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On Salem numbers, expansive polynomials and
Stieltjes continued fractions

par Christelle GUICHARD et Jean-Louis VERGER-GAUGRY

Résumé. Dans cet article on montre que pour tout polynôme T ,
de degré m ≥ 4, à racines simples sans racine dans {±1}, qui est
soit de Salem soit cyclotomique, il existe un polynôme expansif
unitaire P (z) ∈ Z[z] tel que (z − 1)T (z) = zP (z) − P ∗(z). Cette
équation d’association utilise le Théorème A (1995) de Bertin-
Boyd d’entrecroisement de conjugués sur le cercle unité. L’en-
semble des polynômes expansifs unitaires P qui satisfont cette
équation d’association contient un semi-groupe commutatif infini.
Pour tout P dans cet ensemble, caractérisé par un certain cri-
tère, un nombre de Salem est produit et codé par un m-uplet de
nombres rationnels strictement positifs caractérisant la fraction
continue de Stieltjes (SITZ) du quotient (alternant) d’Hurwitz
correspondant à P . Ce codage est une réciproque à la Construc-
tion de Salem (1945). La structure de semi-groupe se transporte
sur des sous-ensembles de fractions continues de Stieltjes, ainsi
que sur des sous-ensembles de nombres de Garsia généralisés.

Abstract. In this paper we show that for every Salem polyno-
mial or cyclotomic polynomial, having simple roots and no root in
{±1}, denoted by T , deg T = m ≥ 4, there exists a monic expan-
sive polynomial P (z) ∈ Z[z] such that (z−1)T (z) = zP (z)−P ∗(z).
This association equation makes use of Bertin-Boyd’s Theorem A
(1995) of interlacing of conjugates on the unit circle. The set of
monic expansive polynomials P satisfying this association equa-
tion contains an infinite commutative semigroup. For any P in
this set, characterized by a certain criterion, a Salem number β
is produced and coded by an m-tuple of positive rational num-
bers characterizing the (SITZ) Stieltjes continued fraction of the
corresponding Hurwitz quotient (alternant) of P . This coding is
a converse method to the Construction of Salem (1945). Subsets
of Stieltjes continued fractions, and subsets of generalized Garsia
numbers, inherit this semigroup structure.
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1. Introduction
A Salem number is an algebraic integer θ > 1 such that the Galois

conjugates θ(i) of θ satisfy: |θ(i)| ≤ 1 with at least one conjugate of modulus
1. The set of Salem numbers is denoted by T. A Pisot number is a real
algebraic integer, all of whose other conjugates have modulus strictly less
than 1. The set of Pisot numbers is traditionally denoted by S.

An open problem is the characterization of the set T of limit points of
T. A first Conjecture of Boyd [5] asserts that the union S ∪ T is closed. A
second Conjecture of Boyd ([6, p 237]) asserts that the first derived set of
S ∪ T is S. At least, S is included in T ([3, Theorem 6.4.1]). In 1945, Salem
([23, Theorem IV]) developped the so-called Construction of Salem to show
that every Pisot number is a limit point of convergent sequences of Salem
numbers from both sides. Siegel [24] proved that the smallest Pisot number
is θ0 = 1.32 . . ., dominant root of X3−X − 1, implying that the number of
Salem numbers in any interval (1,M), with M ≥ θ0, is infinite. However,
if 1 were a limit point of T, then T would be everywhere dense in [1,+∞)
since θ ∈ T implies θm ∈ T for all positive integerm by [22, p 106] [21, p 46].
That T is everywhere dense in [1,+∞) is probably false [5]; even though
the Conjecture of Lehmer were true for Salem numbers, the open problem
of the existence of a smallest Salem number > 1 would remain to be solved.
Converse methods to the Construction of Salem to describe interesting
sequences of algebraic numbers, eventually Salem numbers, converging to
a given Salem number are more difficult to establish.

Association theorems between Pisot polynomials and Salem polynomials,
which generically make use of the polynomial relation

(X2 + 1)PSalem = XPPisot(X) + P ∗Pisot(X),

were introduced by Boyd, Bertin and Pathiaux-Delefosse ([6, Theorem 4.1],
[2], [4, pp 37–46], [3, chapter 6]), to investigate the links between infinite
collections of Pisot numbers and a given Salem number.

In the scope of studying interlacing on the unit circle and T, McKee and
Smyth [19] recently used new interlacing theorems, different from those
introduced (namely Theorem A and Theorem B) by Bertin and Boyd [2]
[4]. These interlacing theorems, and their limit-interlacing versions, turn
out to be fruitful. Theorem 5.3 (in [19]) shows that all Pisot numbers are
produced by a suitable (SS) interlacing condition, supporting the second
Conjecture of Boyd; similarly Theorem 7.3 (in [19]), using Boyd’s associa-
tion theorems, shows that all Salem numbers are produced by interlacing
and that a classification of Salem numbers can be made.

In the present note, we reconsider the interest of the interlacing Theorems
of [2], as potential tools for this study of limit points, as alternate analogues
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of those of McKee and Smyth; we focus in particular on Theorem A of [2]
(recalled as Theorem 2.1 below).

The starting point is the observation that expansive polynomials are
basic ingredients in the proof of Theorem A and that the theory of expansive
polynomials recently, and independently, received a strong impulse from
Burcsi [9]. The idea is then to bring back to Theorem A a certain number of
results from this new theory: Hurwitz polynomials, alternants, their coding
in continued fractions. . . In section 2 Theorem A and McKee and Smyth’s
interlacing modes of conjugates on the unit circle are recalled (to fix the
notation); association theorems between Salem polynomials and expansive
polynomials are obtained. In particular, the main Theorem we prove is the
following.

Theorem 1.1. Let T in Z[z], with simple roots 6∈ {±1} of degree m ≥ 4,
be either a cyclotomic polynomial or a Salem polynomial. Then there exists
a monic expansive polynomial P (z) ∈ Z[z] of degree m such that

(1.1) (z − 1)T (z) = zP (z)− P ∗(z).

In fact, the set PT (resp. P+
T ) of monic expansive polynomials P (z) ∈

Z[z] of degree m which satisfy (1.1) (resp. of polynomials P ∈ PT having
positive constant coefficient) is proved to be infinite in §2.4.2 and §2.4.3.
Moreover we prove that P+

T ∪ {T} has a commutative semigroup structure
with internal law:

(1.2) (P, P †) → P ⊕ P † := P + P † − T,

where {T} is the neutral element. We prove Theorem 2.9, as analogue
of Theorem 1.1 for the existence of expansive polynomials with negative
constant terms. In section 3 only Salem polynomials T are considered; a
Stieltjes continued fraction is shown to code analytically not only a Salem
number but also all its interlacing conjugates, using Hurwitz polynomials.
The second main theorem is concerned with the algebraic structure of this
coding, as follows.

Theorem 1.2. Let T ∈ Z[z] be a Salem polynomial with simple roots 6∈
{±1} of degree m. For each monic expansive polynomial P (z) ∈ PT , denote

(1.3) [f1/f2/ . . . /fm](z) =
f1

1 +
f2z

1 +
f3z

1 +
. . .

1 + fmz

the Hurwitz alternant hP (z) uniquely associated with P , written as a Stielt-
jes continued fraction. Let FT , resp. F+

T , be the set of all m-tuples
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t(f1, f2, . . . , fm) ∈ (Q>0)m such that [f1/f2/ . . . /fm](z) = hP (z) for P run-
ning over PT , resp. P+

T . Then
(i) FT is discrete and has no accumulation point in

(
R>0

)m,
(ii) FT has affine dimension equal to m,
(iii) the subset F+

T ∪{0} is a commutative semigroup, whose internal law
is the image of (1.2) by the mapping P → hP , with {0} as neutral
element,

(iv) the intersection of FT with the hypersurface defined by

{t(x1, . . . , xm) ∈ Rm | [x1/x2/ . . . /xm](1) = 1}

is empty.

To a Salem number β and a Salem polynomial T vanishing at β, this
coding associates the point set FT . The arithmetico-analytic deformation
and limit properties of the inverse of this coding function (as a converse of
the ‘Construction of Salem’) will be reported elsewhere. By this new ap-
proach we hope to shed some light on the existence of very small nonempty
open intervals in the neighbourhood of β deprived of any Salem number.
The interest lies in the following Lemma (Appendix).

Lemma 1.3. If there exists an (nonempty) open interval of (1,+∞) which
does not contain any Salem number, then the Conjecture of Lehmer for
Salem numbers is true.

The theory of expansive polynomials is fairly recent [9]. The terminol-
ogy “expansive polynomial” appeared in the study of canonical number
systems (CNS), for instance in Kovács [13] and in Akiyama and Gjini [1]
for self-affine attractors in Rn. Then expansive polynomials were associated
canonically with Hurwitz polynomials by Burcsi [9] to obtain an exhaus-
tive classification of them and to describe their properties. The method of
coding Hurwitz polynomials by finite sets of positive rational integers in
continued fractions (Henrici [12, chapter 12]) is transported to expansive
polynomials. In the present note, we continue further this coding towards
Salem numbers using Theorem A.

In section 2 we recall the two related subclasses Aq and Bq of Salem
numbers which arise from the interlacing Theorems A and B ([2], [4, p 129
and 133]). Since the set T decomposes as

(1.4) T =
⋃
q≥2

Aq =
⋃
q∈N

Bq

investigating the limit points of T only as limit points of Salem numbers in
the subclasses Aq, by the coding by continued fractions as presently, and
their deformations, does not result in a loss of generality.
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1.1. Notations.

Definition. A Salem polynomial is a monic polynomial with integer coef-
ficients having exactly one zero (of multiplicity 1) outside the unit circle,
and at least one zero lying on the unit circle.

A Salem polynomial is not necessarily irreducible. If it vanishes at θ > 1,
and it is reducible, then, by Kronecker’s Theorem [14], it is the product of
cyclotomic polynomials by the minimal polynomial of θ. Let θ be a Salem
number. The minimal polynomial T (z) of θ has an even degree 2n, n ≥ 2,
with simple roots. T (z) has exactly one zero θ of modulus > 1, one zero
1
θ of modulus < 1 and 2n − 2 zeros on the unit circle, as pairs (αj , αj) of
complex-conjugates. The notation ‘T ’ for Salem polynomials is the same as
for the set of Salem numbers, since it presents no ambiguity in the context.

Definition. An expansive polynomial is a polynomial with coefficients in a
real subfield of C, of degree ≥ 1, such that all its roots in C have a modulus
strictly greater than 1.

An expansive polynomial is not necessarily monic.

Definition. Let P (z) be a polynomial ∈ Z[z], and n = deg(P ). The recip-
rocal polynomial of P (z) is P ∗(z) = znP (1

z ). A polynomial P is a reciprocal
polynomial if P ∗(z) = P (z). A polynomial P is an antireciprocal polynomial
if P ∗(z) = −P (z) .

Definition. If P (X) = a0
∏n
j=1(X − αj) is a polynomial of degree n ≥ 1

with coefficients in C, and roots αj , the Mahler measure of P is

M(P ) := |a0|
n∏
j=1

max{1, |αj |}.

Definition. A negative Salem number is an algebraic integer θ < −1 such
that the Galois conjugates θ(i) of θ satisfy: |θ(i)| ≤ 1 with at least one
conjugate of modulus 1.

In the case where expansive polynomials are irreducible, the following
definition extends the classical one of Garsia [7][8][11].

Definition. A generalized Garsia number is an algebraic integer for which
the minimal polynomial is a monic (irreducible) expansive polynomial with
absolute value of the constant term greater than or equal to 2. A general-
ized Garsia polynomial P is a monic irreducible expansive polynomial with
integer coefficients such that M(P ) ≥ 2. A Garsia number is a generalized
Garsia number of Mahler measure equal to 2.

Definition. The nth cyclotomic polynomial, with integer coefficients, is de-
noted by Φn(X), n ≥ 1, with Φ1(X) = X−1,Φ2(X) = X+1 and deg(Φn) =
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ϕ(n) even as soon as n > 2. The degree ϕ(n) = n
∏
p prime, p|n(1 − 1/p) of

Φn(X) is the Euler’s totient function. In the sequel, following Boyd [5], we
adopt the (non-standard) convention that ‘cyclotomic polynomial’ means
a monic integer polynomial having all its roots on the unit circle, i.e. a
product of nth cyclotomic polynomials for various values of n.

2. Bertin-Boyd Interlacing Theorem A
2.1. The Q-construction of a reciprocal (or an anti-reciprocal)
polynomial from a polynomial P by an algebraic function. Let K
be a subfield of R, P (X) ∈ K[X],deg(P ) = n ≥ 1, and z the complex
variable. With ε = ±1, the polynomial defined by

(2.1) Q(z) = zP (z) + εP ∗(z)

satisfies Q∗(z) = εQ(z). It is either a reciprocal (if ε = +1), or an anti-
reciprocal (if ε = −1) polynomial. The algebraic function obtained by the
related polynomial :

(2.2) Q(z, t) = zP (z) + εtP ∗(z)

defines an affine algebraic curve over C (first considered by Boyd [6]):

(2.3) {(z, t) ∈ C2 | Q(z, t) = 0}.

For 0 ≤ t ≤ 1 the equation Q(z, t) = 0 over C defines an algebraic curve
z = Z(t) with n + 1 branches. Z(0) is the set of the zeros of zP (z) and
Z(1) is the set of the zeros of Q(z).

By Q-construction from P , over K, we mean the couple (Q(z), Q(z, t))
given by the reciprocal or anti-reciprocal polynomial Q and its associated
algebraic function Q(z, t), both having specific properties arising from those
of P and the sign of ε, as described below.

On |z| = 1, let us remark that |P (z)| = |P ∗(z)|. Then Q(z, t) has no
zeros on |z| = 1 for 0 ≤ t < 1. Each branch of the algebraic curve z = Z(t)
is

(i) either included in |z| ≤ 1; when it starts from a zero of zP (z) in
|z| < 1,

(ii) or included in |z| ≥ 1; when it starts from a zero of zP (z) in |z| > 1.
Then a zero of Q(z) on the unit disc |z| = 1 is

(i) either stemming from a branch included in the unit disc; then it is
called an exit,

(ii) or stemming from a branch outside the unit disc; then it is called
an entrance.

The example of the Lehmer polynomial and the smallest known Salem
number, Lehmer’s number, is given in Figure 2.1.
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Figure 2.1. Branches of the algebraic curve obtained with
the monic nonexpansive polynomial P (z) = z10+2z9+3z7+
z6 + 2z5 + 2z4 + z3 + 4z2 + z + 2 (crosses), producing by
the Q-construction the anti-reciprocal polynomial Q(z) =
(z− 1)(z10 + z9− z7− z6− z5− z4− z3 + z+ 1) (diamonds),
which has 5 entrances, 4 exits and 1 zero of modulus > 1,
the Lehmer number : θ ≈ 1.17628 . . . .

2.2. Expansive polynomials of Mahler measure q. Classes Aq. In
the particular case where K = Q and P (X) is monic and expansive with
integer coefficients, zP (z) has one zero in the open unit disc and n zeros
outside the closed unit disc. The algebraic curve z = Z(t) has at most one
exit and n entrances. Therefore Q(z) has at most one zero inside |z| < 1.

Since Q(z) is a reciprocal polynomial, if Q(z) has no zero in |z| < 1, then
all his zeros are on the unit circle. And if Q(z) has exactly one zero α in
|z| < 1, it has exactly one zero θ in |z| > 1 and n−2 zeros on the unit circle.
Then, if n ≥ 4, θ = 1

α is a Salem number and Q is a Salem polynomial. We
say that θ is produced by the Q-construction from P .

Definition. Let q ∈ N∗ be a nonzero integer. The class Aq is the set of
Salem numbers produced by the Q-construction (over K = Q) from monic
expansive polynomials P (X) ∈ Z[X] having a constant term equal to ±q
and ε = −sgnP (0).

Remark. The sets A0 and A1 are empty since all the zeros αi of any monic
expansive polynomial P are in |z| > 1, so that we have q = |

∏
αi| > 1.

Definition. Let q be an integer ≥ 2. The set of monic expansive polynomi-
als P (z) ∈ Z[z] such that |P (0)| = M(P ) = q producing a Salem number by
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the Q-construction Q(z) = zP (z) + εP ∗(z) with ε ∈ {−1; +1}, is denoted
by Eq.

Theorem 2.1 (Bertin, Boyd [2, Theorem A]). Suppose that θ is a Salem
number with minimal polynomial T . Let q ∈ N \ {0, 1}. Then θ is in Aq
if and only if there is a cyclotomic polynomial K with simple roots and
K(1) 6= 0 and a reciprocal polynomial L(X) ∈ Z[X] with the following
properties :
(a) L(0) = q − 1,
(b) deg(L) = deg(KT )− 1,
(c) L(1) ≥ −K(1)T (1),
(d) L has all its zeros on |z| = 1 and they interlace the zeros of KT on
|z| = 1 in the following sense : let eiψ1 , . . . eiψm the zeros of L on {Imz ≥
0} \ {z = −1} with 0 < ψ1 < · · · < ψm < π and let eiφ1 , . . . eiφm the
zeros of KT on {Imz ≥ 0} with 0 < φ1 < · · · < φm ≤ π , then
0 < ψ1 < φ1 < · · · < ψm < φm.

The construction of the polynomials L and KT is explicit ([4, pp 129–133]),
as follows :

• if ε = −1 then Q(1) = 0. Then P1 and Q1 are chosen as P1(z) =

P (z) and Q1(z) = Q(z)
z − 1 ,

• else if ε = +1, then P1 and Q1 are chosen as P1(z) = (z − 1)P (z)
and Q1(z) = Q(z).

In both cases, the polynomial Q1(z) is a reciprocal polynomial which sat-
isfies the equation:

(2.4) (z − 1)Q1(z) = zP1(z)− P ∗1 (z).

We say that P1 lies “over Q1”. As Q1(θ) = 0, Q1 is the product of the
minimal polynomial of θ by a product of cyclotomic polynomials as

(2.5) K(z)T (z) = Q1(z),

and the polynomial L, reciprocal by construction, is given by

(2.6) L(z) = P1(z)−Q1(z).

In §2.4.1, §2.4.2 and §2.4.3 we establish existence theorems for the poly-
nomials P1 associated to a given Salem polynomialQ1 by the equation (2.4),
focusing on the case ε = −1, that is with P (0) = P1(0) > 0 and deg(P )
even. The methods of Geometry of Numbers used call for nondegenerated
polyhedral cones in Euclidean spaces of dimension half the degree of the
Salem polynomial. These theorems are called association theorems. In §2.4.4
the second case of association theorem, with ε = +1, is briefly shown to call
for similar methods, after a suitable factorization of (2.4) and sign changes.
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The algorithmic search of an expansive polynomial over a Salem polynomial
is considered in §2.4.5 from a practical viewpoint.

The example of the interlacing of roots of L and KT associated to the
Lehmer number is given in Figure 2.2.

Figure 2.2. Interlacing of the zeros of L = P−T (asterisks)
and those ofKT = T (diamonds) on the unit circle obtained
with the monic expansive polynomial P (z) = z10 + 2z9 +
z8− z7− z6− z4− z3 + 2z+ 2 (circles), producing by the Q-
construction the anti-reciprocal Salem polynomial Q(z) =
(z−1)(z10 +z9−z7−z6−z5−z4−z3 +z+1) = (z−1)T (z)
with the Lehmer number θ ≈ 1.176 . . . as dominant root
of T .

In §2.3 the type of interlacing provided by Theorem 2.1 is revisited in
the more general context of interlacing modes on the unit circle proposed
by McKee and Smyth [19].

The classes (Bq) of Salem numbers are defined by a similar construction
with a polynomial P which has a single zero in |z| > 1. We refer to [2] ([4,
p 133]) for their definition. All the Salem numbers are generated by the
classes Aq and Bq, giving rise to (1.4). The distribution of the small Salem
numbers in the classes Aq in intervals was studied by Boyd [6] and Bertin
and Pathiaux-Delefosse [4]. Bertin and Boyd [2] proved that for q ≥ 2 and
k ≥ 1 , A2 ⊂ Aq and Aq ⊂ Akq−k+1. The distribution in the other classes
remains obscure.

Conjecture (Local Density Conjecture). For all c > 1, there exists M > 0
such that T ∩ [1, c] is contained in a finite union

⋃
2≤q≤M Aq.
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2.3. Interlacing on the unit circle and McKee-Smyth interlacing
quotients. Following McKee and Smyth [19][20] three types of interlacing
conditions, CC, CS and SS, are relevant.

Definition. Suppose that C1 and C2 are coprime polynomials with integer
coefficients and positive leading coefficients. We say that C1 and C2 satisfy
the CC-interlacing condition (CC for Cyclotomic-Cyclotomic) or C1/C2
is a CC-interlacing quotient if

• C1 and C2 have all their roots in the unit circle.
• all the roots of C1 and C2 are simple,
• the roots of C1 and C2 interlace on |z| = 1.

Remarks.
(i) As C1 and C2 have the same number of roots, C1 and C2 have the

same degree;
(ii) as the non-real zeros of C1 and C2 are conjugated in complex sense

two by two, the reals −1 and +1 must be in the set of their roots
to ensure the interlacing on the unit circle;

(iii) one polynomial among C1 and C2 is a reciprocal polynomial, the
other being an anti-reciprocal polynomial, having (z− 1) in its fac-
torization;

(iv) the terminology CC for “Cyclotomic-Cyclotomic” is misleading. In-
deed, C1 and C2 are not necessarily monic, so they are not neces-
sarily cyclotomic polynomials.

A complete classification of all pairs of cyclotomic polynomials whose
zeros interlace on the unit circle is reported in [20].

Definition. Suppose that C and S are coprime polynomials with integer
coefficients and positive leading coefficients. We say that C and S satisfy
the CS-interlacing condition (CS for Cyclotomic-Salem) or C/S is a
CS-interlacing quotient if

• S is reciprocal and C is antireciprocal,
• C and S have the same degree,
• all the roots of C and S are simple, except perhaps at z = 1,
• z2 − 1 | C,
• C has all its roots in |z| = 1,
• S has all but two roots in |z| = 1, with these two being real, positive,
6= 1,
• the roots of C and S interlace on {|z| = 1} \ {1}.

Definition. Suppose that S1 and S2 are coprime polynomials with integer
coefficients and positive leading coefficients. We say that S1 and S2 satisfy
the SS-interlacing condition (SS for Salem-Salem) or S2/S1 is a SS-
interlacing quotient if
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• one of S1 and S2 is reciprocal polynomial, the other is an anti-
reciprocal polynomial,
• S1 and S2 have the same degree,
• all the roots of S1 and S2 are simple,
• S1 and S2 have all but two roots in |z| = 1, with these two being
real, positive, 6= 1,
• the roots of S1 and S2 interlace on {|z| = 1} \ {1}.

Remark. There are two types of SS-interlacing condition : if the largest
real roots of S1S2 is a root of S1, then S2/S1 is called a 1-SS-interlacing
quotient, and S1/S2 is called a 2-SS-interlacing quotient.

Theorem 2.1 provides interlacing on the unit circle; more precisely, re-
ferring to (2.4) and denoting n := deg(Q1) = deg(P1), let us show that if
n is

(i) even, the quotient (z − 1)L/KT is a CS-interlacing quotient,
(ii) odd, no CS-interlacing condition is satisfied.
Indeed, if n is even, from (2.6), with L = P1 −Q1,

L(−1) = P1(−1)−
−P1(−1)− (−1)nP1( 1

−1)
(−1− 1) = P1(−1)− −2P (−1)

−2 = 0.

Then the factor (z + 1) divides L and we can take C = (z − 1)L and
S = KT . As L and KT are reciprocal polynomials, (z − 1)L is an anti-
reciprocal polynomial. Moreover, deg(L) = deg(KT ) − 1, so (z − 1)L and
KT have the same degree. Finally, by definition, (z2 − 1)|C. The roots of
C and S are simple and all but two roots of S interlace the roots of C on
{|z| = 1} \ {z = 1}, S having two real roots being positive inverse and 6= 1.

On the contrary, if n is odd,

Q1(−1) =
−P1(−1)− (−1)nP1( 1

−1)
(−1− 1) = 0.

Then the factor (z+1) divides the Salem polynomial Q1 = KT ; -1 cannot
be a zero of L. The item (z2−1) | C in the CS-interlacing condition is then
missing.

Let us turn to the Salem numbers associated with by these interlacing
modes. McKee and Smyth [19] use the variant z 7→ x =

√
z + 1/

√
z of

the Tchebyshev transformation, instead of the more usual one z 7→ x =
z+ 1/z, to study the Salem numbers produced by the above different cases
of interlacing quotients.

Theorem 2.2 ([19, Theorem 3.1]). Let C2/C1 be a CC-interlacing quotient
with C1 monic, of degree ≥ 4. By the map x =

√
z + 1√

z
the function

√
zC2(z)

(z − 1)C1(z) is transformed into the real interlacing quotient c2(x)
c1(x) with c1
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and c2 coprime polynomials in Z [x]. If lim
x−>2+

c2(x)
c1(x) > 2 then the solutions

of the equation

(2.7) C2(z)
(z − 1)C1(z) = 1 + 1

z

are a Salem number, its conjugates and roots of unity.

Theorem 2.3 ([19, Theorem 5.1]). Let C/S be a CS-interlacing quotient
with S monic, of degree ≥ 4. The solutions of the equation

(2.8) C(z)
(z − 1)S(z) = 1 + 1

z

are a Salem number, its conjugates and roots of unity.

Theorem 2.1 provides a CS-interlacing quotient if the common degree
n = deg(Q1) = deg(P1) is even, as mentioned above; then the quotient
(z − 1)L/KT is a CS-interlacing quotient, with KT a monic polynomial.
As such, we can now apply Theorem 2.3 to this quotient. This theorem
offers the construction of another Salem polynomial T2 :

(2.9) T2(z) = zL(z)− (z + 1)K(z)T (z).

Denote θ the dominant root of T and θ2 the dominant root of T2. Remark
that θ2 is always different from θ. Otherwise, if θ2 = θ then θL(θ) =
T2(θ) + (z+ 1)K(θ)T (θ) = 0, which is impossible because all zeros of L lies
on the unit circle.

For exemple, with the smallest Salem known number θ ≈ 1.1762808 of
degree 10, root of T (z) = z10 + z9− z7− z6− z5− z4− z3 + z+ 1, we obtain
by this construction, with the expansive polynomial P (z) = x10 + 2x9 +
x8 +x2 + 2x+ 2 over T , the Salem number θ2 ≈ 1.5823471 of degree 6, root
of the Salem polynomial (z+1)(z2 +z+1)(z2−z+1)(z6−z4−2z3−z2 +1).
We remark that this sequence depends on the choice of the polynomial P
over T .

Theorem 2.4 ([19, Theorem 5.2]). Let S2/S1 be an SS-interlacing quotient

with S1 monic. If lim
z−>1+

S2(z)
(z − 1)S1(z) < 2 then the solutions of the equation

(2.10) S2(z)
(z − 1)S1(z) = 1 + 1

z

are a Salem number, its conjugates and roots of unity.

Under the assumption that Lehmer’s Conjecture is true, Theorem 9.2
in [19] shows that the smallest Salem number θ is such that there exists a
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type 2 SS-interlacing quotient S1/S2, with two monic polynomials S1 and
S2 satisfying

(2.11) S2(z)
(z − 1)S1(z) = 2

1 + z

for which the only solutions of (2.11) are z = θ, its conjugates and perhaps
some roots of unity. The other small Salem numbers are probably produced
by type 2 SS-interlacing quotients with a condition of type (2.11) as well;
comparing with the Local Density Conjecture in section 2.2, they are ob-
tained from expansive polynomials of small Mahler measure equal or close
to 2.

Extension of the field of coefficients: CC-interlacing quotients were ex-
tended by Lakatos and Losonczi [15] to classes of reciprocal polynomials
having coefficients in R.

2.4. Association Theorems between expansive polynomials and
Salem polynomials. The classes Aq of Salem numbers, in Theorem 2.1,
call for two disjoint classes of monic expansive polynomials P : those for
which the constant term P (0) is positive (case ε = −1), those for which
it is negative (case ε = +1). Below we focus on the existence of expansive
polynomials over a Salem polynomial when the Mahler measure M(P ) is
equal to P (0) (case ε = −1). In §2.4.4 we indicate how the previous con-
struction can be adapted to deduce existence theorems in the second case
ε = +1.

2.4.1. A criterion of expansivity.

Theorem 2.5. Let T be an irreducible Salem polynomial of degree m ≥ 4.
Denote by β > 1 its dominant root. Let P be a polynomial ∈ R [z] of degree
m such that

(2.12) (z − 1)T (z) = zP (z)− P ∗(z).

P is an expansive polynomial if and only if
• P (1)T (1) < 0, and,
• for every zero α of T of modulus 1,

(α− 1)α1−mP (α)T ′(α) is real and negative.

Remark. The equation (2.12) implies that P is monic and denoting P (z) =
pmz

m + pm−1z
m−1 + · · ·+ p1z + p0, then pi ∈ Z with |p0| > pm = 1. Since

the RHS of (2.12) vanishes at z = 1, the factorization of the LHS of (2.12)
by z − 1 is natural. Denote Q(z) := (z − 1)T (z).
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Proof.
The conditions are necessary: as T is reciprocal, Q is anti-reciprocal of

degree m+ 1; Q has exactly one zero β outside the closed unit disc D(0; 1),
one zero 1

β in D(0; 1), andm−1 zeros on C(0; 1), which are z = 1 and m2 −1
pairs of complex conjugates (αi, αi). Let Qt be the parametric polynomial

(2.13) Qt(z) = zP (z)− tP ∗(z).

On the unit circle C(0; 1), we have |zP (z)| = |z|.|P (z)| = |P (z)| = |P ∗(z)|,
and |P (z)| 6= 0 because P is an expansive polynomial. Then, for 0 < t < 1,
|Qt(z)− zP (z)| = | − tP ∗(z)| < |P ∗(z)| = |zP (z)|. The theorem of Rouché
implies that the polynomials Qt(z) and zP (z) have the same number of
zeros in the compact D(0; 1). So Qt(z) has exactly one zero in D(0; 1) and
m zeros outside.

By (2.13), for t > 1, Q 1
t
(1
z

) = −1
tzm+1Qt(z). Then, if α is a zero of Qt,

then 1
α

is a zero of Q 1
t
(1
z

). Moreover, 1
α

is a zero of Q 1
t
(1
z

) as well because
Q 1

t
∈ R (z) (thus we obtain the zeros of Q 1

t
from those of Qt by an inversion

of centre 0 of radius 1). Let f(z) := Q(z)
P ∗(z) . Then, by (2.13),

(2.14) Qt(z)
P ∗(z) = f(z) + (1− t).

For α ∈ { 1
β
, β, 1, α1, α1, α2, α2, . . . , αm

2 −1, αm
2 −1}, when z lies in a neigh-

bourhood of α, the equation Qt(z) = 0 is equivalent to the equation
f(z) = t − 1. As Q has simple zeros, Q(α) = 0 and Q′(α) 6= 0. Then
f(α) = 0 and f ′(α) = Q′(α)P ∗(α)−Q(α)(P ∗)′(α)

P ∗(α)2 = Q′(α)
P ∗(α) 6= 0. By the local

inversion theorem, in the neighbourhood of t = 1, there exist an analytic
function hα such that the equation Qt(z) = 0 is equivalent to z = hα(t),
with hα(1) = α and h′α(1) 6= 0. Then {hα(t);α ∈ { 1

β , β, 1, (αi)1≤i<m}} is
the set of zeros of Qt(z). In the neighbourhood of t = 1, we have :

(2.15) hα(t) = hα(1) + (t− 1)h′α(1) + . . .

By the inversion property of Qt, if hα(t) is a zero of Qt(z) then 1/hα(t) is
a zero of Q 1

t
: there exist α̃ ∈ {β−1, β, 1, (αi)1≤i<m} such that

(2.16) 1
hα(t)

= hα̃(1
t
).

When t = 1, we obtain 1/hα(1) = 1/α = α/|α|2 and hα̃(1) = α̃. In partic-
ular, for any α of modulus 1, we obtain α̃ = α and 1/hα(t) = hα(1

t
), that
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is

(2.17) hα(t)hα(1
t
) = 1.

In this case, we denote hα(t) = X(t) + iY (t). Then (2.17) becomes (X(t) +
iY (t))(X(1/t) − iY (1/t)) = 1. The imaginary part of this equation is
Y (t)X(1/t) − X(t)Y (1/t) = 0. On differentiation we obtain for t = 1:
Y ′(1)X(1) − Y (1)X ′(1) = 0. Thus X ′(1)/X(1) = Y ′(1)/Y (1). Let λ ∈ R
be this quotient. Thus h′α(t) = X ′(t) + iY ′(t) = λ(X(t) + iY (t)) = λhα(t),
with h′α(1) = λα for t = 1. For any α on the unit circle, equation (2.15)
gives
(2.18) hα(t) = α [1 + (t− 1)λ+ . . . ] .

Since α 6= 1
β
, then |hα(t)| > 1 = |α| for 0 < t < 1, implying λ < 0. As hα

satisfies the equation (2.14), we have :
(2.19) Q(hα(t)) + (1− t)P ∗(hα(t)) = 0.
Deriving (2.19) at t = 1, we obtain: h′α(1)Q′(α)−P ∗(hα(1)) = 0. We deduce
h′α(1) = P ∗(α)/Q′(α). Then,

0 > λ = h′α(1)
α

= P ∗(α)
αQ′(α) =

αmP ( 1
α)

αQ′(α)

= αm−1P (α)P (α)
P (α)Q′(α) = |P (α)|2

α1−mP (α)Q′(α) .

We deduce α1−mP (α)Q′(α) < 0, for α = 1 or any root of T of modulus
1. Let us transform these inequalities as a function of T . For α = 1, Q′(1) =
T (1), since Q′(z) = T (z) + (z − 1)T ′(z), and we readily obtain :
(2.20) P (1)T (1) < 0.
And if α 6= 1 is a root of T of modulus 1, since Q′(α) = (α− 1)T ′(α),

(2.21) (α− 1)α1−mP (α)T ′(α) < 0.
We remark that (α− 1)α1−mP (α)T ′(α) < 0⇔ (α− 1)α1−mP (α)T ′(α) < 0
since both quantities are real: the condition (2.21) is related to the pair
(α, α) for any α of modulus 1. Hence the claim.

The conditions are sufficient: first let us show that P has no zero of
modulus 1. Suppose the contrary: that there exist α, |α| = 1, such that
P (α) = 0. Then, as P is in R [z], α is a zero of P . Then, Q(α) = αP (α)−
(α)mP (α) = 0. So α would be a zero of modulus 1 of Q(z) = (z − 1)T (z).
The only possibilities are z = 1 and the zeros of T of modulus 1. If α = 1,
then the condition 0 = P (1)T (1) < 0 leads to a contradiction. Similarly, if
α 6= 1, then 0 = (α− 1)α1−mP (α)T ′(α) < 0 would also be impossible.
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Let us show that zP (z) has one zero in D(0; 1) (which is z = 0) and
m − 1 zeros outside D(0; 1). Let α be a zero of T of modulus 1. Let hα
defined as in (2.15) with (2.18):

hα(t) = α+ h′α(1)(t− 1) + . . .

The assumption (α− 1)α1−mP (α)T ′(α) < 0 (or P (1)T (1) < 0 if α = 1)
implies that |hα(t)| > |α| = 1 for t in the neighbourhood of 1, t < 1. Thus,
in this neighbourhood, Qt has at least m − 2 zeros outside D(0; 1). These
zeros belong to the algebraic branches which end at the zeros α of Q of
modulus 1.

Moreover, as |P (z)| = |P ∗(z)|, for |z| = 1, we have : |zP (z)| = |P (z)| =
|P ∗(z)| > |tP ∗(z)| for all t, 0 < t < 1. Hence Qt has no zero on the unit
circle, for all t, 0 < t < 1. By continuity of the algebraic curves defined by
Qt(z) = 0, the branch ending at β is included in C \D(0; 1) : this branch
originates from a root of zP (z) which lies outside D(0; 1). In the same way,
the branch ending at 1/β originates from a root of zP (z) which is inside
D(0; 1). Therefore P is expansive. �

The above Criterion of expansivity, i.e. Theorem 2.5, only involves con-
ditions at the roots of Q of modulus 1. However, though the existence of
expansive polynomials P satisfying (2.12) is only proved below in §2.4.2,
the following Proposition shows that two extra inequalities at the Salem
number β and its inverse β−1 should also be satisfied.

Proposition 2.6. Let T be an irreducible Salem polynomial of degree m ≥
4. Denote by β > 1 its dominant root. Let P be an expansive polynomial
∈ R [z], of degree m, such that
(2.22) (z − 1)T (z) = zP (z)− P ∗(z).
Then, the polynomial P satisfies the two properties:

(i) P (1/β)T ′(1/β) < 0 and (ii) P (β)T ′(β) > 0.

Proof. Let Qt and hα defined as above in (2.13) and (2.15) respectively. For
α ∈ { 1

β
, β}, the relation (2.16) gives : α̃ = 1

α
and then 1/hα(t) = h 1

α
(1
t ).

(i) Case α = 1/β : for 0 ≤ t ≤ 1, deg(Qt(z)) = m + 1 ≥ 5 is odd. As
Qt(z) ∈ R [z] , Qt has at least one real root and pairs of complex-conjugated
roots. Since it admits only one root in D(0; 1) this zero is real for symmetry
reasons; and the branch starting at z = 0 and ending at z = 1/β is included
in R (i.e : h 1

β
(t) ∈ R for 0 < t < 1). Then, h′1

β
(1) = P ∗( 1

β
)/Q′( 1

β
) > 0

implying P ( 1
β

)Q′( 1
β

) > 0. Since Q′( 1
β

) = ( 1
β
− 1)T ′( 1

β
) we readily obtain:

P ( 1
β )T ′( 1

β ) < 0.
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(ii) Case α = β: we have hβ(t) = 1/h 1
β

(1
t
) = 1/h 1

β
(1
t
). On differentiation

we have: h′β(t) = −−1
t2
h′1
β

(1
t
)/(h 1

β
(1
t
))2; therefore, for t = 1 : h′β(1) =

h′1
β

(1)/(h 1
β

(1))2 = β2P
∗( 1
β )

Q′( 1
β )

= β2h′1
β

(1). The two nonzero real numbers

h′β(1) and h′1
β

(1) are simultaneously positive or negative. They are positive.

As h′β(1) = P ∗(β)/Q′(β) = βP (β)/(β − 1)T ′(β) = β

β − 1
P (β)2

P (β)T ′(β) , we

deduce: P (β)T ′(β) > 0. �

2.4.2. Proof of Theorem 1.1 for an irreducible Salem polynomial.
Let T be an irreducible Salem polynomial of degree m ≥ 4. Denote T (z) :=
zm+ t1z

m−1 + . . . tm
2 −1z

m
2 +1 + tm

2
z
m
2 + tm

2 −1z
m
2 −1 · · ·+ t1z+ t0 and P (z) :=

zm + pm−1z
m−1 + · · · + p1z + p0. Though P is nonreciprocal, only half of

the coefficient vector (pi)i=0,...,m−1 entirely determines P : indeed, using the
fact that T is reciprocal, the polynomial identity (1.1) gives the following
m/2 relations between the coefficients:

(2.23) pm−i = pi−1 + ti − ti−1, 1 ≤ i ≤ m

2 .

The problem of the existence of P is then reduced to finding a m/2-tuple
of integers (pi)i=0,...,m/2−1 ∈ Zm/2, characterizing the “point” P in the lat-
tice Zm/2, satisfying the m/2 conditions of the Criterion of expansivity of
Theorem 2.5. In terms of the coefficient vectors these conditions are linear,
each of them determining an affine hyperplane in Rm/2. The Criterion of
expansivity means that the “point” P should lie in the intersection of the
m/2 open half-spaces defined by these hyperplanes. Let us call this inter-
section admissible cone. We will show that this facetted polyhedral cone is
nonempty; hence it will contain infinitely many points of the lattice Zm/2.
In other terms the number of monic expansive polynomials P lying over T
will be shown to be infinite.

Let us make explicit the equations of the delimiting hyperplanes of the
cone, from Theorem 2.5, using (2.23).
The half-space given by P (1)T (1) < 0: the condition at z = 1 is

(2.24)

P (1)T (1) =
m∑
i=0

pi

m∑
i=0

ti

=
m
2 −1∑
i=0

2 ( 2
m
2 −1∑
k=0

tk + tm
2

)pi + tm
2

(2
m
2 −1∑
k=0

tk + tm
2

) < 0.
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Combining terms this inequality can be written: λ0 +
∑m

2 −1
i=0 a0,ipi < 0 with

a0,0, a0,1, . . . , a0,m2 −1, λ0 ∈ Z only functions of the coefficients ti of T .
The half-space given by (α − 1)α1−mP (α)T ′(α) < 0: the condition at z =
α 6= 1, |α| = 1, a zero of T , is (α − 1)α1−m(

∑m
i=0 piα

i)(
∑m
i=1 itiα

i−1) < 0,
i.e.

(2.25) (α− 1)(α
m
2 + α

m
2 −1 + tm

2
)(m2 t

m
2

+
m
2 −1∑
k=0

(kαk−
m
2 + (m− k)α

m
2 −k))

+
m
2 −1∑
i=0

(αi−
m
2 +α

m
2 +1−i)(α−1)(m2 t

m
2

+
m
2 −1∑
k=0

tk(kαk−
m
2 +(m−k)α

m
2 −k))pi < 0.

Combining terms this inequality can be written: λα +
∑m

2 −1
i=0 aα,ipi < 0

with aα,0, aα,1, . . . , aα,m2 −1, λα real in the algebraic number field which is
the splitting field of the polynomial T . The set of solutions of the following
linear system of inequalities in R

m
2 :

λ0 + a0,0p0 + a0,1p1 + . . . a0,m2 −1pm2 −1 < 0,
λ1 + a1,0p0 + a1,1p1 + . . . a1,m2 −1pm2 −1 < 0,
. . .

λm
2 −1 + am

2 −1,0p0 + am
2 −1,1p1 + . . . am

2 −1,m2 −1pm2 −1 < 0,

is the admissible cone C+. Let us show that it is nonempty. We have just
to show that the face hyperplanes Hi defined by the equations λi +ai,0p0 +
ai,1p1 + . . . ai,m2 −1pm2 −1 = 0 intersect at a unique point. The linear system

of equations corresponding to
⋂m

2 −1
i=0 Hi is equivalent to

P (1)T (1) = 0,
(α1 − 1)α1−m

1 P (α1)T ′(α1) = 0,
. . .

(αm
2 −1 − 1)α1−m

m
2 −1P (αm

2 −1)T ′(αm
2 −1) = 0,

where αi are the simple zeros of T of modulus 1. Obviously this system
is equivalent to P (1) = P (α1) = . . . = P (αm

2 −1) = 0, since T , being
irreducible, has simple roots and that T (1) 6= 0. The only monic polynomial
P in R [z], of degree m, which vanishes at {1, α1, . . . , αm

2 −1} is of the form

P0(z) = (z − 1)(z − r)
∏m

2 −1
i=1 (z2 − (αi + αi)z + 1). From (2.12), P0 satisfies

P0(β) = βm−1P0(1/β), thus r = 1
2(β + 1/β). The half-coefficient vector

M0 = t(pi)0≤i≤m2 −1 of P0 is the unique solution of this system of equations
(the notationMt is that of §2.4.5). Remark that p0 = 1

2(β+1/β). The point
M0 is the summit vertex of the admissible cone C+. Since the admissible
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cone is nonempty, it contains infinitely many points of Zm/2. Hence the
claim.

Proposition 2.7. Let q ≥ 2 be an integer and T an irreducible Salem poly-
nomial of degree m. The subset of Eq of the monic expansive polynomials
P over T , of degree m, such that P (0) = q, is finite.

Proof. In [9], Burcsi proved that the number of expansive polynomials of
the form zm+pm−1z

m−1+· · ·+p1z+p0 ∈ Z[z] with |p0| = q is finite and it is
at most

∏m−1
k=1 (2B(p0,m, k) + 1) with B(p0,m, k) =

(m−1
k−1

)
+ |p0|

(m−1
k

)
. �

2.4.3. Existence of an expansive polynomial over a nonirreducible
Salem polynomial or a cyclotomic polynomials. We now extend the
existence Theorem 1.1 to monic expansive polynomials lying over nonirre-
ducible Salem polynomials or cyclotomic polynomials only. The proofs, of
similar nature as in §2.4.1 and in §2.4.2, are left to the reader: they in-
clude a Criterion of expansivity, as a first step (Theorem 2.8), then imply
the nonemptyness of a certain admissible open cone of solutions in a suit-
able Euclidean space. Let us remark that the construction method which
is followed calls for expansive polynomials of even degrees, and for a LHS
term in (2.26) (as in (2.12)) which has factors of multiplicity one in its
factorization (case of simple roots).

Theorem 2.8. Let T ∈ Z[z], with simple roots 6∈ {±1}, of degree m ≥ 4,
be either a cyclotomic polynomial or a Salem polynomial. Let P ∈ Z[z] of
degree m such that
(2.26) (z − 1)T (z) = zP (z)− P ∗(z).
Then P is an expansive polynomial if and only if

(i) P (1)T (1) < 0,
(ii) for every zero α of T of modulus 1,

(α− 1)α1−mP (α)T ′(α) is real and negative.

Theorem 1.1 is a consequence of Theorem 2.8.

2.4.4. The second class of Salem numbers in Aq. Given an integer
q ≥ 2, the second class of Salem numbers β in Aq is provided by expansive
polynomials P for which P (0) = −M(P ) = −q lying above the minimal
polynomial T of β, referring to Theorem 2.1. From (2.4) this case corre-
sponds to ε = +1, with P1(z) = (z − 1)P (z), and then to
(2.27) Q(z) = Q1(z) = zP (z) + P ∗(z).
Since the RHS of (2.27) vanishes at z = −1 when deg(P ) is even, a nat-
ural factorization of Q in (2.27) is Q(z) = (z + 1)Q2(z), with Q2 a Salem
polynomial of even degree. Then, instead of the equation (2.4), this second
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class of Salem numbers calls for association theorems between Q2 and P
using

(2.28) (z + 1)Q2(z) = zP (z) + P ∗(z).

The association Theorem 2.9 between a Salem polynomial and an expan-
sive polynomial of even degree we obtain in this case can be deduced from
the preceding ones, by suitable sign changes, as analogues of Theorem 1.1.

Theorem 2.9. Let T ∈ Z[z], with simple roots 6∈ {±1} of degree m ≥ 4, be
either a cyclotomic polynomial or a Salem polynomial. Then there exists a
monic expansive polynomial P ∈ Z[z] of degree m such that

(2.29) (z + 1)T (z) = zP (z) + P ∗(z).

Notation. given a Salem polynomial T (z) = tmz
m + tm−1z

m−1 + . . . +
t1z+ t0, of degree m, with tm/2+1 = tm/2−1, . . . , tm−1 = t1, t0 = tm = 1, we
denote by

(2.30) ω1 : t(t0, t1, . . . , tm−1) 7→ t(p0, p1, . . . , pm−1)

the (“choice”) mapping sending the coefficient vector of T to that of the
monic expansive polynomial P (z) = pmz

m+pm−1z
m−1 + . . .+p1z+p0 over

it, pm = 1, with P (0) = p0 negative or positive, which is chosen such that
the half coefficient vector lies on the lattice Zm/2 inside the admissible cone
in Rm/2. In this definition we exclude the leading coefficients, equal to 1.
The converse mapping

(2.31) Ω1 : t(p0, p1, . . . , pm−1) 7→ t(t0, t1, . . . , tm−1),

defined by (z− 1)T (z) = zP (z)−P ∗(z) if P (0) = p0 > 0, or (z+ 1)T (z) =
zP (z) + P ∗(z) if P (0) = p0 < 0, allows to sending a monic polynomial P
with real coefficients to a monic polynomial T . For any Salem polynomial
T with coefficients ti as above, the identity Ω1(ω1(t(ti))) = t(ti) holds.

2.4.5. Algorithmic determination of expansive polynomials. Let
T be an irreducible Salem polynomial of degree m ≥ 4. Denote by A the
invertible matrix A = (ai,j)0≤i,j≤m2 −1, where the coefficients ai,j are given
by the equations of the face hyperplanes of the admissible cone in Rm/2,
namely (2.24) and (2.25). Denote by Λ be the column vector of R

m
2 defined

by Λ = t(λ0, λ1, . . . , λm2 −1), where λj is the constant term of the equation
of the j-th face hyperplane, given by (2.24) and (2.25). The polyhedral
admissible cone is defined by the pair (A,Λ); the pair (A,Λ) is said to be
associated with T .

For any vector V in Rm/2 let us denote by round(V ) the vector of Zm/2

the closest to V , componentwise (i.e. for each component x of V in the
canonical basis of Rm/2, the nearest integer to x is selected).



On Salem numbers, expansive polynomials and Stieltjes continued fractions 789

Proposition 2.10. Let m ≥ 4 be an even integer. Let T (z) =
∑m
i=0 tm−iz

i

be an irreducible Salem polynomial of degree m, with associated pair (A =
(ai,j),Λ = (λi)). Let

(2.32) b :=
√
m

2
√

2
max

0≤i≤m2 −1

(m2 −1∑
k=0

a2
i,k

)1/2
.

For t≥ b letMt=round(A−1(t(−t,−t, . . . ,−t)−Λ)) := t(M0, . . . ,Mm
2 −1).

Then
(i) the polynomial P (z) = zm + pm−1z

m−1 + · · ·+ p1z + p0 defined by

(2.33)
{
pi = Mi, 0 ≤ i ≤ m

2 − 1,
pm−i = Mi−1 + ti − ti−1, 1 ≤ i ≤ m

2 − 1,

is an expansive polynomial which satisfies (z − 1)T (z) = zP (z)− P ∗(z);
(ii) the Salem number β of minimal polynomial T belongs to the class

Aqb with

(2.34) qb = M0 = pr0Mb

possibly to other classes Aq with q < qb.

Proof. (i) For t ∈ R+, let Mt = t(M0,M1, . . . ,Mm
2 −1), with real coordi-

nates in the canonical basis of Rm/2, be the unique vector solution of the
equation

(2.35) AMt + Λ = t(−t,−t, . . . ,−t).

If t 6= 0,Mt lies in the open admissible cone and, if t = 0,M0 is the summit
vertex of the cone. Let d2 be the usual Euclidean distance on Rm/2 and d∞
the distance defined by d∞(V,W ) = maxi=0,...,m/2−1 |Vi −Wi|. Denote by
B∞ the closed balls (cuboids) for this distance.

For 0 ≤ i ≤ m
2 −1 denote by Hi the i-th face hyperplane of the admissible

cone, by Ni = t(ai,0, ai,1, . . . , ai,m2 −1) the vector orthogonal to the hyper-
plane Hi and by prHi(Mt) the orthogonal projection ofMt on Hi. For all
t ≥ b, the scalar product ‖Ni‖−1(Ni ·Mt) is equal to d2(Mt, prHi(Mt)) =

|ai,0M0 + ai,1M1 + . . . ai,m2 −1Mm
2 −1 + λi|√

a2
i,0 + a2

i,1 + · · ·+ a2
i,m2 −1

>
| − t|
b2
√

2√
m

≥
√
m

2
√

2
.

Therefore the cuboid B∞(Mt,
1
2), which is a fundamental domain of the

lattice Z
m
2 , does not contain the point prHi(Mt). This cuboid is included

in the (open) admissible cone C+. Consequently the vector (pi)0≤i≤m2 −1 =
round(Mt) lies in Z

m
2 ∩ C; it is the half-coefficient vector of an expansive

polynomial.
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(ii) The above method allows us to explicitely compute the expansive
polynomial P the closest to the summit vertex M0 of the cone: by solv-
ing (2.35) with t = b and using (2.33). Since the integer component M0
of Mb is equal to the Mahler measure q of P and that P produces β, we
deduce the claim. �

Similar explicit bounds qb for q are easy to establish if T is a nonirre-
ducible Salem polynomial (as in §2.4.3) or in the second case of Salem
numbers in Aq (as in §2.4.4) using the equations of the face hyperplanes
deduced from the Criterions of expansivity. We do not report them below.

We have seen that, using Theorem 2.1 and Theorem 2.3, we can construct
sequences of Salem polynomials and Salem numbers, depending upon the
choice of the expansive polynomial over the Salem polynomial. With the
method of Theorem 2.10, we compute iteratively for instance the following
sequence of Salem numbers from the Lehmer number: θ ≈ 1.1762808, θ2 ≈
8.864936672 , θ3 ≈ 21.56809548, θ4 ≈ 45.44171097, θ5 ≈ 87.36603624,
θ6 ≈ 155.3214209, θ7 ≈ 261.2942782, θ8 ≈ 423.2784753, θ9 ≈ 668.2676464,
θ10 ≈ 1037.261121.

The Schur-Cohn-Lehmer Theorem may be used to compute an expansive
polynomial P over a Salem polynomial T with dominant root in Aq for a
given q ≤ qb. It may happen that this component-by-component search for
the coefficient vector of P fails.

Theorem 2.11 (Schur-Cohn-Lehmer). Let P (z) = pmz
m + pm−1z

m−1 +
.. + p1z + p0, pmp0 6= 0, be a polynomial of degre m with real coefficients.
Let T be the transformation T : P (z) 7→ T (P )(z) = p0P (z) − pmP ∗(z).
Let T 1 := T and T k := T (T k−1) for k ≥ 2. Then P (z) is an expansive
polynomial if and only if

T k(P )(0) > 0 for all 1 ≤ k ≤ m.

Proof. Lehmer [16], Marden [17, pp 148–151]. �

Note that the first step of the algorithm gives to T (P )(0) = p2
0 − p2

m =
p2

0 − 1 > 0, for a monic expansive polynomial P , so that the inequality
q = |p0| = M(P ) ≥ 2 holds (cf Remark 2.2).

The coefficient vector (pi) of P can be constructed recursively: for k > 0,
knowing (pi)i≤k−1 and (pi)i≥2n−k+1, we choose pk in the interval given by
the quadratic equation in pk : T k+1(P )(0) > 0 and we compute pm−k =
−tk−1 + tk + pk−1. For some initial values p0 = q not large enough, we
obtain no solution.

The 20 smallest Salem numbers, with their minimal polynomials and
associated expansive polynomials are presented in Figure 2.3.

Remark. Let T (z) be a Salem polynomial, of degree m. Denote by k the
maximal real subfield of the splitting field of T . The admissible cone C+ is
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Figure 2.3. Minimal polynomials T of the 20 smallest
Salem numbers β and some of the associated monic ex-
pansive polynomials P over T . The degree D is deg(T ) =
deg(P ). The coefficients of P are such that the constant
term, on the right, is the integer q ≥ 2 for which β ∈ Aq.
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defined by the associated pair (A = (ai,j),Λ = (λi)) ∈ GL(m2 , k)×km/2, i.e.
the affine equations of its facets, in Rm/2, which are functions of the roots
of T . Every point, say P , of C+∩Zm/2 has coordinates t(p0, p1, . . . , pm/2−1)
which constitute the half coefficient vector of a unique monic expansive
polynomial, say P , by (2.23): there is a bijection between P and P . De-
note by P̂ the second half of the coefficient vector of P . The set of monic
expansive polynomials P , defined by their coefficient vectors, is an infinite
subset of Zm, in bijection with C+ ∩ Zm/2. The map ω1 decomposes into
two parts:

ω1,C+ : Zm → C+ ∩ Zm/2, t(ti)i=0,...,m−1 → t(pi)i=0,...,m2 −1

and, once the image of ω1,C+ is fixed, using (2.23),

ω̂1,C+ : Zm/2 → Zm/2, t(pi)i=0,...,m2 −1 → (pm
2 +i)i=0,...,m2 −1.

By abuse of notation, we denote:
ω1,C+(T ) = P , ω̂1,C+(P ) = P̂ , and ω1(T ) = (P , P̂ ) = P.

2.4.6. Condition on an expansive polynomial Pto produce aSalem
number or a negative Salem number. Given a monic expansive poly-
nomial P (X) ∈ Z[X] we separate two cases for the geometry of the roots
of Q by the Q-construction (cf §2.1): (i) either all the zeroes of Q are on
|z| = 1 : Q is then a product of cyclotomic polynomials, or (ii) Q has all
but two zeroes on |z| = 1, and we obtain a Salem number β.

To ensure that Q has a root outside the closed unit disk Boyd ([6, Corol-
lary 3.2]) proposes a criterion counting the number of entrances of Q. Below
we give a criterion on P to discriminate between the two cases, in a more
general setting including polynomials vanishing at negative Salem num-
bers [10].

Proposition 2.12. Let P be a monic expansive polynomial, with integer
coefficients, of even degree m ≥ 4. Let η = +1 or η = −1. Let T be a
polynomial having simple roots which satisfies

(z + η)T (z) = zP (z) + ηP ∗(z).
If the following inequality
(2.36) P (η)((1−m)P (−η)− 2ηP ′(−η)) < 0
holds then T (−η sgn(P (0)) z) is a Salem polynomial which does not vanish
at ±1.

Proof. Let us give a proof with η = −1 and P (0) > 0, the other cases being
treated using similar arguments.

First, T is necessarily monic, reciprocal, with integer coefficients. Now,
deriving (z−1)T (z) = zP (z)−P ∗(z), we obtain: (z−1)T ′(z)+T (z) = P (z)+
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zP ′(z) −mzm−1P (1
z ) + zm−2P ′(1

z ). Hence T (1) = (1 −m)P (1) + 2P ′(1).
On one hand, T (−1) = P (−1) 6= 0 since P is expansive. Let us show
that T (1) 6= 0. Let us assume the contrary. Since T has even degree and
that any cyclotomic polynomial Φn has even degree as soon as n > 2, an
even power of (z − 1) should divide T (z). Since T has simple roots we
obtain a contradiction. By the theorem of intermediate values, T has a
unique real root in (−1, 1) if and only if the condition T (1)T (−1) < 0,
equivalently (2.36), holds. �

2.4.7. Semigroup structure. Let q ≥ 2 be an integer. Let m ≥ 4 be an
even integer. Let T be a Salem polynomial of degreem, vanishing at a Salem
number β, having simple roots, such that T (±1) 6= 0. Denote by E+

T,q ⊂ Eq
the set of monic expansive polynomials over T of degree m, defined by their
coefficient vectors, as a point subset of the lattice Zm, satisfying (2.12), with
P (0) = +q, resp. E−T,q ⊂ Eq the set of monic expansive polynomials over T
of degree m satisfying (2.28), with P (0) = −q. Denote by P+

T :=
⋃
q≥2E

+
T,q,

resp. P−T :=
⋃
q≥2E

−
T,q and

PT := P+
T ∪ P

−
T =

⋃
q≥2

(
E+
T,q ∪ E

−
T,q

)
.

Theorem 2.13. Let P ∈ E+
T,q and P † ∈ E+

T,q†
be two monic expansive

polynomials over T of degree m. Then the sum P + P † − T is a monic
expansive polynomial of degree m over T , in E+

T,q+q†−1. The internal law
(P, P †) 7→ P ⊕P † := P +P †−T defines a commutative semigroup structure
on P+

T ∪ {T}, where T is the neutral element.

Proof. Let us give two proofs.
(1) Using McKee-Smyth interlacing quotients: by Theorem 2.1, the poly-

nomials L := P −T and L† := P †−T are monic, reciprocal and satisfy the
conditions:

• L(0) = q − 1 and L†(0) = q† − 1,
• deg(L) = deg(L†) = deg(T )− 1,
• L(1) ≤ −T (1) and L†(1) ≤ −T (1),
• the zeroes of L interlace the zeroes of T on the half unit circle and
similarly for the zeroes of L†.

After Definition 2.3 in §2.3, with K = K† = 1, (z − 1)L
T

and (z − 1)L†

T
are

CS-interlacing quotients. As in the proof of McKee and Smyth’s Proposi-
tion 6 in [18], we can transform these quotients into real quotients by the
Tchebyshev transformation x = z+ 1

z and we obtain in the real world the ra-

tional function f(x) = γ

∏
(x− δi)∏
(x− αi)

and respectively f †(x) = γ†
∏

(x− δ†i )∏
(x− αi)

.
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These rational functions can be written f(x) =
∑ λi

(x− αi)
and f †(x) =

∑ λ†i
(x− αi)

with λi > 0 and λ†i > 0. Then (f + f †)(x) =
∑ λi + λ†i

(x− αi)
has

strictly positive coefficients. Its derivative is everywhere negative. Then
there is exactly one zero between two successive poles. Then, back to the

complex world, (z − 1)(L+ L†)
T

is a CS-interlacing quotient. Recall that
T (1) < 0 since T (1/β) = T (β) = 0. Finally, we have

• (L+ L†)(0) = (q + q† − 1)− 1,
• deg(L+ L†) = deg(T )− 1 because L and L† are both monic,
• (L+ L†)(1) ≤ −2T (1) ≤ −T (1) because T (1) < 0,
• the zeroes of L + L† and the zeroes of T interlace on the half unit
circle.

Thus L+ L† + T ∈ E+
T,q+q†−1.

(2) Using the equations of the face hyperplanes of the admissible cone
C+ associated with T : using the notation of §2.4.5 and Remark 2.4.5, all
the components of the vectors AP + Λ and AP † + Λ are strictly negative
and

AT + Λ = t((T (1))2, 0, . . . , 0).
Then all the components of A

(
P +P †−T

)
+ Λ are strictly negative. Hence

P + P † − T belongs to C+. Thus L+ L† + T ∈ E+
T,q+q†−1. �

The semigroup law ⊕ satisfies:
• T ⊕ T = T ,
• P ⊕ P † = P + L† = P † + L = L+ L† + T ,
• (P ⊕ P †)− T = (P − T ) + (P † − T ).

Note that the opposite (additive inverse) of P ∈ E+
T,q is 2T − P , which is

outside the set P+
T since 2T (0)− P (0) = 2− q ≤ 0. Thus (P+

T ∪ {T},⊕) is
a semigroup and not a group.

The structure of the set of positive real generalized Garsia numbers, in
particular for those of Mahler measure equal to 2 (i.e. Garsia numbers in
the usual sense), is of interest for many purposes [11]. In the present context
of association between Salem numbers and generalized Garsia numbers, the
above semigroup structure can be transported to sets of generalized Garsia
numbers and generalized Garsia polynomials as follows.

Corollary 2.14. If P and P † are two generalized Garsia polynomials of
the same degree m ≥ 4 over a given Salem polynomial T , such that P (0) =
+M(P ), P †(0) = +M(P †), satisfying the assumption that P (0) + P †(0)− 1
is a prime number, then P + P † − T is a generalized Garsia polynomial of
degree m and Mahler measure equal to M(P ) + M(P †)− 1.



On Salem numbers, expansive polynomials and Stieltjes continued fractions 795

3. From expansive polynomials to Hurwitz polynomials,
Hurwitz alternants, and continued fractions

3.1. Hurwitz polynomials.

Definition. A real Hurwitz polynomial H(X) is a polynomial in R[X] of
degree ≥ 1 all of whose roots have negative real part.

The constructions involved in Theorem 2.1 require monic expansive poly-
nomials with coefficients in Z. Since the conformal map z 7→ Z = z + 1

z − 1
transforms the open unit disk |z| < 1 to the half plane Re(Z) < 0, it
transforms the set of zeros of the reciprocal polynomial P ∗ of an expansive
polynomial P into the set of zeros of a Hurwitz polynomial. In other terms
the polynomial P (z) = p0 + p1z + . . . + pmz

m is expansive if and only if
the polynomial H(z) = (z − 1)mP ∗(z + 1

z − 1) is a real Hurwitz polynomial.
In this equivalence, note that z = 0 is never a root of P ∗, implying that
H never vanishes at z = −1. The analytic transformation z → Z, resp.
Z → z = (1 + Z)/(Z − 1), corresponds to a linear transformation of the
coefficient vector of P , resp. of H, of Rm+1, as follows, the proof being easy
and left to the reader.

Proposition 3.1.
(i) If P (z) = p0 + p1z + · · · + pmz

m is an expansive polynomial then
H(z) = (z+1)mP (z − 1

z + 1) is a real Hurwitz polynomial and, denoting
H(z) = h0 + h1z + · · ·+ hmz

m, then h0 6= 0 and

(3.1) hi =
m∑
j=0

i∑
k=0

(−1)j−k
(
j

k

)(
m− j
i− k

)
pj , 0 ≤ i ≤ m.

(ii) If H(z) = h0 + h1z + · · ·+ hmz
m is a real Hurwitz polynomial such

that H(−1) 6= 0, then P (z) = (1 − z)mH(z + 1
1− z ) is an expansive

polynomial and, if we put P (z) = p0 + p1z + · · ·+ pmz
m, then

(3.2) pi =
m∑
j=0

i∑
k=0

(−1)i−k
(
j

k

)(
m− j
i− k

)
hj , 0 ≤ i ≤ m.

Notation. using the formulae (3.1), since h0 =
∑m
i=0(−1)ipi = P (−1) 6= 0,

we denote by

(3.3) ω2 : t(p0, p1, . . . , pm−1) 7→ t
( h1
P (−1) ,

h2
P (−1) , . . . ,

hm
P (−1)

)
the mapping which sends the coefficient vector of the monic polynomial
P (z) = p0 + p1z + · · ·+ zm to that of H(z) = (P (−1))−1(h0 + h1z + · · ·+
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hmz
m
)
where P (−1) =

∑m−1
i=0 (−1)ipi + 1 here; let us also remark that the

constant term h0/P (−1) of this polynomial is equal to 1.
Conversely, using (3.2), since pm =

∑m
i=0(−1)ihi = H(−1) 6= 0, we

denote by

(3.4) Ω2 : t(h1, h2, . . . , hm) 7→ t
( p0
H(−1) ,

p1
H(−1) , . . . ,

pm−1
H(−1)

)
the mapping which sends the coefficient vector of the Hurwitz polynomial
H = 1 +h1z+ · · ·+hmz

m, having constant coefficient equal to 1, to that of
the polynomial P (z) = (H(−1))−1(p0 + p1z+ . . .+ pmz

m
)
where H(−1) =

1 +
∑m
i=1(−1)ihi here; let us remark that the leading coefficient pm/H(−1)

is equal to 1. Reversing the order of the terms, we denote by

(3.5) Ω∗2 : t(h1, h2, . . . , hm) 7→ t
( pm−1
H(−1) ,

pm−2
H(−1) , . . . ,

p0
H(−1)

)
the mapping which sends the coefficient vector of the Hurwitz polyno-
mial H = 1 + h1z + · · · + hmz

m to that of the polynomial P ∗(z) =
1 + (H(−1))−1(pm−1z + . . .+ p0z

m
)
with H(−1) = 1 +

∑m
i=1(−1)ihi.

Hence, the transformation Ω2 o ω2 is the identity transformation on the
set of monic expansive polynomials P .

Remark. The transformations (3.1) and (3.2) are Z-linear. Hence, for any
real field K and any expansive polynomial P (z) ∈ K[z], the projective
classes K

(
t(pi)

)
and K

(
t(hi)

)
are in bijection. This observation justifies the

definitions of ω2 and Ω2. Indeed, these mappings suitably send a represen-
tative of K

(
t(pi)

)
to a representative of K

(
t(hi)

)
, which allows us to fix one

coefficient in the coefficient vector: in the first case the leading coefficient
pm equal to 1, in the second case the constant term h0 equal to 1.

Theorem 3.2 (Stodola, 1893). If H(z) = h0 + h1z + h2z
2 + .. + hmz

m ∈
R[z] is a Hurwitz polynomial then (hi)0≤i≤m are either all positive or all
negative.

Proof. Let r1, r2, .., rp be the real zeros of a real polynomial H(z) and let
α1, α2, . . . , αn, α1, α2, . . . , αn be its nonreal zeros. Then we have the factor-
ization :

H(z) = hm
∏

1≤k≤p
(z − rk)

∏
1≤j≤n

(z − αj)(z − αj)

H(z) = hm
∏

1≤k≤p
(z − rk)

∏
1≤j≤n

(z2 − 2 Re(αj)z + |αj |2)

Now, H(z) is a Hurwitz polynomial if rk < 0, for all 1 ≤ k ≤ r, and
Re(αj) < 0, for all 1 ≤ j ≤ n. Then all the coefficients of all the factors
are positive. Thus, if hm > 0, all the coefficients of H(z) are positive and
if hm < 0, then they are all negative. �
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Remark. From now on, we consider that the coefficients hi of the real
Hurwitz polynomials are all (strictly) positive (otherwise, we will consider
−H(z)).

3.2. Hurwitz alternants and Stieltjes continued fractions.

Definition. The quotient (alternant) of Hurwitz h(z) associated with a
polynomial H(z) = hmx

m + hm−1x
m−1 + . . . + h1x + h0 ∈ R>0[z] is the

rational function

(3.6) h(z) := h1 + h3z + h5z
2 + ..

h0 + h2z + h4z2 + ..
=
∑b(m−1)/2c
i=0 h2i+1z

i∑bm/2c
i=0 h2izi

.

The continued fraction of the quotient of Hurwitz h(z) of (3.6) is

h(z) =
h1 + h3z + h5z

2 + ..

h0 + h2z + h4z2 + ..
=

h1

h0
(1 +

h3

h1
z +

h5

h1
z2 + . . . )

1 +
h2

h0
z +

h4

h0
z2 + . . .

=
h1/h0

1 + z

[
(h1h2 − h0h3) + (h1h4 − h0h5)z + (h1h6 − h0h7)z2 . . .

h0h1 + h0h3z + h0h5z2 + . . .

]

=
h1
h0

1 +
h1h2−h0h3

h0h1
z

1 + z [. . . ]

=
f1

1 +
f2z

1 +
f3z

1 +
. . .

1 + . . .

written =:
[
f1/f2/f3/. . .

]
(z)

for short, with f1 = h1/h0, f2 = (h1h2 − h0h3)/(h0h1), . . . Stieltjes [25]
(1894) has extensively studied these continued fractions, their Padé approx-
imants and the expressions of the numerators fj as Hankel determinants
(Henrici [12, Chap. 12, p 549 and pp 555–559], where they are called SITZ
continued fractions). For H as in Definition 3.2, denote D0 := 1, D−1 :=
h−1

0 , D−2 := h−2
0 ,

D1 = h1, D2 =
∣∣∣∣ h1 h3
h0 h2

∣∣∣∣ , D3 =

∣∣∣∣∣∣
h1 h3 h5
h0 h2 h4
0 h1 h3

∣∣∣∣∣∣
and generally

Dj := det
(
h

(1)
j , h

(3)
j , . . . , h

(2j−1)
j

)
,

where h(r)
j denotes the j-dimensional column vector whose components are

the first j elements of the sequence hr, hr−1, hr−2, . . . (hr := 0 for r > m
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and for r < 0). Then

(3.7) fj = Dj

Dj−1

Dj−3
Dj−2

, j = 1, 2, . . . ,m.

Definition. A rational function F (z) ∈ R(z) is a m-terminating con-
tinued fraction if it exist f1, f2, . . . , fm ∈ R, fm 6= 0, such that F (z) =[
f1/f2/ . . . /fm

]
(z).

Theorem 3.3 (Hurwitz, 1895). The polynomial H(z) ∈ R[z], of degree
m ≥ 1, has all his roots on the left half plane Re(z) < 0 if and only if
the Hurwitz alternant h(z) of H(z) can be represented by an m-terminating
continued fraction

[
f1/f2/ . . . /fm

]
(z) in which every number fk is (strictly)

positive.

Proof. Henrici [12, Theorem 12.7c]. �

If h(z) is a m-terminating rational fraction, given by (3.6), then it is in
its lowest terms, i.e. the numerator

∑b(m−1)/2c
i=0 h2i+1z

i and the denominator∑bm/2c
i=0 h2iz

i of h(z) have no common zeros ([12, Theorem 12.4a]). Two real
Hurwitz polynomials H1 and H2 such that H1/H2 ∈ R∗ have the same
Hurwitz quotient by (3.6). The real Hurwitz polynomials H obtained by
ω2 (Proposition 3.1) from expansive polynomial P in Z [z] have coefficients
in Z and even degrees. Therefore their Hurwitz alternants are represented
by m-terminating continued fractions

[
f1/f2/ . . . /fm

]
(z) with fj ∈ Q>0 for

1 ≤ j ≤ m, such that h(1) 6= 1 since H(−1) 6= 0. Recall that h(x) > 0 for
x ≥ 0 in general, with h({Im(z) > 0}) ⊂ {Im(z) < 0}, h({Im(z) < 0}) ⊂
{Im(z) > 0} ([12, p 553]).

In the case where all the fjs are positive rational numbers, following
Stieltjes [25], the m-terminating continued fraction

[
f1/f2/ . . . /fm

]
(z) can

also be written with integers, say e0, e1, e2, . . . , em, as

e1

e0 +
e2z

e1 +
e3z

em−2 +
. . .

em−2 + emz

=

e1

e0

1 +

e2

e0e1
z

1 +
. . .

1 +
em

em−2
z

with f1 = e1
e0

, fm = em
em−2

and fi = ei
ei−2ei−1

for 2 ≤ i ≤ m− 1. A Hurwitz

polynomial H(z) associated with h(z) is given by them+1 positive integers
e0, e1, e2, . . . , em with gcd(e0, e1, . . . , em)=1.
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Example. The Salem number β = 1.582347 . . . ∈ A2 of degree six, whose
minimal polynomial is T (x) = z6−z4−2z3−z2 +1, admits the polynomial
P (z) = z6+z5+z4+z2+2z+2 as expansive polynomial lying over T by (z−
1)T (z) = zP (z)− P ∗(z). By the mapping z 7→ Z and ω2 (Proposition 3.1)
we obtain the Hurwitz polynomial H(Z) = 4Z6 + 5Z5 + 29Z4 + 10Z3 +
14Z2 +Z+ 1. H(z) is represented by the continued fraction of the Hurwitz
alternant: [f1/f2/ . . . /f6](z) = [1/4/4/5/4

5/
1
5](z) with e0 = e1 = 1, e2 =

4, e3 = 16, e4 = 320, e5 = 4096, e6 = 64.
However, though simple and suggested in [12] as one of the basic trans-

formations of Stieltjes ([25, pp J1–J5]), the coding of the Hurwitz alternants
in integers is not practical from a numerical viewpoint since we quickly ob-
tain very large integers ei for many Salem numbers. For instance, for the
Lehmer number θ = 1.176 . . . of minimal polynomial T (z) = z10 +z9−z7−
z6 − z5 − z3 + z + 1, of degree 10, the two expansive polynomials P1(z) =
z10+2z9+z8+z2+2z+2 and P2(z) = z10+z9+z8−z7−z6−z5−z4−z3+2z+2
lie over T , producing θ. The Hurwitz alternant h1 of H1 = ω2(P1), resp. h2
of H2 = ω2(P2), is

h1(z) = 10z4 + 120z3 + 252z2 + 120z + 10
9z5 + 269z4 + 770z3 + 434z2 + 53z + 1 ,

resp. h2(z) = 4z4 + 112z3 + 280z2 + 112z + 4
3z5 + 261z4 + 798z3 + 426z2 + 47z + 1 .

For h1, e0 = 1, e1 = 10, e2 = 410, e3 = 8320, e4 ≈ 2.272 107, e5 ≈ 1.772 1011,
e6 ≈ 1.944 1018, e7 ≈ 2.594 1029, e8 ≈ 1.414 1018, e9 ≈ 1.151 1047, e10 ≈
1.528 1064. For h2, e0 = 1, e1 = 4, e2 = 76, e3 = 2816, e4 = 3329024, e5 =
6335496192, e6 ≈ 3.189 1016, e7 ≈ 8.641 1015, e8 ≈ 1026, e9 ≈ 1.755 1041,
e10 ≈ 3.758 1055.

Notation. putting H(z) = 1 + h1z + h2z
2 + . . . + hmz

m, a real Hurwitz
polynomial, we denote by

(3.8) ω3 : Rm → (R+)m, t(h1, h2, . . . , hm) 7→ t(f1, f2, . . . , fm)

the mapping which sends the coefficient vector of H to the m-tuple (fj)
given by (3.7), where each fj , strictly positive, belongs to the real field
Q(h1, . . . , hm) generated by the coefficients of H. We consider the m-tuple
(f1, . . . , fm) as the set of coordinates of a point of the mth-Euclidean space
Rm, in the canonical basis, generically denoted by F . Conversely (since
Salem numbers have even degrees, together with the Salem, expansive and
Hurwitz polynomials we consider, we only discuss the case where m ≥ 2 is
even), we denote by

(3.9) Ω3 :
(
R+)m → Rm, t(f1, f2, . . . , fm) 7→ t(h1, h2, . . . , hm)
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the mapping which sends the m-tuple (fj) of positive real numbers to the
coefficient vector of H(z) = 1 + h1z + h2z

2 + . . .+ hmz
m by the relations

(3.10) for 0 < i ≤ m
2 : h2i =

∑
{(l1,l2,...,li)}

i∏
j=1

flj

where the sum is taken over all i-tuples (l1, . . . , li) such that ls ∈ {2, . . . ,m}
for s = 1, . . . , i, and lr − ls ≥ 2 for all r > s,

(3.11) for 0 ≤ i ≤ m
2 − 1 : h2i+1 = f1

∑
{(l1,l2,...,li)}

i∏
j=1

flj

where the sum is taken over i-tuples (l1, . . . , li) such that ls ∈ {3, . . . ,m}
for s = 1, . . . , i, and lr − ls ≥ 2 for all r > s.

The map ω3 ◦ Ω3 is the identity transformation on
(
R+)m and Ω3 ◦ ω3

is the identity mapping on the set of real Hurwitz polynomials of degree m
having constant term equal to 1.

3.3. Salem numbers from m-terminating continued fractions. Let
β be a Salem number. Let m ≥ deg β be an even integer. Let T (X) be a
Salem polynomial vanishing at β, of degree m, having simple roots such
that T (±1) 6= 0. In the sequel, for convenience, we denote
P = ω1(T ) instead of (2.30); T = Ω1(P ) instead of (2.31);
H = ω2(P ) instead of (3.3); P = Ω2(H) instead of (3.4);
F = ω3(H) instead of (3.8); H = Ω3(F ) instead of (3.9);
P ∗ = Ω∗2(H) instead of (3.5),

where P (expansive) is always monic, and H (real Hurwitz) and P ∗ always
have a constant term equal to 1. The Hurwitz alternant of H is hP (z) =
h(z) = [f1/f2/ . . . /fm](z) with F = t(f1, f2, . . . , fm), where the subscript
“P” in hP (z) refers to the expansive polynomial P . If β belongs to the class
Aq, q ≥ 2, then the Mahler measure M(P ) = q, and Theorem 2.1 amounts
to the following:

(z − 1)T (z) =
(
z(Ω2 ◦ Ω3)− (Ω∗2 ◦ Ω3)

)
(F ),(3.12)

P (z) = ω1(T )(z) = (Ω2 ◦ Ω3)(F ),(3.13)
with L(X) = P (X)− T (X) = ω1(T )(X)− T (X) the reciprocal polynomial
whose roots, all of modulus 1, interlace with those of T on |z| = 1.

Definition. We call interlacing conjugates of β, with respect to T and P ,
all on the unit circle, the roots of L and the roots of modulus 1 of T .

The set of interlacing conjugates of β is the union of the subcollection of
the Galois conjugates of β of modulus 1, and the subcollection of the roots
of L and the roots of unity which are zeroes of T . There are finitely many
interlacing configurations on the unit circle by Proposition 2.7.



On Salem numbers, expansive polynomials and Stieltjes continued fractions 801

Once T is fixed, m ≥ 4 even, with the notations of §2.4.7, denote

F+
T :=

{
F = ω3 ◦ ω2(P ) | P ∈ P+

T

}
, F−T :=

{
F = ω3 ◦ ω2(P ) | P ∈ P−T

}
,

FT := F+
T ∪ F

−
T ⊂

(
Q>0

)m
.

Proof of Theorem 1.2. (i) The set PT of monic expansive polynomials P
over T , viewed as a point subset of Zm by their coefficients vectors, is uni-
formly discrete: it has a minimal interpoint distance equal to 1. Considering
PT and FT embedded in Cm, the maps ω2 and ω3, defined on Cm by (3.3)
and (3.8) respectively, are analytical. Invoking the Theorem of the open
image for the analytic mapping ω3 ◦ω2, every open disk centered at a point
P in PT is sent to an open neighbourhood of its image point F = ω3◦ω2(P ).
Therefore FT is a union of isolated points in the octant (R>0)m.

(ii) Suppose that the affine dimension is less than m. Then there would
exist an affine hyperplane y(x1, . . . , xm) = 0 containing FT in Rm, and in
particular F+

T . The image of this affine hyperplane by Ω2 ◦ Ω3 would be a
hypersurface of Rm and the set P+

T of monic expansive polynomials P over
T would be included in it. But there is a bijection between P and P and
the discrete sector C+ ∩ Zm/2 has affine dimension m/2. Contradiction.

(iii) By transport of the internal law ⊕ on P+
T ∪ {T}, we obtain a

semigroup structure on F+
T ∪ {ω3 ◦ ω2(T )}, where the neutral element is

ω3 ◦ ω2(T ). Let us show that

ω3 ◦ ω2(T )(z) = h1 + h3z + h5z
2 + ..

h0 + h2z + h4z2 + ..
= 0.

In fact,

h2i+1 =
m∑
j=0

2i+1∑
k=0

(−1)j−k
(
j

k

)(
m− j

2i+ 1− k

)
tj

=
m
2 −1∑
j=0

2i+1∑
k=0

(−1)j−k
(
j

k

)(
m− j

2i+ 1− k

)
tj

+
m∑

j=m
2

2i+1∑
k=0

(−1)j−k
(
j

k

)(
m− j

2i+ 1− k

)
tm−j

=
m
2 −1∑
j=0

2i+1∑
k=0

(−1)j−k
(
j

k

)(
m− j

2i+ 1− k

)
tj

+
m
2 −1∑
j=0

2i+1∑
l=0

(−1)m−j−2i−1+l
(

m− j
2i+ 1− l

)(
j

l

)
tj

=
m
2 −1∑
j=0

2i+1∑
k=0

((−1)j−k + (−1)−j−1+k)
(
j

k

)(
m− j

2i+ 1− k

)
tj = 0 .
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Since T (−1) 6= 0, the coefficient h0 is not equal to 0. The image of T by ω2
is of type t(h0, 0, h2, 0, h4, 0, . . . , 0, hm)/h0. It admits a Hurwitz alternant
h equal to [0/0/ . . . /0](z), where 0 occurs m times, corresponding to the
point F = 0 in Rm. Indeed, all the coefficients fj , j = 1, . . . ,m, are equal
to 0, by (3.7), since the top rows of the determinants Dj are all made of
zeros.

(iv) The real Hurwitz polynomials H obtained as images of elements of
PT by ω2 never vanish at z = −1. The image under ω3 of the hyperplane
of Rm of equation {t(h1, h2, . . . , hm) ∈ Rm | 1− h1 + h2 − . . .+ hm = 0} is
an hypersurface which does not contain any point F of FT . �

Once T is fixed, and P chosen over T , the geometrical coding

(3.14) (β, T, P ) ←→ F = ω3 ◦ ω2 ◦ ω1(T ) =

 f1
...
fm

 ∈ (Q>0)m

shows that the Stieltjes continued fraction F entirely controls β and simul-
taneously all the interlacing conjugates of β, by (3.12) and (3.13). When P
runs over the complete set of monic expansive polynomials over T , F runs
over FT . If F1 and F2 6= F1 are in FT , they give rise to equivalent codings
of the same Salem number β.

As for the commutative semigroup law on Hurwitz alternants, also de-
noted by ⊕, Theorem 1.2 implies that the following diagram is commuta-
tive, for P, P † ∈ P+

T :

(P, P †) → P ⊕ P † := P + P † − T
↓ ↓

(hP , hP †) → hP ⊕ hP † := hP⊕P †

Appendix: Proof of Lemma 1.3.
Let a and b > a > 1 be two real numbers such that the open interval (a, b)

contains no Salem number. If there exist Salem numbers arbitrarily close to
1, i.e. if the adherence set T contains 1, then there would exist τ0 = M(τ0) ∈
T such that: 0 6= log(τ0) < log b− log a. The greatest integer s = b log a

log(τ0)c >
0 such that s log(τ0) ≤ log a satisfies: log a < (s+ 1) log(τ0) < log b. Indeed,
if (s + 1) log(τ0) > log b, then we would have: s log(τ0) > log b − log(τ0) >
log a. Contradiction. Then a < τ s+1

0 < b. But τ s+1
0 is a Salem number since

τ0 ∈ T (Salem [22, p 106]). Contradiction.
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