

Again, we have to extend the domain A to a larger domain. For this, we
use a suitable version of Proposition 5.2. More precisely we have
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Proposition 7.7. Let R ∈ A be an arbitrary non-zero element having a
representative R̃ with the property

(7.19) deg R̃, h(R̃) ≤ exp
{
N12(2d)expO(r+s)(h+ 1)8s

}
.

Then there exists a non-zero f ∈ A0 such that for B := A0[w, f−1]

(7.20)

A ⊆ B,
γi1, γi2 ∈ B∗ for i = 1, . . . , s,
bij ∈ B∗ for (i, j) ∈ J ,
R ∈ B∗.

Further, f can be chosen such that it fulfils

(7.21) deg f, h(f) ≤ exp
{
N12(2d)expO(r+s)(h+ 1)8s

}
.

Proof. This is a variant of Proposition 5.2. We clearly know that the deg
and h of the elements γi1, γi2 ∈ A0[w, f−1]∗ for i = 1, . . . , s, bij ∈ A0[w, f−1]∗
for (i, j) ∈ J , and R ∈ A0[w, f−1]∗ are bounded by

exp
{
N12(2d)expO(r+s)(h+ 1)8s

}
.

thus by Proposition 5.2 the estimate (7.21) follows at once. �

The element R ∈ A in the above Proposition will be specified later during
the proof, and will be chosen such that it fulfils condition (7.19).

Proof of Proposition 7.6. For the case q = 0 we are in the number field
case, and for this case much better bounds are provided by [5], so we may
assume q > 0.

Estimate (7.16) is the same as (7.12). Now we prove the estimate (7.17)
using the specialization method described in Section 5.3.

Let P be a fixed partition of J and (x0, y0) ∈ C2 be a fixed solution
associated with P.

Put B := A0[w, f−1]. Then for the quantities d∗0, d∗1, h∗0, h∗1 defined in
(5.19) we have the following estimates:

(7.22)

d∗0 ≤ (2d)expO(r),

h∗0 ≤ (2d)expO(r)(h+ 1),

d∗1, h
∗
1 ≤ exp

{
N12(2d)expO(r+s)(h+ 1)8s

}
.

Thus for H := ∆F · FD · f ∈ A0 we have

degH ≤ (2D − 2)d∗0 + d∗0 + d∗1 ≤ exp
{
N12(2d)expO(r+s)(h+ 1)8s

}
.
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We shall choose u ∈ Zq such that H(u) 6= 0 and consider the extended
specializations ϕu,k defined in (5.22). Then we have

(7.23)
ϕu,k (x0) = x

(k)
0 (u), ϕu,k (y0) = y

(k)
0 (u),

ϕu,k (bij) = b
(k)
ij (u) for (i, j) ∈ I.

Later we shall specify some further requirements on u and k to be able to
apply Lemma 5.9.

The polynomial G(X,Y ) is mapped by ϕu,k to the polynomial
Gu,k(X,Y ) :=

∑
(i,j)∈J b

(k)
ij (u)XiY j . Let Ku,k be the field defined in (5.26),

and Su,k the set of places of Ku,k containing all infinite places and those
finite places which lie above prime ideals dividing f(u). Since we clearly
have

ϕu,k(Γ) ⊆ ϕu,k(B∗) ⊆ O∗Su,k
,

from (x0, y0) ∈ C2 we get

(7.24) Gu,k
(
x(k)(u), y(k)(u)

)
= 0 in x

(k)
0 (u), y(k)

0 (u) ∈ O∗Su,k
.

The next step of the proof is to apply Lemma 5.9. By (7.16) and in view
of (7.22) in Lemma 5.9 we may choose

N0 ≤ exp
{
N12(2d)expO(r+s)(h+ 1)8s

}
to infer that the set

S := {u ∈ Zq : |u| ≤ N0, H(u) 6= 0}
is non-empty. Put

H1 := max{habs(x(k)
0 (u)), habs(y(k)

0 (u)) : u ∈ S, k = 1, . . . , D}.
Then using (7.22) and Lemma 5.9 we infer

(7.25) h(x0), h(y0) ≤ exp
{
N12(2d)expO(r+s)(h+ 1)8s

}
H1.

The last step is to estimate H1. Fix any u ∈ S and k = 1, . . . , D. First
using Lemma 5.7 and (7.22) we can estimate the parameters of the field
Ku,k:

(7.26)
|∆Ku,k

| ≤ D2D−1
(
(d∗0)qeh∗0 max(1, |u|d∗0)

)2D−2

≤ exp
{
N12(2d)expO(r+s)(h+ 1)8s

}
,

and [Ku,k : Q] ≤ D.
To bound habs(Gu,k) we first have to estimate the height of its coeffi-

cients. Lemma 5.8 together with (7.18) gives

habs
(
b

(k)
ij (u)

)
≤ exp

{
N6(2d)expO(r+s)(h+ 1)4s

}
.
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This leads to the estimate

(7.27)
habs(Gu,k) ≤ n(G) ·max h

(
b

(k)
ij (u)

)
≤ exp

{
N6(2d)expO(r+s)(h+ 1)4s

}
.

To bound the cardinality of SKu,k
first we estimate

|f(u)| ≤ (deg f)q · eh(f) · (max(1, |u|))deg f ≤ (d∗1)q · eh∗1 · (max(1, |u|))d
∗
1

≤ exp
{

exp
{
N12(2d)expO(r+s)(h+ 1)8s

}}
.

Since s := |SKu,j | ≤ D(1 +ω(f(u))), where ω(f(u)) denotes the number of
distinct prime factors of f(u), we get

(7.28)
s ≤ O (dr log∗ |f(u)|/ log∗ log∗ |f(u)|)

≤ exp
{
N12(2d)expO(r+s)(h+ 1)8s

}
.

For the maximum of the norm of the prime ideals belonging to SKu,k
we

have

(7.29) P ≤ |f(u)|D ≤ exp
{

exp
{
N12(2d)expO(r+s)(h+ 1)8s

}}
.

Now in order to be able to use Proposition 4.3 for the equation (7.24)
we have to prove that the polynomial Gu,k fulfils the condition
(7.30)

Gu,l is not divisible by any non-constant polynomial of the form
XmY n − α or Xm − αY n,where m,n ∈ Z≥0 and α ∈ Ku,l.

The coefficients bij of G are units in B, thus all these coefficients are
mapped to non-zero elements b(l)

ij (u) by the specialization ϕu,l. Thus the
partitions of the polynomial G are just the same as the partitions of the
polynomial Gu,l.

If r(G,P) = 2 then we also have r(Gu,k,P) = 2. Further, if r(G,P) = 1
then we also have r(Gu,k,P) = 1, and by Proposition 4.4 the correspond-
ing system of polynomials g1, . . . , gk (see Section 4.3) has the property
gcd(g1, . . . , gk) = 1 in K[X]. Thus there exist polynomials u1, . . . , uk and a
non-zero constant R ∈ A with

(7.31) u1g1 + · · ·+ ukgk = R,

and by Lemma 4.6 we see that R can be chosen such that it has a repre-
sentative R̃ with

deg R̃, h(R̃) ≤ exp
{
N12(2d)expO(r+s)(h+ 1)8s

}
.

Assume that f ∈ A0 and the domain B are chosen in Proposition 7.7
such that R ∈ B∗. Now apply the specialization ϕu,k to the relation (7.31)
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to infer that
(u1)u,k(g1)u,k + · · ·+ (uk)u,k(gk)u,k = R

(k)
u .

Since R ∈ B∗ we have R(k)
u 6= 0, and we see that gcd((g1)u,k, . . . , (gk)u,k) =

1 in Ku,k[X]. However, the above argument by Proposition 4.4 implies that
Gu,k fulfils (7.30).

So the polynomial Gu,k cannot have any non-constant factor of the shape
aXmY n−b or aXm−bY n for some a, b ∈ Q, m,n ∈ Z≥0. Thus the solution
set of equation (7.24) fulfills the conditions of Proposition 4.3, so combining
this by statements (7.27), (7.28), (7.29), (7.26) and [Ku,k : Q] ≤ D we get
the estimate
habs(x(k)

0 (u)), habs(y(k)
0 (u)) ≤ exp

{
exp

{
N12(2d)expO(r+s)(h+ 1)8s

}}
,

for every u ∈ S and k = 1, . . . , D, which provides the same upper bound
for H1. Now combining this latter estimate with (7.25) we get the desired
bound (7.17). This concludes the proof of Proposition 7.6.

�

7.4. Concluding the proof of Proposition 3.2. Now Proposition 7.6
also provides upper bounds for the heights of elements of the set C1. So for
any (x0, y0) ∈ C1 we have

deg x0,deg y0 ≤ exp
{
N6(2d)expO(r+s)(h+ 1)4s

}
,

and
h(x0), h(y0) ≤ exp

{
exp

{
N12(2d)expO(r+s)(h+ 1)8s

}}
,

which by Lemma 5.4 concludes the proof of our Proposition 3.2.
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