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Simultaneous Padé approximants to the Euler,
exponential and logarithmic functions

par Tanguy RIVOAL

On the occasion of Axel Thue’s 150th birthday

Résumé. Nous présentons une méthode générale qui permet
d’obtenir des approximations simultanées de type Padé pour les
fonctions exponentielles et logarithmes.

Abstract. We present a general method to obtain simulta-
neous explicit Padé type approximations to the exponential and
logarithmic functions.

1. Introduction

Thue proved his famous theorem on rational approximations of alge-
braic numbers by rational numbers [24], by a method which in some sense
amounts to the computation of certain inexplicit Padé approximants. This
method is ineffective and Thue tried to find effective irrationality measures
for large classes of algebraic numbers. In [25] he was in particular able to do
this for certain numbers of the form r

√
a/b by means of the diagonal Padé

approximants for the binomial functions r
√

1− x. See [6] for some historical
comments.

Since Hermite’s fundamental work on the values of the exponential func-
tion, the importance of Padé approximation (in a broad sense) in Dio-
phantine approximation cannot be exaggerated, and we will present some
examples below. Our aim is to pursue further in this direction. We present
here explicit simultaneous Padé (type) approximants for the three series
exp(z) =

∑∞
n=0

zn

n! , log(1 − z) = −
∑∞
n=1

zn

n and E (z) = z
∫∞

0
e−t

1−ztdt ∼
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n=0 n!zn+1. (The asymptotic expansion holds in a suitable angular sec-

tor.) This problem seems to have never been addressed before and its diffi-
culty is due to the fact that these series belong to three different classes of
the hypergeometric hierarchy:

exp(z) = 1F1

[
1
1; z

]
−1
z

log(1− z) = 2F1

[
1, 1
2 ; z

]
1
z
E (z) = 2F0

[
1, 1; z

]

where hypergeometric series are defined by

pFq

[
a1, . . . , ap
b1, . . . , bq

; z
]

:=
∞∑
k=0

(a1)k(a2)k · · · (ap)k
(1)k(b1)k · · · (bq)k

zk

with (α)k = α(α+ 1) · · · (α+ k − 1).
For any integer n ≥ 0, it is known that Legendre polynomial P`

n(z) :=
1
n!(z

n(1 − z)n)(n) of degree n is simply related to the denominators of the
Padé approximants [n − 1/n] of 1

z log(1 − z) at z = 0, and that Laguerre
polynomial PE

n (z) := 1
n!e

z(zne−z)(n) of degree n is also related to the de-
nominators of the Padé approximants [n − 1/n] of 1

zE (z) at z = 0. The
“exponential” polynomial Pe

n(z) := 1
n!e
−zz2n(z−nez)(n) of degree n is the

denominator of the Padé approximants [n−1/n] of exp(z) at z = 0. (In fact
Pe
n(z) is the generalised Laguerre polynomial L(−2n)

n (−z).) Such expressions
built on repeated differentiations are known as Rodrigues formulas and we
recall the connection with Padé approximants below.

The sequences (P`
n(z))n≥0 and (PE

n (z))n≥0 are sequences of orthogonal
polynomials for the positive weights 1[0,1] and e−z1[0,∞) respectively. This
is not the case for the sequence (Pe

n(z))n≥0, because Pe
n(z) does not always

have only real roots (for instance for n = 2), which is a necessary condition
for polynomial orthogonality on the real line with respect to integration
against a positive measure (see [7]); it is however an orthogonal sequence
in a more general sense [14, 21]. For a recent survey on Hermite-Padé ap-
proximants and orthogonal polynomials, see [26].

The remainder functions of the above mentioned Padé constructions also
have simple expressions in terms of hypergeometric series at the same level
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of the hierarchy: (1)

P`
n(z) log

(
1− 1

z

)
−Q`

n(z)

= (−1)n−1
∫ 1

0

tn(1− t)n

(z − t)n+1dt = n!2(−z)−n−1

(2n+ 1)! · 2F1

[
n+ 1, n+ 1

2n+ 2 ; 1
z

]
,(1.1)

PE
n (z)E

(1
z

)
−QE

n (z)

=
∫ ∞

0

tn

(z − t)n+1 e
−tdt = (−1)n n!

zn+1 · 2F0

[
n+ 1, n+ 1; 1

z

]
,(1.2)

Pe
n(z) exp(z)−Qe

n(z)

= nz2n

n!2
∫ 1

0
ezttn(1− t)n−1dt = z2n

(2n)! · 1F1

[
n+ 1
2n+ 1; z

]
,(1.3)

for some (explicitable) polynomials Q`
n(z), QE

n (z) and Qe
n(z) of degree n−1.

We give a proof of these facts in Section 6 for the reader’s convenience. All
the approximations and formulas in the paper have an analytic meaning
(around z = 0 or z =∞ depending on the case), not a mere formal one. (2)

There exist many papers devoted to the explicit computations of simulta-
neous Padé approximants (at various points) of hypergeometric functions in
the classes p+rFq+r where p, q are fixed for the problem considered and r is
an integer ranging in a finite set. See for instance [8, 9, 11, 13, 15, 16, 17, 20].
However, there does not exist so far in the literature any explicit formulas
for the simultaneous Padé (type) approximants of type I or II for functions
at different levels of the hypergeometric hierarchy.

To do this, we leave the world of hypergeometric polynomials/series in
one variable to the more obscure world of multivariate hypergeometric poly-
nomials/series (specialised in one variable): except for one of our theorems,
none of the formulas given for the polynomials and remainders are hyper-
geometric series in one variable. The main idea is the composition, in a
suitable sense, of Rodrigues formulas that define Legendre, Laguerre and
exponential polynomials; we make this more precise in Section 1.1. The
composition of differential operators to define new sequences of polynomi-
als is not a new idea, see [2] for an extensive study of such compositions
and [3, 19] for a new number theoretical application, different from the
classical ones such as those described in [1, 4, 5]. But it is apparently the
first time it is used to construct simultaneous approximations to functions
at different levels in the hypergeometric hierarchy.

1It is easier to write the formulas at z =∞ for log and E .
2In the three cases, when n = 0, the Padé approximants [−1/0] reduces to P0 = 1 and

Q0 = 0; for consistency, the integral expression in (1.3) must be understood as the integral of
exp(zt) against the Dirac measure at t = 1, hence equal to ez . The same remark applies to the
integrals in (4.2) and (6.7).
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1.1. Principle of the constructions. We explain here the idea behind
all the results presented in the paper. For simplicity, we consider only the
approximation of two functions but the principle can easily be extended.
We consider two series f(z), g(z) ∈ C[[z]], whose respective [k/n] and [`/n]
Padé approximants at some points have their denominators of degree n of
the form

Pf
n(z) := Ψ(z)An(z)

(
Ψ(z)−1Bn(z)

)(n)

Pg
n(z) := Φ(z)Cn(z)

(
Φ(z)−1Dn(z)

)(n)

where Ψ(z),Φ(z) are suitable functions,An(z), Cn(z) ∈ C[z],Bn(z), Dn(z) ∈
C(z). All these polynomials depend on n and k, or `, but we emphasize only
the dependence on n. We require at least that Pf

0(z) ≡ 1, Pg
0(z) ≡ 1, and

Ψ(z)An(z)
(
Ψ(z)−1Bn(z)zk

)(n) and Φ(z)Cn(z)
(
Φ(z)−1Dn(z)zk

)(n) are poly-
nomials for any integers k, n ≥ 0, which is the case of the examples studied
in this paper. We then observe that the polynomial

(1.4) Pf ,g
n,m(z) := Ψ(z)An(z)

(
Ψ(z)−1Bn(z)Pg

m(z)
)(n)

coincides with Pf
n(z) if m = 0 and with Pf

m(z) if n = 0. Hence, one expects
that (1.4) is the denominator of a simultaneous Padé type problem for
f(z) and g(z) at z = 0. By Padé type, we mean that the order of the
approximation is smaller than in a Padé problem, but not trivial neither.

Similarly, we can consider

Pg,f
m,n(z) := Φ(z)Cm(z)

(
Φ(z)−1Dm(z)Pg

n(z)
)(m)

for the same purpose. Usually, Pf ,g
n,m(z) and Pg,f

m,n(z) are distinct, leading
to another simultaneous approximation, but this is not always the case.
Moreover, the polynomials

Ψ(z)An(z)
(
Ψ(z)−1Bn(z)zmPg

m(±1/z)
)(n)(1.5)

Ψ(z)An(z)
(
Ψ(z)−1Bn(z)Pg

m(±z − a)
)(n)

(and the two similar polynomials involving Pf
n instead of Pg

m) can be used
to obtain solutions of simultaneous Padé type problem for f(z) and g(±1/z)
at z = 0 and z = ∞, respectively f(z) and g(±z − a) at z = 0 and z = a.
Depending on the structure of the polynomials, other “composite” polyno-
mials are possible: see Theorem 5 (which even yields Padé approximants)
and Theorem 7.

Here, we use this procedure with (generalisations of) P`
n(z), PE

n (z) and
Pe
n(z), which correspond to approximations at z = 0 for exp(z) and z =∞

for log(1 − 1/z) and E (1/z). For instance, when we set the parameters in
Theorem 1 to a = b = c = n, d = 3n, f = 2n for any integer n ≥ 0,
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we obtain three explicit non trivial polynomials P4n(z),Q4n(z), Q̃4n(z), of
degree at most 4n, such that

P4n(z) log
(
1− 1

z

)
−Q4n(z) = O

( 1
zn+1

)
P4n(z) exp(z)− Q̃4n(z) = O(z5n+1).

We don’t exhaust all the possibilities suggested above, mainly to avoid
notational complications and repetitions of arguments. We focus mainly on
approximations generated by polynomials of type (1.4) and we give only two
examples of approximations generated by (1.5), for exp(z) and log(1 − z)
at z = 0.

1.2. Organisation of the paper. The main theorems (Theorems 1 to 7)
are given in Sections 2 to 5, which correspond to various couplings of the
functions exp(z), log(1 − z) and E (z). In Section 6, as a warm up, we
remind the reader of the constructions of the Padé approximants [n− 1/n]
of these three functions. The proofs of Theorems 1, 2, 5 and 6 are given
in Sections 7, 8 and 9 respectively. In the final section, we use the same
principle of composition of Rodrigues type differential operators to present
explicit simultaneous Padé approximants to log(1 − z) and (1 − z)α of
type II at z = 0 (and also polylogarithms). It is likely that simultaneous
Padé (type) approximants to exp(z), log(1 − 1/z), E (1/z) and (1 − 1/z)α
could be obtained by the methods of this paper. When our approximations
are only Padé type approximants, it would be interesting to find other
Padé conditions (on some functions) to embed the problem into a Padé
problem of type II, or even a mixed one with type I, similar to the problems
considered in [11] for instance.

To avoid complicated notations, almost all the polynomials and remain-
ders of the approximations will be denoted by the same bold letters (pos-
sibly with a hat or a tilde) without mention of the obvious parameters.

2. Simultaneous Padé type approximants for exp and log

Motivations from diophantine approximations are at the origin of this
paper. Indeed, it is a classical fact that diagonal Padé approximants of
exp(z) and log(1 − z) yield the irrationality of exp(p/q) and log(1 + 1/q)
for any integers p, q ≥ 1, and even good irrationality measures for these
numbers (see [1, 5]). This is an indication that explicit simultaneous Padé
type approximants to exp(z) and log(1− z) might lead for instance to the
linear independence of 1, e and log(2) over Q.

We present here four quite general results concerning simultaneous ap-
proximations of exp(z) and log(1 − 1/z) at z = 0 and z = ∞ for the first
two, and of exp(z) and log(1 − z) at z = 0 for the last two. In particu-
lar, the first and third approximations involve multi-parameters integrals
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in the spirit of [18, 27]. Unfortunately, none of these constructions seems to
be strong enough to obtain the desired diophantine results but they might
be a step in this direction.

We set α+ = max(α, 0) and, for any integers a, b, c, d, f ≥ 0, we define
P`
a,b,c(z) = 1

c!(z
a(1 − z)b)(c) and Pe

d,f (z) = 1
d!z

d+f+1e−z(z−f−1ez)(d), poly-
nomials of respective degree at most (a + b − c)+ and d, which generalise
the Legendre and exponential polynomials.

2.1. First approximations. For any integers a, b, c, d, f ≥ 0, we define

(2.1) L(z) := (−1)c−1

d!f !

∫ 1

0

∫ ∞
0

xa(1− x)byf (x− y)d

(z − x)c+1 e−ydxdy,

(2.2) E(z) := 1
c!d!

∞∑
k=f+d+1

(k − f − d)d
k! ez(za+k(1− z)be−z)(c)

and the polynomial of type (1.4)

P(z) : = 1
c! (z

a(1− z)bPe
d,f (z))(c)(2.3)

=
d∑
j=0

b∑
k=0

(−1)d−j+k
(
b

k

)(
a+ j + k

c

)(
f + d− j

f

)
zj+k+a−c

j! .

It is clear that
deg(P) ≤ a+ b+ d− c, ordz=0(P) ≥ (a− c)+, ordz=1(P) ≥ (b− c)+.

In particular, P(z) ≡ 0 if a+ b+ d < c.

Theorem 1. For any integers a, b, c, d, f ≥ 0 such that a+ b+d ≥ c, there
exist three polynomials Q0(z), Q1(z) and Q2(z) such that
deg(Q0) ≤ b+ d, deg(Q1) ≤ a+ d,

deg(Q2) ≤ a+ b+ f, ordz=0(Q2) ≥ (a− c)+, ordz=1(Q2) ≥ (b− c)+

and

L(z) = P(z) log
(
1− 1

z

)
− za−cQ0(z)− (1− z)b−cQ1(z) = O

( 1
zc+1

)
,

(2.4)

E(z) = P(z) exp(z)−Q2(z) = O(z(f+d+a−c+1)+).
(2.5)

Explicit expressions for the Qj ’s can be obtained from the proof. In
general, it is not true that

L(z) = −
∫ 1

0

P(t)
z − t

dt

but this is true at least when a ≥ c and b ≥ c.
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2.2. Second approximations. Here, we consider the opposite composi-
tion of polynomials. For any integers a, b, c, d, f ≥ 0, we define

(2.6) L̃(z) := (−1)c−1

d! zd+f+1e−z
∫ 1

0
ta(1− t)b ∂

d

∂zd

( z−f−1ez

(z − t)c+1

)
dt

(2.7)

Ẽ(z) :=
∑
j,k≥0

j+k≥f+d+c−a+1

(−1)j
(
b

j

)(
a+ j

c

)
(j + k + a− c− f − d)d

k!d! zj+k+a−c

and the polynomial of type (1.4)

P̃(z) := 1
d!z

d+f+1e−z(z−f−1ezP`
a,b,c(z))(d)

(2.8)

=
d∑
j=0

b∑
k=0

(−1)d−j+k
(
d

j

)(
b

k

)(
a+ k

c

)
(f + c− a− k + 1)d−j

d! za+k−c+j .

We have deg(P̃) ≤ a+ b+ d− c and, moreover, if a+ b < c, then P̃(z) ≡ 0.

Theorem 2. For any integers a, b, c, d, f ≥ 0, there exist three polynomials
Q̃0(z), Q̃1(z), and Q̃2(z) such that

deg(Q̃0) ≤ b+ d, deg(Q̃1) ≤ a+ 2d, deg(Q̃2) ≤ f + c− a
and

L̃(z) = P̃(z) log
(
1− 1

z

)
− za−cQ̃0(z)− (1− z)b−c−dQ̃1(z) = O

( 1
zc−d+1

)
,

(2.9)

Ẽ(z) = P̃(z) exp(z)− za−cQ̃2(z) = O(z(f+d+c−a+1)++a−c).
(2.10)

Explicit expressions for the Q̃j ’s can be obtained from the proof. In
general, it is not true that

L̃(z) = −
∫ 1

0

P̃(t)
z − t

dt.

The choice a = c, b = c+d ≤ f with d ≤ c is such that all the degrees of the
involved polynomials are less than the two orders of approximations (viewed
at z = 0 say), which makes this example close to Padé approximants of type
II.

We now present two simultaneous approximations results for exp(z) and
log(1 − z) at z = 0 (or z = ∞, which is the same thing up to a change of
variable). We state them in less generality than the two previous theorems,
because the general approximations (with c replaced by a or b at certain
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obvious places) are quite complicated to write down, but this could be done
in principle.

2.3. Third approximations. For any integers c, d, f ≥ 0, we define

(2.11) L(z) := (−1)c−1

d!f !

∫ 1

0

∫ ∞
0

xc(1− x)cyf (1− xy)d

(z − x)c+1 e−ydxdy,

(2.12) E(z) := 1
c!d!

∞∑
k=d+f+1

(k − d− f)d
k! e1/z(zc+d−k(1− z)ce−1/z)(c)

and the polynomial (of type (1.5)) of degree c+ d

P(z) : = 1
c! (z

c+d(1− z)cPe
d,f (1/z))(c),

(2.13)

=
d∑
j=0

c∑
k=0

(−1)d−j+k
(
c

k

)(
c+ d− j + k

c

)(
d+ f − j

f

)
zd−j+k

j! .

Theorem 3. For any integers c, d, f ≥ 0 such that c ≥ d, there exist two
polynomials Q1(z) and Q2(z) of respective degree c+d and 2c+f such that

L(z) = P(z) log
(
1− 1

z

)
−Q1(z) = O

( 1
zc+1

)
,(2.14)

E(z) = P(z) exp
(1
z

)
− z−cQ2(z) = O

( 1
zf+1

)
.(2.15)

Explicit expressions for Q1(z) and Q2(z) can be obtained from the proof.

2.4. Fourth approximations. For any integers c, d, f ≥ 0, we define

(2.16) L̃(z) := (−1)c−1

d! zd+f+1e−z
∫ 1

0
tc(1− t)c ∂

d

∂zd

( z2c−fez

(1− zt)c+1

)
dt

(2.17) Ẽ(z) :=
d∑
j=0

(
d

j

) ∞∑
k=f+j+1

(k − f − j)j
k!d! zk+f−j(znP`

c(1/z))(j)

and the polynomial (of type (1.5)) of degree c+ d

P̃(z) : = 1
d!e
−zzd+f+1(zc−f−1ezP`

c(1/z))(c)

(2.18)

=
d∑
j=0

c∑
k=0

(−1)d−j+k
(
c

k

)(
c+ k

c

)(
c+ d+ f − k − j

d− j

)
zn−k+j

j! .
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Theorem 4. For any integers c, d, f ≥ 0 such that c ≥ 2d, there exist two
polynomials Q̃1(z) and Q̃2(z) of respective degree c+ 2d and f such that

L̃(z) = P̃(z) log(1− z)− (1− z)−dQ̃1(z) = O
(
z2c+1),(2.19)

Ẽ(z) = P̃(z) exp(z)− Q̃2(z) = O
(
zd+f+1).(2.20)

Explicit expressions for Q̃1(z) and Q̃2(z) can be obtained from the proof.
The proofs of Theorems 1 and 2 are given in Section 7. The proofs of

Theorems 3 and 4 are similar and are omitted.

3. Simultaneous Padé approximants for log and E

The results presented in this section concern the functions log(1 − 1/z)
and E (1/z) at z = ∞. Since we don’t expect that any new diophantine
result can be deduced from them, they are not given at the same level of
generality as in Section 2. However, this would be possible.

Our first example is not a composition of P `n(z) and PEn (z) of type (1.4)
or (1.5), but an alternative one alluded to at the end of Section 1.1. For
any integers m,n ≥ 0, let us define

P(z) := 1
m!n! (e

z(zn+m(1− z)n+me−z)(n))(m)

=
n∑
j=0

m+n∑
k=0

(
m+ n

k

)(
m+ j + k

m

)(
m+ n+ k

m+ j + k

)
(−z)j+k

j! ,(3.1)

Q1(z) := −
∫ 1

0

P(z)−P(t)
z − t

dt, Q2(z) :=
∫ ∞

0

P(z)−P(t)
z − t

e−tdt,

and
Q3(z) :=

∫ 1

0

P(z)−P(t)
z − t

e−tdt.

The polynomial P(z) is of degree m+ 2n and the polynomials Qj(z) are of
degree m+ 2n− 1 for j = 1, 2, 3.

Theorem 5. For any m,n ≥ 0, we have

(3.2) P(z) log
(
1− 1

z

)
−Q1(z) = O( 1

zm+1 )

= (−1)m−1

n!

∫ 1

0

tm+n(1− t)m+n

(z − t)m+1 · 2F0

[
−n,m+ 1;− 1

z − t

]
dt.

(3.3) P(z)E
(1
z

)
−Q2(z) = O( 1

zn+1 )

= (−1)n

m!

∫ ∞
0

tm+n(1− t)m+n

(z − t)n+1 · 2F0

[
−m,n+ 1; 1

z − t

]
e−tdt.
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(3.4) P(z)
∫ 1

0

e−t

z − t
dt−Q3(z) = O( 1

zn+1 )

= (−1)n

m!

∫ 1

0

tm+n(1− t)m+n

(z − t)n+1 · 2F0

[
−m,n+ 1; 1

z − t

]
e−tdt.

The theorem shows that P(z) is a denominator of the Padé problem of
type II [m + 2n − 1,m + 2n − 1,m + 2n − 1/m + 2n] at z = ∞ for the
three functions log(1− 1/z), E (1/z) and

∫ 1
0
e−tdt
z−t . It is a translation of the

fact that (P(z))m,n≥0 is a sequence of multiple orthogonal polynomials with
respect to the weights 1[0,1], e−z1[0,1], e−z1[0,∞). If n = 0, we get the Padé
approximants [m − 1/m] for log(1 − 1/z) at z = ∞, while if m = 0, we
get the Padé approximants of type II [2n − 1, 2n − 1/2n] for E (1/z) and∫ 1

0
e−tdt
z−t at z =∞.

Many similar results can be obtained along the same lines. We sketch
below two of them.

We first consider a “composition” of P`
n(z) and PE

n (z) of type (1.4). For
any m,n ≥ 0, let us define the polynomial, of degree m+ n,

(3.5) P̂(z) := 1
m! (z

m(1− z)mPE
n (z))(m).

Then there exist two polynomials Q̂1(z) and Q̂2(z), each of degreem+n−1,
such that for any m,n ≥ 0, we have

P̂(z) log
(
1− 1

z

)
− Q̂1(z) = O( 1

zm+1 ),(3.6)

P̂(z)E
(1
z

)
− Q̂2(z) = O( 1

zn−2m+1 ),(3.7)

If m = 0, resp. n = 0, we get the Padé approximants [n− 1/n] for E
(1
z

)
at

z =∞, resp. the Padé approximants [m− 1/m] for log(1− 1/z) at z =∞.
For any m,n ≥ 0, let us define the polynomial, of degree m+ n,

P̃(z) := 1
m!n! ((1− z)

mez(zn+me−z)(n))(m).(3.8)

Then there exist two polynomials Q̃1(z) and Q̃2(z), each of degreem+n−1,
such that for any m,n ≥ 0, we have

P̃(z) log
(
1− 1

z

)
− Q̃1(z) = O( 1

zm+1 ),(3.9)

P̃(z)E
(1
z

)
− Q̃2(z) = O( 1

zn−m+1 ),(3.10)

If m = 0, resp. n = 0, we get the Padé approximants [n− 1/n] for E
(1
z

)
at

z =∞, resp. the Padé approximants [m− 1/m] for log(1− 1/z) at z =∞.
The proof of Theorem 5 is given in Section 8.
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4. Simultaneous Padé approximants for exp and E

Our next result concerns the function exp(−z) and E (1/z) at z = 0 and
z =∞ respectively. For any integers m,n ≥ 0, let us define the polynomial
of type (1.4)

P(z) := 1
m!e

z(zme−zPe
n(−z))(m) = 1

m!n!e
z(z2n+m(z−ne−z)(n))(m)

=
m∑
j=0

n∑
k=0

(−1)n+j
(

2n− k − 1
n− 1

)(
m+ k

m− j

)
zk+j

k!j!(4.1)

and

Q1(z) := (−1)n
n−1∑
k=0

(
2n− k − 1

n

)(
m+ k

m

)
(−z)k

k! ,

Q2(z) :=
∫ ∞

0

P(z)−P(t)
z − t

e−tdt.

The polynomial P(z) is of degree m+ n, Q1(z) of degree n− 1 and Q2(z)
of degree m+ n− 1.

Theorem 6. For any m,n ≥ 0, we have

P(z) exp(−z)−Q1(z) = O(z2n)

= n

n!2

(
m+ 2n
m

)
z2n

∫ 1

0
e−zttn(1− t)n−1 · 1F1

[
−m

2n+ 1; zt
]
dt

=
(
m+ 2n
m

)
z2n

(2n)! · 2F2

[
m+ 2n+ 1, n+ 1

2n+ 1, 2n+ 1 ;−z
]
,(4.2)

P(z)E
(1
z

)
−Q2(z) = O

( 1
zm+1

)
= (−1)m+n

(
m+ 2n
n

)∫ ∞
0

tm

(z − t)m+1 · 2F1

[
−n,m+ 1
m+ n+ 1;− t

z − t

]
e−tdt.

∼ (−1)m+n
(
m+ 2n
n

)
m!
zm+1 · 3F1

[
m+ 2n+ 1,m+ 1,m+ 1

m+ n+ 1 ; 1
z

]
.

(4.3)

If n = 0, resp. m = 0, we get the Padé approximants [m−1/m] for E
(1
z

)
at z =∞, resp. the Padé approximants [n− 1/n] for exp(−z) at z = 0.

The polynomial P(z) is also equal to 1
m!n!e

zz2n(z−n(zme−z)(m))(n), i.e.,
the operators defining PE

m(z) and Pe
n(−z) “commute” in some sense.

The proof of Theorem 6 is given in Section 9.
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5. Simultaneous Padé type approximants for exp, log and E

We now present a problem that involves the three functions exp(−z),
log(1− 1/z) and E (1/z) simultaneously. Theorem 7 is just one example of
what can be done.

For any integers k,m, n ≥ 0, let us define

(5.1) P(z) := 1
k!m!n! (e

z(zk+2m+n(1− z)k+n(z−me−z)(m))(n))(k)

which is of degree k +m+ 2n.

Theorem 7. For any integers k,m, n ≥ 0, there exist four polynomials
Qj(z) (j = 1, 2, 3, 4), each of degree k +m+ 2n− 1 such that

P(z) exp(−z)−Q1(z) = O(z2m)(5.2)

P(z) log
(
1− 1

z

)
−Q2(z) = O

( 1
zk+1

)
,(5.3)

P(z)E
(1
z

)
−Q3(z) = O

( 1
zn+1

)
,(5.4)

P(z)
∫ 1

0

e−t

z − t
dt−Q4(z) = O

( 1
zn+1

)
.(5.5)

It is possible to give explicit expression for the polynomials and remain-
der terms but they are not illuminating. If m = n = 0, P(z) = P`

k(z)
and we get the Padé approximants [n − 1/n] to log(1 − 1/z) at z = ∞. If
k = m = 0, we get the Padé approximants of type II [2n− 1, 2n− 1/2n] for
E (1/z) and

∫ 1
0
e−tdt
z−t at z = ∞. If k = n = 0, P(z) = Pe

m(−z) and we get
the Padé approximants [n− 1/n] to exp(−z) at z = 0.

We skip the proof of Theorem 7 because it is completely similar to those
presented in the previous sections.

6. Padé approximants for exp(z), log(1 − 1/z) and E (1/z)

We recall here how to prove the assertions made at the beginning of
the introduction concerning the (nearly) diagonal Padé approximants to
log(1− z), E (z) and exp(z).

For log(1− z), we first define the polynomial

Q`
n(z) := −

∫ 1

0

P`
n(z)−P`

n(t)
z − t

dt,

which is of degree n− 1. It is obvious that

P`
n(z) log

(
1− 1

z

)
−Q`

n(z) = −
∫ 1

0

P`
n(t)
z − t

dt

and after n integrations by parts, we get the integral expression given for
the remainder R`

n(z) in (1.1)
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For E (z), we first define the polynomial

QE
n (z) :=

∫ ∞
0

PE
n (z)−PE

n (t)
z − t

e−tdt,

which is of degree n− 1. It is also obvious that

PE
n (z)E

(1
z

)
−QE

n (z) =
∫ ∞

0

PE
n (t)
z − t

e−tdt

and after n integrations by parts, we get the integral expression given for
the remainder RE

n (z) in (1.2).

For exp(z), we proceed differently. We have

Pe
n(z)ez = 1

n!z
2n(z−nez)(n) =

∞∑
k=0

1
k!n!z

2n(zk−n)(n)

=
∞∑
k=0

(k − n)(k − n− 1) · · · (k − 2n+ 1)
k! zk

=
(
n−1∑
k=0

+
∞∑

k=2n

)
(k − n)(k − n− 1) · · · (k − 2n+ 1)

k!n! zk

because the terms for k = n, n + 1, . . . , 2n − 1 all vanish. We define the
polynomial, of degree n− 1,

Qe
n(z) : =

n−1∑
k=0

(k − n)(k − n− 1) · · · (k − 2n+ 1)
k!n! zk

= (−1)n
n−1∑
k=0

(
2n− k − 1

n

)
zk

k!

and it is a simple task to transform the remainder

Re
n(z) :=

∞∑
k=2n

(k − n)(k − n− 1) · · · (k − 2n+ 1)
k!n! zk

into the integral given in (1.3).

We now prove the hypergeometric expressions for the polynomials and
remainders of the three Padé constructions. The series expansions given
in (6.2) and (6.3) are proved by expanding 1/(1 − t/z)n+1 in power series
of t. The transformation of such series into hypergeometric form is then
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straightforward.

R`
n(z) = (−1)n−1

∞∑
k=0

k(k − 1) · · · (k − n+ 1)
(k + 1) · · · (k + n+ 1) ·

1
zk+1

= n!2

(2n+ 1)!(−z)n+1 · 2F1

[
n+ 1, n+ 1

2n+ 2 ; 1
z

]
,(6.1)

RE
n (z) ∼ (−1)n

n!

∞∑
k=0

k(k − 1) . . . (k − n+ 1) · k!
zk+1

= (−1)n n!
zn+1 · 2F0

[
n+ 1, n+ 1; 1

z

]
,(6.2)

Re
n(z) =

∞∑
k=0

k(k − 1) . . . (k − n+ 1)
(k + n)! · zk+n

= z2n

(2n)! · 1F1

[
n+ 1
2n+ 1; z

]
.(6.3)

and

P`
n(z) =

n∑
k=0

(−1)k
(
n

k

)(
n+ k

n

)
zk = 2F1

[
−n, n+ 1

1 ; z
]
,

(6.4)

PE
n (z) =

n∑
k=0

(−1)k
(
n

k

)
zk

k! = (−z)n

n! · 2F0

[
−n,−n;−1

z

]
= 1F1

[
−n
1 ; z

]
,

(6.5)

Pe
n(z) =

n∑
k=0

(−1)n−k
(

2n− k − 1
n− 1

)
zk

k! = n

n!2
∫ ∞

0
e−ttn−1(z − t)ndt

(6.6)

= (−1)n
(

2n− 1
n− 1

)
· 1F1

[
−n

−2n+ 1;−z
]

= zn

n! · 2F0

[
−n, n; 1

z

]
.(6.7)

We observe that PE
n (z) and Pe

n(z) both have expressions, trivially equiva-
lent, that belong to two different classes of the hypergeometric hierarchy.
This is an instance of the classical theory of asymptotic expansions at z =∞
of 1F1[z] functions in terms of 2F0[1/z]; See [22, §4.6].

7. Proofs of Theorems 1 and 2

Both proofs make use of the following lemma at some point.
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Lemma 1. For any integers a, b, c ≥ 0, there exist two polynomials Q0(z)
and Q1(z) such that deg(Q0) ≤ b, deg(Q1) ≤ a and

(−1)c−1
∫ 1

0

ta(1− t)b

(z − t)c+1dt = 1
c! (z

a(1−z)b)(c)·log
(
1− 1

z

)
−Q0(z)
zc−a

− Q1(z)
(1− z)c−b .

Proof. This follows by integrating c times by parts the left hand side. �

Since
1
c! (z

a(1− z)b)(c) · log
(
1− 1

z

)
= − 1

c!

∫ 1

0

(ta(1− t)b)(c)

z − t
dt+ polynomial(z),

Lemma 1 quantifies the difference between
1
c!

∫ 1

0

(ta(1− t)b)(c)

z − t
dt and (−1)c

∫ 1

0

ta(1− t)b

(z − t)c+1dt.

If a ≥ c and b ≥ c, both integrals are equal as we can see by integrating c
times by parts, but this is not true in general.

7.1. Proof of Theorem 1. We decompose the proof into two parts.
Properties of L(z). It is a trivial observation that L(z) = O

( 1
zc+1

)
. We

now find its decomposition (2.4). We have

1
d!f !

∫ ∞
0

e−ttf (x− t)ddt =
d∑
j=0

(−1)d−j
(
d+ f − j

f

)
1
j!x

j

= 1
d!x

d+f+1e−x(x−f−1ex)(d)

provided that d, f ≥ 0, which is the case. Hence,

L(z) = (−1)c−1
d∑
j=0

(−1)d−j
(
d+ f − j

f

)
1
j!

∫ 1

0

xa+j(1− x)b

(z − x)c+1 dx

=
d∑
j=0

(−1)d−j
(
d+ f − j

f

)
1
j!

( 1
c! (z

a+j(1− z)b)(c) log
(
1− 1

z

)
− za+j−cQ0,j(z)− (1− z)b−cQ1,j(z)

)
where Q0,j(z) and Q1,j(z) are as described in Lemma 1, used to get the
second equality.

Going backwards, we see that
d∑
j=0

(−1)d−j
(
d+ f − j

f

)
1
j!

1
c! (z

a+j(1− z)b)(c)

= 1
c!d! (z

a+d+f−1(1− z)be−z(z−f−1ez)(d))(c) = P(z).
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It is also a routine task to see that

d∑
j=0

(−1)d−j
(
d+ f − j

f

)
1
j!

(
za+j−cQ0,j(z) + (1− z)b−cQ1,j(z)

)
= za−cQ0(z) + (1− z)b−cQ1(z)

where Q0(z) and Q1(z) are as described in the theorem. This completes
the proof of the assertions for L(z).

Properties of E(z). We have

zd+f+1(z−f−1ez)(d) =
∞∑
k=0

1
k!z

d+f+1(zk−f−1)(d) =
∞∑
k=0

(k − f − d)d
k! zk,

so that

P(z) exp(z) = 1
c!d!

∞∑
k=0

(k − f − d)d
k! ez(za+k(1− z)be−z)(c)

Since (k − f − d)d = 0 for k ∈ {f + 1, . . . , f + d}, it is useful to define the
polynomial

Q2(z) := 1
c!d!

f∑
k=0

(k − f − d)d
k! ez(za+k(1− z)be−z)(c).

It is a polynomial of degree at most a + b + f and order at z = 0, resp.
z = 1, equal to (a− c)+, resp. (b− c)+, and

P(z) exp(z)−Q2(z) = 1
c!d!

∞∑
k=f+d+1

(k − f − d)d
k! ez(za+k(1− z)be−z)(c)

is equal to E(z). The order at z = 0 of E(z) is clearly at least (a+ d+ f −
c+ 1)+ and its order at z = 1 is at least (b− c)+.

7.2. Proof of Theorem 2. We decompose the proof into two parts.

Properties of L̃(z). It is clear that L̃(z) = O
( 1
zc−d+1

)
. We now set

(7.1) L̂(z) := −
∫ 1

0

P̃(t)
z − t

dt = P̃(z) log
(
1− 1

z

)
− q1(z)

where

q1(z) = −
∫ 1

0

P̃(z)− P̃(t)
z − t

dt.
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Expanding P̃(z) in the integral definition of L̂(z), we have

L̂(z) = − 1
c!d!

d∑
j=0

(
d

j

)∫ 1

0

td+f+1e−t(t−f−1et)(d−j)(ta(1 − t)b)(c+j)

z − t
dt

= − 1
c!d!

d∑
j=0

(
d

j

) d∑
`=j

(
d − j

d − `

)
(−1)d−`(f + 1)d−`

∫ 1

0

t`(ta(1 − t)b)(c+j)

z − t
dt

= 1
d!

d∑
j=0

(
d

j

) d∑
`=j

(
d − j

d − `

)
(−1)d−`(f + 1)d−`

(
1
c!

∫ 1

0

z` − t`

z − t
(ta(1 − t)b)(c+j)dt(7.2)

− z`

c!

∫ 1

0

(ta(1 − t)b)(c+j)

z − t
dt

)
.(7.3)

We denote by q2(z) the polynomial on the line (7.2); it is of degree d +
(a+ b− c)+ − 1.

Let us now study the integral on the line (7.2). We have

(7.4) − 1
c!

∫ 1

0

(ta(1− t)b)(c+j)

z − t
dt = 1

c! (z
a(1− z)b)(c+j) log

(
1− 1

z

)
+ 1
c!

∫ 1

0

(za(1− z)b)(c+j) − (ta(1− t)b)(c+j)

z − t
dt.

We denote by q2,j(z) the polynomial on the second line of (7.4). By unicity
of the decomposition of L̂(z), we have

q1(z) = −q2(z)− 1
d!

d∑
j=0

(
d

j

)
d∑
`=j

(
d− j
d− `

)
(−1)d−`(f + 1)d−`z`q2,j(z).

By Lemma 1, we know that

(7.5) 1
c! (z

a(1− z)b)(c+j) · log
(
1− 1

z

)
=

(−1)c+j−1(c+ j)!
c!

∫ 1

0

ta(1− t)b

(z − t)c+j+1dt+ za−c−jq0,j(z) + (1− z)b−c−jq1,j(z)

with deg(q0,j) ≤ b and deg(q0,j) ≤ a. We then put the right-hand side of
(7.5) into (7.4), and the right-hand side of the resulting equation into (7.3).
We obtain

L̂(z) = −q1(z) + 1
d!

d∑
j=0

(
d

j

) d∑
`=j

(
d − j

d − `

)
(−1)d−`(f + 1)d−`

(
za+`−c−jq0,j(z)(7.6)

+ z`(1 − z)b−c−jq1,j(z) + (−1)c+j−1(c + j)!
c! z`

∫ 1

0

ta(1 − t)b

(z − t)c+j+1 dt

)
= −q1(z) + za−cQ̃0(z) + (1 − z)b−c−dQ̃1(z)

+ (−1)c−1

d! zd+f+1e−z
∫ 1

0
ta(1 − t)b ∂d

∂zd

(
z−f−1ez

(z − t)c+1

)
dt,(7.7)
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where Q̃0(z) and Q̃1(z) are as defined in the statement of the theorem. To
conclude, we simply compare the two expressions (7.1) and (7.7) of L̂(z).

Properties of Ẽ(z). We have

P̃(z) exp(z) = 1
c!d!

∞∑
k=0

zd+f+1

k! (zk−f−1(za(1− z)b)(c))(d)

= 1
d!

b∑
j=0

(−1)j
(
b

j

)(
a+ j

c

) ∞∑
k=0

zd+f+1

k! (zj+k+a−c−f−1)(d)

= 1
d!

d∑
j=0

(−1)j
(
b

j

)(
a+ j

c

) ∞∑
k=0

(j + k + a− c− f − d)d
k! zj+k+a−c

Since (j+k+a−c−f−d)d = 0 for j+k ∈ {f+c−a+1, . . . , f+d+c−a},
we can define the polynomial
(7.8)

Q̃2(z) := 1
d!

∑
j,k≥0

j+k≤f+c−a

(−1)j
(
b

j

)(
a+ j

c

)
(j + k + a− c− f − d)d

k! zj+k

so that

P̃(z) exp(z)− za−cQ̃2(z)

=
∑
j,k≥0

j+k≥f+d+c−a+1

(−1)j
(
b

j

)(
a+ j

c

)
(j + k + a− c− f − d)d

k!d! zj+k+a−c,

which is equal to Ẽ(z) by the definition (2.7). It is a simple observation
that the order of Ẽ(z) at z = 0 is ≥ (f + d+ c− a+ 1)+ + a− c. It is also
easy to determine the degree of Q̃2(z) from (7.8).

8. Proof of Theorem 5

Before proving this theorem, we state a lemma, whose proof is straight-
forward by Leibniz formula.

Lemma 2. For any c, z ∈ C, any integers `, s ≥ 0, we have

(8.1) e−ct
(

ect

(z − t)`+1

)(s)

=
s∑

k=0
cs−k

(
s

k

)
(`+ k)!
`!

1
(z − t)`+k+1

where the differentiation is with respect to t.

Proof of Theorem 5. The first estimate to be proved can be restated as
follows:

R1(z) := −
∫ 1

0

P(t)
z − t

dt = O
( 1
zm+1

)
.
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After m successive integrations by parts, followed by n integrations by
parts, we have

R1(z) = (−1)m−1

m!n!

∫ 1

0

et(tm+n(1− t)m+ne−t)(n)

(z − t)m+1 dt

= (−1)m−1

m!n!

∫ 1

0

(
et

(z − t)m+1

)(n)

tm+n(1− t)m+ne−tdt

= (−1)m−1
n∑
k=0

(
n

k

)
(m+ k)!
m!n!

∫ 1

0

tm+n(1− t)m+n

(z − t)m+k+1 dt(8.2)

= (−1)m−1

n!

∫ 1

0

tm+n(1− t)m+n

(z − t)m+1 · 2F0

[
−n,m+ 1;− 1

z − t

]
dt,

where we used Lemma 2 with c = 1, ` = m and s = n. It is clear that the
integrals on the right-hand side of (8.2) can be expanded as power series
of 1/z with order at least m+ 1, which proves the claim.

Similarly, the second estimate to be proved can be restated as follows:

R2(z) :=
∫ ∞

0

P(t)
z − t

e−tdt = O
( 1
zn+1

)
.

After m successive integrations by parts, followed by n integrations by
parts, we have

R2(z) = (−1)m

m!n!

∫ ∞
0

(
e−t

z − t

)(m)

et(tm+n(1− t)m+ne−t)(n)dt

=
m∑
k=0

(−1)k
(
m

k

)
k!
m!n!

∫ ∞
0

(tm+n(1− t)m+ne−t)(n)

(z − t)k+1 dt(8.3)

=
m∑
k=0

(−1)n+k
(
m

k

)
(n+ k)!
m!n!

∫ ∞
0

tm+n(1− t)m+n

(z − t)n+k+1 e−tdt,(8.4)

= (−1)n

m!

∫ ∞
0

tm+n(1− t)m+n

(z − t)n+1 2F0

[
−m,n+ 1; 1

z − t

]
e−tdt,

where we used Lemma 2 with c = −1, ` = 0 and s = m to get the second
equality. Again, it is clear that the integral on the right-hand side of (8.4)
can be expanded as a power series of 1/z with order at least n + 1, which
proves the claim.

Finally, the third estimate to be proved can be restated as follows:

R3(z) :=
∫ 1

0

P(t)
z − t

e−tdt = O
( 1
zn+1

)
.
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After m successive integrations by parts, followed by n integrations by
parts, we have

R3(t) = (−1)m

m!n!

∫ 1

0

(
e−t

z − t

)(m)

et(tm+n(1− t)m+ne−t)(n)dt

=
m∑
k=0

(−1)k
(
m

k

)
k!
m!n!

∫ 1

0

(tm+n(1− t)m+ne−t)(n)

(z − t)k+1 dt(8.5)

=
m∑
k=0

(−1)k+n
(
m

k

)
(n+ k)!
m!n!

∫ 1

0

tm+n(1− t)m+n

(z − t)n+k+1 e−tdt,(8.6)

= (−1)n

n!

∫ 1

0

tm+n(1− t)m+n

(z − t)n+1 2F0

[
−m,n+ 1; 1

z − t

]
e−tdt,

where we used Lemma 2 with c = −1, ` = 0 and s = m to get the second
equality. Again, it is clear that the integral on the right hand side of (8.6)
can be expanded as a power series of 1/z with order at least n + 1, which
proves the claim. �

We close this section by mentioning that Theorem 5 is simply the trans-
lation of the multiple orthogonalities satisfied by P(t). The proof appears
in disguise in the above lines.

Proposition 1. For any m,n ≥ 0, we have∫ 1

0
tkP(t) dt = 0, k ∈ {0, . . . ,m− 1},∫ ∞

1
tkP(t)e−t dt = 0, k ∈ {0, . . . , n− 1},∫ 1

0
tkP(t)e−t dt = 0, k ∈ {0, . . . , n− 1}.

9. Proof of Theorem 6

Let us prove the first part. We have

P(z)e−z = 1
m! (z

me−zPe
n(−z))(m).

Furthermore, since Pe
n(−z) = 1

n!e
zz2n(z−ne−z)(n), we have

e−zPe
n(−z) = 1

n!z
2n(z−ne−z)(n) =

∞∑
k=0

(−1)k (k − 2n+ 1)n
k!n! zk,
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so that

P(z) exp(−z) =
∞∑
k=0

(−1)k (k − 2n+ 1)n
k!

1
m! (z

k+m)(m)

=
(
n−1∑
k=0

+
∞∑

k=2n

)
(−1)k (k − 2n+ 1)n(k + 1)m

k!m! zk

and the result follows after setting

Q1(z) :=
n−1∑
k=0

(−1)k (k − 2n+ 1)n(k + 1)m
k!m! zk

and

R1(z) :=
∞∑

k=2n
(−1)k (k − 2n+ 1)n(k + 1)m

k!m! zk = O(z2n)

and after simplifications of the expressions.
The series representation of R1(z) is hypergeometric, for we have

R1(z) =
(
m+ 2n
m

)
z2n

(2n)!2F2

[
m+ 2n+ 1, n+ 1

2n+ 1, 2n+ 1 ;−z
]
.

We now observe that, by Euler’s integral identity,

2F2

[
m+ 2n+ 1, n+ 1

2n+ 1, 2n+ 1 ;−z
]

= n

(
2n
n

)∫ 1

0
tn(1− t)n−1 · 1F1

[
m+ 2n+ 1

2n+ 1 ;−zt
]
dt

= n

(
2n
n

)∫ 1

0
tn(1− t)n−1e−tz · 1F1

[
−m

2n+ 1; zt
]
dt

where in the last step we used Kummer’s transformation. This proves the
first part of the theorem.

For the second part, we have to prove that

R2(z) :=
∫ ∞

0

P(t)
z − t

e−tdt = O
( 1
zm+1

)
.

This follows after m successive integrations by parts:

R2(z) = (−1)m
∫ ∞

0

tmPe
n(−t)

(z − t)m+1 e
−tdt,
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which is obviously O(1/zm+1). To get the integral expression of R2(z), we
integrate by parts n consecutive times:

R2(z) = (−1)m+n
∫ ∞

0

1
n!tn

(
tm+2n

(z − t)m+1

)(n)

e−tdt

= (−1)m+n
(
m+ 2n
n

)∫ ∞
0

tm

(z − t)m+1 · 2F1

[
−n,m+ 1
m+ n+ 1;− t

z − t

]
e−tdt.

where we used Leibniz’s formula.
The asymptotic expansion of R2(z) is

R2(z) ∼
∞∑
k=0

1
zk+1

∫ ∞
0

tkP(t)e−tdt.

These integrals are easily computed by successive integrations by parts:∫ ∞
0

tkP(t)e−tdt = (−1)m (k −m+ 1)m
m!n!

∫ ∞
0

tk+2n(t−ne−t)(n)dt

= (−1)m+n (k −m+ 1)m(k + n+ 1)n
m!n!

∫ ∞
0

tke−tdt

= (−1)m+n (k −m+ 1)m(k + n+ 1)n
m!n! k!.

This finishes the proof of the theorem.
The polynomial P(z) is not a hypergeometric polynomial in one variable,

but is a specialisation in one variable of a hypergeometric polynomial in
two variables. It is thus remarkable that the remainders R1(z), R2(z) are
hypergeometric series in one variable, as well as Q1(z):

R1(z) =
(
m+ 2n
m

)
z2n

(2n)! · 2F2

[
m+ 2n+ 1, n+ 1

2n+ 1, 2n+ 1 ; 1
z

]

R2(z) ∼ (−1)m+n
(
m+ 2n
n

)
m!
zm+1 · 3F1

[
m+ 2n+ 1,m+ 1,m+ 1

n+m+ 1 ; 1
z

]

Q1(z) = (−1)n
(

2n− 1
n

)
· 2F2

[
1− n,m+ 1

1, 1− 2n ;−z
]
.

10. Simultaneous Padé approximants for log(1 − z) and (1 − z)α

For any integer n ≥ 0 and any real numbers α, β ∈ (−1, 1), let us consider
the differential operator Dn

α,β defined by

Dn
α,β(Φ(z)) := 1

n! zα(1− z)β
(
zn+α(1− z)n+βΦ(z)

)(n)
.

Such a differential operator maps polynomials on polynomials.
The following lemma follows by considering Φ(z) = zk for any k ≥ 0.
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Lemma 3. For any polynomial Φ(z) ∈ C[z], we have

Dn
α1,β1

(
Dn
α2,β2(Φ(z))

)
= Dn

α2,β2

(
Dn
α1,β1(Φ(z))

)
,

provided that α1 + β1 = α2 + β2.

The commutativity of the differential operators in Lemma 3 is in contrast
with the various polynomials P(z) considered in our previous theorems,
for which the underlying differential operators do not commute in general
(except in the case of exp(−z) and E (1/z)).

We now consider a multiset α = {α1, . . . , α1, α2, . . . , α2, . . . , αJ . . . αJ}
of reals numbers in (−1, 1) such that αm−αn 6∈ Z for any n 6= m and each
αm is repeated `m times. We set α = {a1, a2, . . . , as} where s =

∑J
j=1 `j

and we define a polynomial of degree sn by

(10.1) P(z) := Dn
a1,−a1

(
Dn
a2,−a2

(
. . . Dn

as,−as
(
1
)
. . .
))
.

The order chosen for the a’s is not important by Lemma 3.
By multiple integrations by parts and by Lemma 3, we see that, under

the above conditions,∫ 1

0
tkP(t) tαj (1− t)−αj log(t)ρdt = 0

for all k ∈ {0, 1, . . . , n− 1}, j ∈ {1, . . . , J} and ρ ∈ {0, . . . , `j − 1}. In other
words, the polynomials P(z), n ≥ 0 form a sequence of multiple orthogonal
polynomials on [0, 1] for the s weights tαj (1− t)−αj log(t)ρ, 0 ≤ ρ ≤ `j − 1,
1 ≤ j ≤ J . This translates into simultaneous Padé approximants of type II
for the family of functions

Ψαj ,ρ(z) :=
∫ 1

0

tαj (1− t)−αj
z − t

log(1/t)ρdt.

We set
Qj,ρ(z) :=

∫ 1

0

P(z)−P(t)
z − t

tαj (1− t)−αj log(1/t)ρdt

which is of degree sn− 1.

Theorem 8. In the above conditions, we have

(10.2) P(z)Ψαj ,ρ(z)−Qj,ρ(z) = O
( 1
zn+1

)
.

When αj ∈ Q, the coefficients of the polynomials P(z) and sin(πα)
πα Qj,ρ(z)

are rational numbers.
The functions Ψα,ρ(z) can sometimes be expressed in term of elementary

functions. For instance, if α ∈ (−1, 1), α 6= 0, we have

Ψα,0(1/z) = π

sin(πα)
((

1− z
)−α − 1

)
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while if α = 0, 1
ρ!Ψ0,ρ(1/z) = Liρ+1(z) =

∑∞
k=0

zk

kρ+1 , and in particular
Ψ0,0(z) = − log(1− 1/z).

As an application of Theorem 8, consider any finite set S of functions in
the infinite set

{log(1− z),Li2(z),Li3(z), . . . , (1− z)α1 , (1− z)α2 , . . . , (1− z)αs . . . , }

where the only assumption of the α’s is that αm ∈ Q and αn − αm 6∈ Z
for n 6= m. By standard arguments in number theory we omit, Theorem 8
enables us to prove the linear independence over Q of the values of the
functions in S evaluated at any rational point x sufficiently close to 0 (de-
pending on α ⊂ Q).

The construction seems to be new in this generality but see [23] for
related considerations. In the literature, one can find the case of Theorem 8
where α = {0, 0, . . . , 0} (Hata [12]) as well as simultaneous Hermite-Padé
(type I) for the functions (1− z)α1 , . . . , (1− z)αs (Chudnovski [9]). In both
cases, arithmetical applications of the type mentioned above are given in
precise form.
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