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Equivariant epsilon conjecture for 1-dimensional
Lubin-Tate groups

par Dmitriy IZYCHEV et Otmar VENJAKOB

Résumé. Dans cet article, nous énonçons une conjecture sur les
relations entre les constantes équivariantes ε (associées à des repré-
sentations locales p-adiques V et des extensions finies de corps
locaux L/K) et les groupes de cohomologie galoisienne locale de
T , un Zp-réseau stable de V . Nous prouvons cette conjecture pour
une extension L/K au plus modérément ramifiée et pour T un mo-
dule de Tate p-adique d’un groupe de Lubin-Tate de dimension un
défini sur Zp. Cette preuve généralise les idées dévelopées dans [4]
dans le cas du groupe multiplicatif Gm au cas d’un groupe de
Lubin-Tate de dimension un quelconque. Pour les relations avec
les différentes formulations des conjectures ε de [1], [18], [4], [2]
et [9], voir [19].

Abstract. In this paper we formulate a conjecture on the rela-
tionship between the equivariant ε-constants (associated to a local
p-adic representation V and a finite extension of local fields L/K)
and local Galois cohomology groups of a Galois stable Zp-lattice
T of V . We prove the conjecture for L/K being at most tamely
ramified and T being a p-adic Tate module of a one-dimensional
Lubin-Tate group defined over Zp by extending the ideas of [4]
from the case of the multiplicative group Gm to arbitrary one-
dimensional Lubin-Tate groups. For the connection to the differ-
ent formulations of the ε-conjecture in [1], [18], [4], [2] and [9],
see [19].

1. Introduction
In order to illustrate the importance and occurrence of ε-factors we would

like to recall the following basic example. Let χ : (Z/NZ)× → C× be
a (primitive) Dirichlet character modulo N ∈ N (i.e., N is minimal). As
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usual we extend χ to Z by setting χ(n) := χ(n modN) for (n,N) = 1 and
0 otherwise. Then the Dirichlet L-function of χ is defined by

L(χ, s) =
∞∑
n=1

χ(n)
ns

, s ∈ C, Re(s) > 1.

The completed L-function

Λ(χ, s) := L∞(χ, s)L(χ, s), L∞(χ, s) =
(N
π

)s/2
Γ(χ, s),

where Γ(χ, s) := Γ( s+k2 ) in terms of the usual Γ-function and the exponent
k ∈ {0, 1} given by χ(−1) = (−1)kχ(1), admits a meromorphic continuation
to C and satisfies the functional equation

Λ(χ, s) = τ(χ)
ik
√
N

Λ(χ, 1− s)

with the Gauß sum

τ(χ) =
N−1∑
ν=0

χ(ν)e2πiν/N ,

which is the basic example of an ε-factor. For the trivial character χ we
get the Riemann ζ-function, whose Euler product reflects the prime factor
decomposition of natural numbers. Let µN be the group of primitive N -th
roots of unity and Q(µN ) the corresponding cyclotomic field. In general, for
Galois field extensions L/K we shall writeG(L/K) for the associated Galois
group. Using the isomorphism G(Q(µN )/Q) ∼= (Z/NZ)× we can view χ as
a character of G(Q(µN )/Q). For N = 4 the analytic class number formula
specialises to

hQ(i) = ]µ(Q(i))
√
N

2π L(χ1, 1), χ1(1̄) = 1, χ1(3̄) = −1

and shows the deep and beautiful connection between special L-values and
(algebraic) arithmetic objects like the ideal class group or more generally
Galois or étale cohomology groups. The next prominent example is given
by the Birch and Swinnerton-Dyer conjecture, which apart from rational-
ity questions relates the order of vanishing at s = 1 of the Hasse-Weil
L-function attached to an elliptic curve E over a number field to the rank
of the Mordell-Weil group of E. Finally, the corresponding leading coeffi-
cient again is related to arithmetic invariants of E.

To arbitrary representations coming from motives M the formulae of
this kind have been extended conjecturally by Bloch and Kato and they
form part of the so called Tamagawa Number Conjecture (TNC). Again
we have the complex L-function L(M, s) attached to a motive M which is
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believed to satisfy the following functional equation relating L(M, s) to the
L-function L(M∗(1), s) of the (Kummer) dual motive M∗(1) of M :

L(M, s) = ε(M, s)L∞(M∗(1),−s)
L∞(M, s) L(M∗(1),−s).

Here L∞ is the so called Euler-factor at infinity (attached to M and
M∗(1), respectively), which is built up by certain Γ-factors and certain
powers of 2 and π (depending on the Hodge structure of M), while the so
called ε-factor decomposes into local factors

ε(M, s) =
∏
v

εv(M, s).

Then the TNC states a relation between the leading term L∗(0) (of the
Taylor expansion of L(M, s) at zero s = 0) and certain global Galois coho-
mology groups of RΓ(GK ,Mp) of M (up to the period and regulator). In
the following we assume the validity of the functional equation. Then it is
by no means evident that the validity of the TNC for M is equivalent to
the validity of the TNC for M∗(1) under this functional equation on the
complex analytic side and under Artin/Verdier or Poitou/Tate-duality on
the p-adic Galois cohomology side. To the contrary, they are only compat-
ible if and only if the local constants εv(M, 0) are in a specific way related
to certain local Galois cohomology groups of RΓ(GKv ,Mp) for all places v.
This is - roughly speaking - the content of the absolute ε-conjecture. From
a more technical point of view,i.e., if one spells out this property in detail,
this boils down to an integral p-adic interpolation of the corresponding
Bloch-Kato exponential maps.

The equivariant ε-conjecture is formulated in a similar way by tensoring
the coefficients (Zp-modules) with the group algebra Zp[G], where G is the
Galois group of some local Galois extension Lv/Kv, i.e., by deforming the
presentation along an extension of local fields. This version not only states
the relation mentioned above for all twists of Mp by Artin representations
of the Galois group G, simultaneously, but is finer: it states (implicitly)
congruences between the corresponding invariants attached to each twist
which are related to the difference between the (K-goups of the) integral
group algebra Zp[G] and a maximal order in Qp[G]. As before it now de-
scribes the compatibility of the Equivariant Tamagawa Number Conjecture
(ETNC) [9] for a motive and its Kummer dual with respect to the func-
tional equation and duality in Galois cohomology. S. Yasuda proved in [28]
the cases in which the residue characteristics of v and p differ, thus here we
consider only p-representations of the absolute Galois groups of local fields.
For more details about this general background we refer the reader to [18]
or the survey article [26] including the references given there.



488 Dmitriy Izychev, Otmar Venjakob

In [1] Benois and Berger have proved the equivariant conjecture with
respect to the extension L/K for arbitrary crystalline representations V of
GK , where K is an unramified extension of Qp and L a finite subextension
of K(µp∞) over K; here we write µp∞ for the p-primary part of all roots of
unity µ. In the special case V = Qp(r), r ∈ Z, Burns and Flach [10] prove
the local ETNC using global ingredients in a semi-local setting. Extending
work [2] of Bley and Burns Breuning [4] proves the equivariant conjecture
for V = Qp(1) with respect to all tamely ramified extensions.

The Zp-module Zp(1) can be considered as the p-adic Tate module of the
multiplicative formal group Ĝm defined over Zp. Following closely the ap-
proach of Breuning we extend his ideas to arbitrary one-dimensional Lubin-
Tate groups and prove in this paper the equivariant ε-conjecture for tamely
ramified extensions and p-adic Tate modules of such one-dimensional Lubin-
Tate groups defined over Zp, see Theorem 6.6. For (possibly wildly ramified,
p-adic Lie) subextensions of the maximal abelian extension of Qp the cor-
responding result has been proved in [27] based on Kato’s ideas. One main
aspect of this paper is that unramified characters can be dealt with in the
context of local constants by unramified base change (and descending af-
terwards). This philosophy is also immanent in [21] where a two-variable
Perrin-Riou regulator map is used, in which the second variable - in contrast
to the first one, that already shows up in [1] - stems from an unramified
extension.

Acknowledgements. We are grateful to Denis Benois and Laurent Berger
for stimulating discussions. Also we would like to thank Vésale Nicolas for
providing the French abstract. Finally, we are grateful to the anonymous
referee for valuable suggestions which helped to improve the article consid-
erably.

Notation and conventions. Let p be a prime number. Let K be a finite
extension of Qp, χur : GK → Z×p be a continuous character which is the
restriction of a continuous unramified character χurQp : GQp → Z×p and let
χcyc : GK → Z×p denote the p-adic cyclotomic character. We consider a
continuous representation T = Zp(χur)(χcyc) =: Zp(χur)(1) of GK , which
appears naturally as a restriction to GK of the p-adic Tate module TpF of a
one-dimensional Lubin-Tate group F defined over Zp (see [19, Exm. 5.20]).
We set V := Qp⊗Zp T . Let L be a finite Galois extension of K and let G =
G(L/K) denote its Galois group with inertia subgroup I; by FrK we denote
the arithmetic Frobenius homomorphism of K. Let Q̂ur

p denote the p-adic
completion of the maximal unramified extension of Qp and Ẑurp its ring of
integers. By σ we denote the absolute arithmetic Frobenius automorphism
acting on the latter rings. Finally, we set Λ := Zp[G] and Ω := Qp[G],
Λ̃ := Ẑurp [G] and Ω̃ := Q̂ur

p [G].
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We omit the case, in which χur factors over L, as in this case the ε-
conjecture can easily be derived from [4] as we sketch in the Appendix.
Hence we assume from now on that χur(GL) 6= 1.

2. Preliminaries
2.1. K-theory, determinants and refined Euler characteristics.

2.1.1. Review of K0 and K1. Let R be a ring. By an R-module we
mean a left R-module.

By definition K0(R) is an abelian group, whose group law we denote
additively, presented by the following generators and relations.

• Generators: [P ], where P is a finitely generated projective R-
module.
• Relations:

(i) If P ∼= Q, then [P ] = [Q].
(ii) [P ⊕Q] = [P ] + [Q].

K1(R) is an abelian group, whose group law we denote multiplicatively,
defined by the following generators and relations.

• Generators: [P, α], where P is a finitely generated projective R-
module and α is an automorphism of P .
• Relations:

(i) If there is an isomorphism P ∼= Q via which α corresponds to
β, then [P, α] = [Q, β].

(ii) [P ⊕Q,α⊕ β] = [P, α] · [Q, β].
(iii) [P, α ◦ β] = [P, α] · [P, β] for α, β ∈ Aut(P ).

Then the canonical homomorphisms GLn(R) → K1(R) sending an ele-
ment α ∈ GLn(R) to [Rn, α] induces an isomorphism

(2.1) GL∞(R)/[GL∞(R), GL∞(R)]
∼=−→ K1(R),

where [GL∞(R), GL∞(R)] denotes the commutator subgroup, which equals
the group of elementary matrices E∞(R).

If R is commutative, the determinant map det : GLn(R)→ R× induces
the determinant map

det : K1(R)→ R×

via the isomorphism (2.1).
Next we recall Swan’s construction of relative K-groups. For any ring R

we denote by P(R) the category of finitely generated projective R-modules.
For any homomorphism of rings φ : R→ R′, the relativeK-groupK0(R,R′)
is defined by generators and relations, as follows. Consider triples (M,f,N)
with M,N ∈ P(R), f : R′⊗RM ∼= R′⊗N. For brevity, let M ′ = R′⊗RM,
etc. A morphism

(µ, ν) : (M1, f1, N1)→ (M2, f2, N2)
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consists of a pair of maps µ ∈ HomR(M1,M2), ν ∈ HomR(N1, N2), such
that

ν ′ ◦ f1 = f2 ◦ µ′ : M ′1 → N ′2.

We write (M1, f1, N1) ∼= (M2, f2, N2) if both µ and ν are isomorphisms. A
short exact sequence of triples is a sequence

0 // (M1, f1, N1)
(µ1,ν1)// (M2, f2, N2)

(µ2,ν2)// (M3, f3, N3) // 0
such that each pair (µi, νi) is a morphism, and where the sequences of
R-modules

0 // M1
µ1 // M2

µ2 // M3 // 0
and similarly for Ni with νi are exact. Now K0(R,R′) is defined as the free
abelian group generated by all isomorphism classes of triples, modulo the
relations

(L, gf,N) = (L, f,M) + (M, g,N)
and for each short exact sequence as above

(M2, f2, N2) = (M1, f1, N1) + (M3, f3, N3).
This relative K-group fits into the following exact sequence of groups

(2.2) K1(R) // K1(R′) ∂ // K0(R,R′) ι // K0(R) // K0(R′),
where the map ∂ := ∂R,R′ (usually we shall omit the decorations) is de-
fined by ∂(f) = [Rn, f, Rn] for f ∈ GLn(R′), while the map ι is given by
ι([M,f,N ]) = [M ]−[N ], and where the brackets denote classes inK0(R,R′)
and K0(R), respectively. The above exact sequence behaves functorially
with respect to change of rings. E.g. we obtain a group homomorphism

(2.3) K0(Λ,Qp) // K0(Λ̃, Q̂ur
p ),

where we abbreviate K0(R,B) := K0(R,R ⊗C B) for any C-algebra R,
where C ⊆ B is any extension of commutative rings. By Taylor’s fixed
point theorem [17, thm. 10A] it is injective.

2.1.2. Non-commutative determinants. As before let P(R) denote
the category of finitely generated projective R-modules and (P(R), is) its
subcategory of isomorphisms, i.e., with the same objects, but whose mor-
phisms are precisely the isomorphisms. Then there exists a category CR and
a functor

dR : (P(R), is)→ CR,
which satisfies the following properties:

(i) There is an associative and commutative product structure on CR
(M,N) → M · N or written just MN with unit object dR(0)
and inverses. All objects are of the form dR(P )dR(Q)−1 for some
P,Q ∈ P(R).
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(ii) all morphisms of CR are isomorphisms, dR(P ) and dR(Q) are iso-
morphic if and only if the classes of P and Q in K0(R) coin-
cide. There is an identification of groups Aut(dR(0)) = K1(R) and
Mor(M,N) is either empty or an K1(R)-torsor, where α : dR(0)→
dR(0) ∈ K1(R) acts on φ : M → N as α · φ : M = dR(0) ·M →
dR(0) ·N = N .

(iii) dR preserves the “product” structures: dR(P⊕Q) = dR(P )·dR(Q).
We define the category CR as follows. An object of CR is a pair (P,Q) of

finitely generated projective R-modules and morphisms of CR are as follows.
There exists a morphism (P,Q) → (P ′, Q′) if and only if [P ] − [Q] =

[P ′]− [Q′] in K0(R). If [P ]− [Q] = [P ′]− [Q′], there is a finitely generated
projective R-module T such that P ⊕Q′ ⊕ T ∼= P ′ ⊕Q⊕ T . Let

GT = Aut(P ′ ⊕Q⊕ T ), IT = Isom(P ⊕Q′ ⊕ T, P ′ ⊕Q⊕ T ).

Then IT is a GT -torsor (that is, IT is a non-empty set endowed with an
action of GT and for each x, y ∈ IT , there exists a unique g ∈ GT such that
y = gx). We define the set Mor((P,Q), (P ′, Q′)) of morphisms (P,Q) →
(P ′, Q′) in CR by

(2.4) Mor((P,Q), (P ′, Q′)) = K1(R)×GT IT .

Here K1(R)×GT IT denotes the quotient of K1(R)×IT by the action of GT
given by (x, y) 7→ (xḡ, g−1y) (x ∈ K1(R), y ∈ IT , g ∈ GT and ḡ denotes the
image of g in K1(R)). It is the K1(R)-torsor obtained from the GT -torsor
IT by the canonical homomorphism GT → K1(R). This set of morphisms
does not depend on the choice of T (see [18]). By definition any morphism
in CR is an isomorphism and

• For an object (P,Q) of CR we denote the object (Q,P ) of CR by
(P,Q)−1 and call it the inverse of (P,Q) (with respect to the prod-
uct structure).
• For objects (P,Q) and (P ′, Q′) of CR we denote the object (P ⊕
P ′, Q ⊕ Q′) of CR by (P,Q) · (P ′, Q′) and call it the product of
(P,Q) and (P ′, Q′).
• For a finitely generated projective R-module P we denote the ob-
ject (P, 0) of CR by dR(P ). Hence an object (P,Q) of CR is described
as

(P,Q) = dR(P ) · dR(Q)−1.

Remark 2.1. In particular, if α : P → Q denotes an isomorphism of finitely
generated projective R-modules, then this gives rise to a morphism dR(α) =
[(1, α)] ∈ K1(R)×G0 Isom(P,Q) = Mor(dR(P ),dR(Q)).

Let R′ be another ring and let Y be a f.g projective R′-module endowed
with a structure of a right R-module such that the actions of R and R′ on
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Y commute. Then we have a functor
Y⊗R : CR → CR′ , (P,Q) 7→ (Y ⊗R P, Y ⊗R Q).

For example, for a ring homomorphism R→ R′ we have a functor R′⊗R :
CR → CR′ , by taking R′ as Y .

Also, for example, for a ring homomorphism R′ → R such that R is
finitely generated and projective as a (left) R′-module, we have a functor
R⊗R by taking R as Y , which is the functor to regard a R-module as a R′-
module. The induced homomorphism Aut(dR(0))→ Aut(dR′(0)) coincides
with the norm homomorphism K1(R)→ K1(R′).

Remark 2.2. In particular, if α : P → Q denotes an isomorphism of finitely
generated projective R-modules, then this gives rise to a morphism dR(α) =
[(1, α)] ∈ K1(R) ×G0 Isom(P,Q) = Mor(dR(P ),dR(Q)) with T = 0 the
trivial module. Now consider ring homomorphism R → R′ and assume
that the natural mapK0(R)→ K0(R′) is injective. Then, if P,Q are finitely
generated projective R-modules, by the definition above the set Mor(R′⊗R
dR(P ), R′ ⊗R dR(P )) is a K1(R′)-torsor (respectively empty) if and only
if Mor(dR(P ),dR(P )) is a K1(R)-torsor (respectively empty). Moreover, it
follows from (2.4) that

Mor(R′ ⊗R dR(P ), R′ ⊗R dR(P )) ∼= Mor(dR(P ),dR(P ))×K1(R) K1(R′).

The functor dR can be naturally extended to complexes. Let Cp(R) be
the category of bounded complexes in P(R) and (Cp(R), quasi) its subcat-
egory of quasi-isomorphisms. For C ∈ Cp(R) we set C+ = ⊕i evenCi and
C− = ⊕i oddCi and define dR(C) := dR(C+)dR(C−)−1 and thus we obtain
a functor

dR : (Cp(R), quasi)→ CR
with the following properties (C,C ′, C ′′ ∈ Cp(R))

(iv) If 0→ C ′ → C → C ′′ → 0 is a short exact sequence of complexes,
then there is a canonical isomorphism

dR(C) ∼= dR(C ′)dR(C ′′),
which we take as an identification.

(v) If C is acyclic, then the quasi-isomorphism 0→ C induces a canon-
ical isomorphism

dR(0)→ dR(C).
(vi) dR(C[r]) = dR(C)(−1)r , where C[r] denotes the rth translate of C.
(vii) The functor dR factorizes over the image of Cp(R) in Dp(R), the

category of perfect complexes (as full triangulated subcategory of
the derived category Cb(R) of the homotopy category of bounded
complexes of R-modules), and extends to (Dp(R), is) (uniquely up
to unique isomorphism).
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(viii) If C ∈ Dp(R) has the property, that all cohomology groups Hi(C)
belong again to Dp(R), then there is a canonical isomorphism

dR(C) =
∏
i

dR(Hi(C))(−1)i .

(ix) Let R′ be another ring and let Y be a f.g projective R′-module
endowed with a structure of a right R-module such that the actions
of R and R′ on Y commute. Then we have a commutative diagram

(Dp(R), is)

Y⊗L
R−
��

dR // CR
Y⊗R−
��

(Dp(R′), is)
dR′ // CR′ .

For the handling of the determinant functor in practice the following
considerations are quite important:

Remark 2.3. The determinant of the complex C = [P0
φ→ P1] (in degrees 0

and 1) with P0 = P1 = P is by definition dR(C) = dR(0) and is defined
even if φ is not an isomorphism (in contrast to dR(φ)). But if φ happens
to be an isomorphism, i.e. if C is acyclic, then by the property (v) there
is also a canonical map dR(0) acyc // dR(C) , which is in fact nothing else
then

dR(0) = dR(P1) · dR(P1)−1
dR(φ)−1·iddR(P1)−1

// dR(P0) · dR(P1)−1 = dR(C)

(and which depends in contrast to the first identification on φ). Hence, the
composite dR(0) acyc // dR(C) = dR(0) corresponds to dR(φ)−1 ∈ K1(R)
according to the previous remark. In order to distinguish the above iden-
tifications between dR(0) and dR(C) we also say, that C is trivialized by
the identity when we refer to dR(C) = dR(0) (or its inverse with respect
to composition). For φ = idP both identifications agree obviously.

2.1.3. Refined Euler characteristics. The precise definition and prop-
erties of refined Euler characteristics can be found in [7, 8]. Consider a ring
homomorphism R→ R′ such that R′ becomes a flat R-module and assume
that R′ is noetherian and regular (in our applications R′ is a semi-simple
ring). Let C be in Dp(R) and

t : Hod(R′⊗R C) :=
⊕
i odd

Hi(R′⊗R C)→ Hev(R′⊗R C) :=
⊕
i even

Hi(R′⊗R C)

a trivialisation, i.e., an isomorphisms of R′-modules (note that in [8] is
normalised in the opposite way, i.e., goes from even to odd). By [6, def. 5.4]
one can attach a class [C] ∈ K0(R) to C, which equals [C+] − [C−] if
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C belongs to Cp(R). Then there is canonical class χ(C, t) ∈ K0(R,R′)
satisfying that ι(χ(C, t)) = [C] and, if t′ is another trivialisation, then

χ(C, t′) = χ(C, t) + ∂([Hod(R′ ⊗R C), (t′)−1 ◦ t]).

For the additivity of the refined Euler characteristic χ(C, t) see thm. 5.7,
rem. 6.1 and thm. 6.2 in [6].

As mentioned above the fundamental groups of the Picard category
CR (π0(CR) is the group of isomorphism classes of objects of CR while
π1(CR) = AutCR(dR(0))) are canonically isomorphic to theK-groupsK0(R)
and K1(R) of R. Also the relative K-group K0(R,R′) for a ring homomor-
phism R→ R′ can be realized as fundamental group of a Picard category:
Let P be the Picard category with unique object 1P and AutP(1P) = 0.
Following [9, (20)] we define C(R,R′) to be the fibre product category
CR ×CR′ P. Thus objects of C(R,R

′) consists of pairs (M,λ) with M ∈ CR
and λ : R′⊗RM → dR′(0) an isomorphism in CR′ . One has an isomorphism

(2.5) ΨR,R′ : K0(R,R′) ∼= π0(C(R,R′))

where [M,f,N ] is mapped to [dR(M)dR(N)−1,dR′(f)·iddR′ (R′⊗RN)−1 ] and
which is compatible with the exact sequence (2.2) and the Mayer-Vietoris
exact sequence attached to the fibre product category, see [6, lem. 5.1].
There it is also explained that the refined Euler characteristic (at least
in the semi-simple case) can be defined using relative K-groups or fibre-
product categories and determinants. In the comparison ([6, thm. 6.2])
signs may arise, which - due to the remark 6.4 in [6] do not show up in our
calculations.

2.2. Fontaine’s theory of period rings. In this subsection we recall
some of Fontaine’s conctructions (see [15]) in p-adic Hodge theory. Let K0
denote the maximal unramified subextension of K/Qp and Kur

0 its maximal
unramified extension.

Let BdR, Bst and Bcris denote Fontaine’s period rings. The field BdR =
B+
dR[1

t ] is a Qp-algebra containing Qp, which has an action by GK and
an exhaustive decreasing and separated filtration FiliBdR = tiB+

dR, where
t := log[ξ] ∈ BdR denotes the p-adic period analogous to 2πi. The latter
depends on the choice ξ = (ξn) of a compatible system of pnth roots of unity,
which we once and for all fix here for the whole paper. Then g(t) = χcyc(g)·t
for all g ∈ GK .

The ring Bst is a Qp-algebra containing Q̂ur
p ; it is endowed with an action

by GK , with a (Frobenius) endomorphism φ, which is σ-semi-linear and
which commutes with the Galois action, as well as with a monodromie
operator N : Bst → Bst, which commutes with the Galois action and
satifies N ◦ φ = pφ ◦N. Finally, Bcris = BN=0

st ⊆ Bst.
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For all p-adic representations W of GK we set DK
dR(W ) := (BdR ⊗Qp

W )GK , which is a finite-dimensional filtered K-vector space. Then the tan-
gent space of W is defined as tW (K) := DK

dR(W )/Fil0DK
dR(W ). Further-

more, we define
DK
cris(W ) := (Bcris ⊗Qp W )GK and DK

pst(W ) := lim−→
L/K

(Bst ⊗Qp W )GL ,

where L runs through all finite extensions of K. While DK
cris(W ) is a K0-

vector space endowed with a σ-semi-linear action φ, the Kur
0 -vector space

DK
pst(W ) possesses the operator φ and N satisfying N ◦ φ = pφ ◦N. If K is

clear from the context we often omit the superscript writing just DdR(W ),
Dcris(W ) or Dpst(W ). In general one has

dimK0 Dcris(W ) ≤ dimKur
0
Dpst(W ) ≤ dimK DdR(W ) ≤ dimQpW

A representationW is called crystalline, potentially semi-stable or de Rham,
if dimQpW is equal to dimK0 Dcris(W ), dimKur

0
Dpst(W ) or dimK DdR(W ),

respectively.
Following Bloch and Kato we define

H1
e(K,W ) := ker

(
H1(K,W )→ H1(K,Bφ=1

cris ⊗Qp W )
)
,

H1
f (K,W ) := ker

(
H1(K,W )→ H1(K,Bcris ⊗Qp W )

)
and

H1
g(K,W ) := ker

(
H1(K,W )→ H1(K,BdR ⊗Qp W )

)
.

We remind the reader that under the local Tate duality pairing H1
f (K,W )

is the orthogonal complement of H1
f (K,W ∗(1)). Here W ∗ denotes the dual

of W .

2.3. Epsilon-factors. We recall the definition of ε-factors associated to
representations of the Weil group of Qp (or more generallyK), for which the
canonical reference is [13], see also Tate [25], [1, §2.3/4] or [18, 3.3.3]. In par-
ticular, our convention is that under the local reciprocity law uniformizers
πK correspond to geometric Frobenius automorphisms. These are constants

εE(Qp, D, ψ,dx) ∈ E×

where E is a field of characteristic 0 containing µp∞ , ψ is a locally constant
E-valued character of Qp, dx is a Haar measure on Qp, and D is a finite-
dimensional E-linear representation of the Weil group W (Qp/Qp) which is
locally constant (i.e. the image of the inertia group I(Qp/Qp) is finite).

Following [18, §3.2], we shall restrict to the case when dx is the usual Haar
measure giving Zp measure 1, and ψ has kernel equal to Zp,i.e., conductor1

1n(ψ) is defined to be the largest integer n such that ψ(p−nZp) = 1.
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n(ψ) = 0; the data of such a character ψ is equivalent to the data of a
compatible system of p-power roots of unity ξ = (ξn)n≥1, via the map
sending ψ to

(
ψ(p−n)

)
n≥1. Since dx and Qp are fixed, and ψ is determined

by ξ, which we have fixed above, we shall drop them usually from the
notation and write the ε-factor sometimes as εE(D).

We are interested in the case when D = Dpst(W ) for a de Rham rep-
resentation W of GQp , with the linearized action of the Weil group given
as in [14]. If W is an F -linear representation of dimension d, for F a finite
extension of Qp, then Dpst(W ) is naturally a free module of rank d over
Qur
p ⊗Qp F , and we may obtain the necessary roots of unity by extending

scalars to Qp ⊗Qp F ; but this is, of course, not a field but rather a finite
product of fields indexed by embeddings f : F ↪→ Qp. While [18, §3.3.4]
consider(

εQp

(
Qp ⊗(F⊗Qur

p ,f) Dpst(W )
))

f
∈
(
Qp ⊗Qp F

)×
=
∏
f

Q×p .

in this paper we fix an embedding ι : F ↪→ Qp and use the corresponding
Weil-Deligne representation Qp ⊗Qur⊗QpF Dpst(IndK/Qp(V ⊗ ρ∗χ)) to define
by abuse of notation

(2.6)
ε(Dpst(W )) := εF,ι(Dpst(W ))

:= εQp
(Qp,Qp ⊗Qp FDpst(IndK/Qp(V ⊗ ρ

∗
χ)))

to be the corresponding component. Here ρχ denotes the representation
attached to the character χ and ρ∗χ its contragredient one. If necessary
we shall add the dependence of ψ as ε(Dpst(W ), ψ), similarly with the
Haar measure. In the case that W is an Artin representation we also allow
ourselves to omit the Dpst from the notation.

2.4. Galois cohomology. First we compute the continuous Galois coho-
mology groups Hi(L, T ) as Λ-modules. We point out, that doing this we also
determine the Galois cohomology groups of the Kummer dual representa-
tion T ∗(1) in view of the local duality theorems in the Galois cohomology
theory. We start with the following crucial although well-known

Remark 2.4. T is the Tate module TpFπ of a Lubin-Tate formal group
F = Fπ with π = χurQp(FrQp)p. For more details see [19, Exm. 5.20].

Proposition 2.5. With the notation as above we have:
(i) Hi(L, T ) = 0 for i 6= 1, 2.

(ii) H1(L, T ) ∼=
(
(̂Lur)×

p
(χur)

)G(Lur/L)
, where −̂p denotes the p-comp-

letion of a group.
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(iii) There is an isomorphism of Λ-modules

F(pL)
∼=−→ H1(L, T ).

(iv) H2(L, T ) ∼= H0(L, V ∗/T ∗(1))∨ ∼= Zp/pω(χur) is finite, where ω =
vp(1− χur(FrL)) 6=∞. There is an exact sequence of Λ-modules

0 // Zp[G/I]
1−χur(FrK)FrK // Zp[G/I] // H2(L, T ) // 0 .

In particular, Hi(L, T ) lies in the category of perfect complexes of
Λ-modules for all i if the extension L/K is at most tamely ramified.

Proof. Hi(L, T ) = 0 for i 6= 0, 1, 2 because the cohomological dimension of
GK is 2. Further, H0(L, T ) = TGL = 0, as the character χur ⊗ χcyc : GL →
Z×p is not trivial. Using the local duality theorem [23, Thm. (7.2.6)] we get
H2(L, T ) ∼= H0(L, V ∗(1)/T ∗(1))∨ . Since V ∗(1)/T ∗(1) = Qp/Zp

(
(χur)−1) is

unramified, we obtain an exact sequence

0 // H0(L, V ∗(1)/T ∗(1)) // Qp/Zp
(
(χur)−1)

1−FrL // Qp/Zp
(
(χur)−1) // 0,

whose Pontryagin dual becomes

0 // Zp(χur)
1−Fr−1

L // Zp(χur) // H0(L, V ∗(1)/T ∗(1))∨ // 0,

whence H2(L, T ) is a finite cyclic group as by assumption (χur)−1(GL) 6= 1.
On the other hand it is easy to calculate the Zp-elementary divisors of the
matrix representing the operator 1− χur(FrK)FrK on Zp[G/I]:

1, . . . , 1, 1− χur(FrL) = −χur(FrL)
(
1− χur(Fr−1

L )
)
,

whence the exactness in (iv) is clear because −χur(FrL) is a unit. Since
RΓ(GL, T ) is a perfect complex, the remaining assertions follow immedi-
ately by standard homological algebra.

To compute the group H1(L, T ) we use the Hochschild-Serre spectral
sequence for the closed subgroup GLur of GL, which exists a priori only for
finite discrete modules T/pn, but with [23, Thm. 2.7.5] also for the compact
module T . Note that the character χur factors over Lur, such that GLur
acts via the cyclotomic character on T . The five-term exact sequence takes
the form

0 // H1(G(Lur/L), TGLur ) // H1(L, T ) // H1(GLur , T )G(Lur/L)

// H2(G(Lur/L), TGLur ) // H2(L, T ).
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The module of invariants TGLur is a zero-module, because the cyclotomic
character is not trivial, thus the first and the fourth term in the exact
sequence above vanish and we get a canonical isomorphism

H1(L, T ) ∼= H1(GLur , T )G(Lur/L) = H1(GLur ,Zp(χur)(1))G(Lur/L).

From Kummer theory and the isomorphism

H1(GLur ,Zp(χur)(1))G(Lur/L) =
(
H1(GLur ,Zp(1))(χur)

)G(Lur/L)

we obtain H1(L, T ) ∼=
(
(̂Lur)×

p
(χur)

)G(Lur/L)
.

By taking GL-invariants of the exact sequence

(2.7) 0 // F(p̄)[pn] // F(p̄)
[pn] // F(p̄) // 0

we get the following exact sequence of Λ-modules

0 // F(pL)/[pn](F(pL)) // H1(L,F(p̄)[pn]) // H1(L,F(p̄))[pn] // 0

for each n ≥ 1.
By Remark 2.4 the inverse limit over n of the exact sequences above

results in the exact sequence of Λ-modules

0 // F(pL) // H1(L, T ) // H1(L, T )/F(pL) // 0

F(pL) being a finitely generated Zp-module (cf. [4, 4.5.1]).
From [19, Exm. 5.20] we deduce that the quotient H1(L, T )/F(pL) is

isomorphic to

(2.8)
( (̂Lur)×

p

U1(L̂ur)
(χur)

)G(Lur/L)
,

where U1 denotes 1-units while for an abelian group A we write Â
p

:=
lim←−
n

A/pnA for its pro-p-completion.

For the extension Lur/Qp we have (both algebraically and topologically)

(Lur)× = (πL)×O×Lur ∼= Z⊕O×Lur ,

where πL is a prime element of OL. Let κL denote the residue class field of
L, then we have a split exact sequence

1 // U1(Lur) // O×Lur // κL
× // 1.

The group κL× is p-divisible, thus

κ̂L×
p

= lim←−
n

κL
×/(κL×)pn = 1
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and
(̂Lur)×

p
= (̂πL)

p
× ̂U1(Lur)

p
= (̂πL)

p
× U1(L̂ur),

whence the quotient in (2.8) is isomorphic to(
(̂πL)

p
(χur)

)G(Lur/L)
.

The latter module is zero, since the group G(Lur/L) acts trivially on (πL)
while χur is a non-trivial character. �

Next we compute the finite part H1
f (L, T ) ⊆ H1(L, T ) defined as a preim-

age of H1
f (L, V ) under the map i : H1(L, T )→ H1(L, V ).

Lemma 2.6. dimQp H1
f (L, V ) = dimQp H1(L, V ) = [L : Qp].

Proof. Both, V and V ∗(1), are de Rham representations ofGL, thus from [3,
pp. 355-356] we have
(2.9) dimQp H1

f (L, V ) + dimQp H1
f (L, V ∗(1)) = dimQp H1(L, V )

and
(2.10) dimQp H1

f (L, V ) = dimQp(tV (L)) + dimQp H0(L, V ).

The same is true for V ∗(1). But H0(L, V ) and H0(L, V ∗(1)) are both trivial
by the proof of Proposition 2.5, so that

dimQp H1
f (L, V ) = dimQp tV (L)

and
dimQp H1

f (L, V ∗(1)) = dimQp tV ∗(1)(L).
For a de Rham representation W by [15, p. 148]

tW (L) = gr−1(W ) ↪→ (Cp(−1)⊗Qp W )GL .
Moreover, by Corollary 3.57 in [3]

(Cp(−1)⊗Qp V )GL = (Cp(χur))GL ∼= L

and
(Cp(−1)⊗Qp V

∗(1))GL = (Cp((χur)−1)(−1))GL = 0.
Thus from equality (2.9) we get

dimQp H1
f (L, V ) = dimQp H1(L, V ).

Finally, using the formula for the Euler characteristic (see [24, II. 5.7]
or [16])

∞∑
i=0

(−1)i dimQp Hi(L, V ) = −[L : Qp] · dimQp V

we see that dimQp H1(L, V ) = [L : Qp], as Hi(L, V ) = 0 for i 6= 1 (cf. Propo-
sition 2.5). �
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Corollary 2.7. From the above proposition it follows that
(i) H1

f (L, T ) = H1(L, T ) is a Zp-module of rank [L : Qp] and
(ii) H1

f (L, T ∗(1)) = H1(L, T ∗(1))tors ∼= H0(L, V ∗(1)/T ∗(1)) is a finite
torsion group.

Proof. The first part is obvious. By the definition of H1
f (L, T ∗(1)) it contains

the torsion subgroup of H1(L, T ∗(1)) and, since the image of the group
H1
f (L, T ∗(1)) in H1(L, V ∗(1)) is zero, they are equal. Consider the exact

sequence of GL-modules

0 // T ∗(1) // V ∗(1) // V ∗(1)/T ∗(1) // 0.

The associated long exact sequence in cohomology is

0 // H0(L, T ∗(1)) // H0(L, V ∗(1)) // H0(L, V ∗(1)/T ∗(1))

// H1(L, T ∗(1)) // H1(L, V ∗(1)) // H1(L, V ∗(1)/T ∗(1)) // . . .

The groups H0(L, T ∗(1)) and H0(L, V ∗(1)) are trivial. Furthermore, the
third group H0(L, V ∗(1)/T ∗(1)) is a finite torsion group, since χur(FrL) 6=
1, so that we can replace H1(L, T ∗(1)) by H1

f (L, T ∗(1)) in the exact sequence
above getting

0 // H0(L, V ∗(1)/T ∗(1))
∼= // H1

f (L, T ∗(1)) // 0. �

3. Bloch-Kato exponential map
In this section we recall the definition of the Bloch-Kato exponential map

(see [3] or [1, p. 611f]). The short exact sequences

0 // Qp
// Bφ=1

cris
// BdR/Fil0BdR // 0

and

0 // Qp
// Bcris

(1−φ,1) // Bcris ⊕BdR/Fil0BdR // 0

induce after tensoring withW and taking GL-invariants the following exact
sequences

(3.1) 0 // H0(L,W ) // DL
cris(W )φ=1 // tW (L) // H1

e(L,W ) // 0

and

(3.2) 0 // H0(L,W ) // DL
cris(W )

// DL
cris(W )⊕ tW (L) // H1

f (L,W ) // 0.
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The connecting homomorphism expW : tW (L) → H1
e(L,W ) of the first

sequence is the Bloch-Kato exponential map for a de Rham representa-
tion W . As explained before [1, lem. 1.3] there is also a dual exponential
map exp∗W : H1(L,W ) → Fil0DdR(W ). Patching the sequence (3.2) with
its dual along local Tate duality we obtain the following exact sequence of
Qp[G]-modules (see [1, (2.2)]):

(3.3) 0 // H0(L, V ) // DL
cris(V ) // DL

cris(V )⊕ tV (L)

expV // H1(L, V )
exp∗V // DL

cris(V ∗(1))∗ ⊕ t∗V ∗(1)(L)

// DL
cris(V ∗(1))∗ // H2(L, V ) // 0,

in which we have already specialised to our representation V again. By
Proposition 2.5 and the proof of Lemma 2.6 we know that the groups
H0(L, V ), H2(L, V ), H1

f (L, V ∗(1)), tV ∗(1)(L) are trivial, whence the exact
sequence above degenerates into the two short exact sequences

0 // DL
cris(V ∗(1))∗ 1−φ∗ // DL

cris(V ∗(1))∗ // 0

and

0 // DL
cris(V ) // DL

cris(V )⊕ tV (L) expV // H1(L, V ) // 0,

where φ∗ denotes the dual of φ. Furthermore, for weight reasons or using
(the proof of) Lemma 6.3 we see that

DL
cris(V ) 1−φ−→ DL

cris(V )

is an isomorphism. Using the exact sequence

0 // t∗V ∗(1)(L) // DL
dR(V ) // tV (L) // 0

(t∗V ∗(1)(L) ∼= Fil0DL
dR(V )) and the isomorphism

0 = DL
cris(V )

(1− φ)DL
cris(V )

∼=
H1
f (L, V )

H1
e(L, V )

of [1, Lem. 1.3] we deduce that

DL
dR(V ) expV−→ H1(L, V )

is an isomorphisms, too.
Now let G be a commutative formal Lie group of finite height over OK

and W be the p-adic de Rham representation coming from the p-adic Tate
module of G. In [3, pp. 359-360] a commutative diagram is described, which
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connects the Bloch-Kato exponential map with the classical exponential
map of G:

tan(GK)(L) exp //

=
��

G(pL)⊗Qp

��
tW (L) exp // H1(L,W ),

where tW (L) is identified with the tangent space of GK , the upper
(resp. lower) exp is the exponential map in the classical sense (resp. Bloch-
Kato) and the right vertical map is the boundary map of the Kummer
sequence (2.7).

By Proposition 2.5(3) and Lemma 2.6 the representation T being the
p-adic Tate module of a formal group F by Remark 2.4 fits into the com-
mutative diagram

F(pL)
∼= //

��

H1(L, T )

i
��

tV (L) exp

∼=
// H1(L, V ),

(3.4)

where the left vertical arrow is a Λ-homomorphism induced by the classical
logarithm logF of F .

4. Comparison isomorphisms
Let T be a finitely generated (free) Zp-module with a continuous GK-

action. We assume that V := Qp ⊗Zp T is a de Rham representation. Fur-
thermore we define Zp[G]-modules

T := Zp[G]] ⊗Zp T

and
V := Zp[G]] ⊗Zp V,

where the Zp[G]-action is given by left-multiplication on the left tensor-
factor. The sharp indicates that these modules are endowed with the fol-
lowing GK-actions: σ(λ⊗ t) := λσ̄−1 ⊗ σt, where σ̄ denotes the image of σ
under the natural projection map. Henceforth we use the following explicit
realization for the induction

IndL/QpT := Zp[GQp ]⊗Zp[GK ] T
(
∼= Zp[GQp ]⊗Zp[GL] T

)
and similarly for IndL/QpV . These are GQp-modules by the action on the left
tensor-factor while they become Λ- and Ω-modules via the corresponding
module structures of T and V, respectively.
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The p-adic comparison isomorphism for (the induction of) V

(4.1)
compV := compV,L/Qp :BdR⊗QpDL

dR(IndL/QpV )
∼=→ BdR⊗Qp IndL/QpV,

c⊗ x 7→ cx

is a BdR[G]-linear map, which commutes with the action of GQp , if GQp
acts diagonally.

We apply the determinant functor to compV and by Remark 2.1 we
obtain a map

α̃V,L/K = (x, y)

∈ Isom
(
dΩ(DdR(IndL/QpV )),dΩ(IndL/QpV )

)
×K1(Ω)K1(BdR[G]).

Multiplying α̃V,L/K with t (in general the precise power of t depends on the
weights (with multiplicities), see [18] or [1]) we get

αV,L/K = (x, ty)

∈ Isom
(
dΩ(DdR(IndL/QpV )),dΩ(IndL/QpV )

)
×K1(Ω)K1(K ′[G])

for some finite abelian extension K ′ of Q̂ur
p .

The maximal abelian extension Qab
p of Qp is the composite of the max-

imal unramified extension Qur
p and the cyclotomic extension Qp,∞ which

is obtained by adjoining all p-power roots of 1. For g ∈ GQp we define
gur ∈ G(Qab

p /Qp) by gur|Qurp = g|Qurp and gur|Qp,∞ = id. We also de-
fine gram ∈ G(Qab

p /Qp) by gram|Qurp = id and gram|Qp,∞ = g|Qp,∞ . Thus
g|Qabp = gurgram.

Let Γ(V ) :=
∏

Z Γ∗(j)−h(−j), where h(j) = dimQp gr
jDdR(V ) and where

Γ∗(−j) is defined to be Γ(j) = (j − 1)! if j > 0 and lims→j(s − j)Γ(s) =
(−1)j((−j)!)−1 otherwise.

We set

βV,L/K := Γ(V )εD(L/K, V ) ·αV,L/K = (x,Γ(V )εD(L/K, V ) · t · y) =: (x, ỹ),

with

εD(L/K, V ) :=
(
ε(Dpst(IndK/Qp(V ⊗ ρ

∗
χ)))

)
χ∈Irr(G)

∈
∏

χ∈Irr(G)
Q×p ∼= K1(Qp[G]),

where ρχ denotes a representation with character χ and ρ∗χ its dual. Here
we use definition (2.6) with respect to a fixed finite extension F of Qp which
is large enough so that all characters of G can be realized over it. The above
identification for K1 arises by the Wedderburn decomposition of Qp[G].
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Note also that we have canonical isomorphisms

Vρ⊗Λ IndL/QpT ∼= Zp[GQp ]⊗Zp[GK ](Vρ⊗ΛT) ∼= Zp[GQp ]⊗Zp[GK ](Vρ∗⊗QpV ),

whence the ρ-component above in the definition of the ε-factor is the one
which is used by Fukaya and Kato [18] for the module Vρ ⊗Λ IndL/QpT ,
compare also with appendix A.

According to [1, Lem. 2.15] βV,L/K is an element of

Isom
(
dΩ(DdR(IndL/QpV )),dΩ(IndL/QpV )

)
×K1(Ω) K1(Q̂ur

p [G])

with
g(ỹ) = gur(ỹ) = [IndL/QpV, g

ur] · ỹ, ∀g ∈ G(Qur
p /Qp),

i.e., ỹ ∈ K1(Ω̃)[IndL/QpV,τp]−1 := {x ∈ K1Ω̃)|σ(x) = [IndL/QpV, τp]} in the
terminology of [18], where τp in G(Qab

p /Qp) is the unique element with
τurp = σ and τ ramp = 1.

For a representation W of GK we denote by f(W ) = π
a(W )
K its local

Artin conductor (sometimes also understanding the ideal generated by this
element) while f(W ) = q

a(W )
K = |f(W )|−1

p denotes its absolute norm, where
qK is the cardinality of the residue class field of K. Setting πQp = p we have
f(W ) = pa(W ) = f(W ) for every GQp-representations W .

For a ∈ F× and an additive character ψ of F we denote by aψ the
character sending x to ψ(ax).

Lemma 4.1. We have the equality

ε(Dpst(IndK/Qp(V ⊗ ρ
∗
χ)), ψξ)

= ε(IndK/Qp(ρχ),−ψξ)−1χurQp(f(IndK/Qp(ρχ)))

where Zp(χur) = TpF(−1) and the character χurQp is viewed as a character

Q×p → GabQp

χurQp→ Q×p via the local reciprocity law sending p to the geometric
Frobenius.

Proof. Since Dpst(IndK/Qp(V ⊗ ρ∗χ)) ∼= Dpst(V )⊗Qur Dpst(IndK/Qp(ρ∗χ)) we
obtain for the linearized Kummer dual

Dpst(IndK/Qp(V ⊗ ρ
∗
χ))∗(1) ∼= Dpst(V )∗(1)⊗Qur Dpst(IndK/Qp(ρ

∗
χ))∗.

Now the (linearized) action on the unramified Dpst(V ) is given by the char-
acter g 7→ (pχurQp(FrQp))

v(g), whence Dpst(V )∗(1) bears the action g 7→
χurQp(FrQp)

−v(g) while the Weil-Deligne representations Dpst(IndK/Qp(ρ∗χ))∗
and IndK/Qp(ρχ) can be identified. Now the claim follows from [18, 3.2.2
(3) and (5)] where τ denotes a geometric Frobenius. �
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The induction property of local Artin conductors (see [4, Lem. 3.3]) gives

(4.2) f(IndK/Qp(ρ
∗
χ)) = NK/Qp(f(ρ

∗
χ)) · dχ(1)

K/Qp

where dK/Qp denotes the discriminant of K/Qp.
For later purposes we also introduce the local Galois Gauss sum

τK(χ) = ε(ρχ| · |
1
2
p , ψK , dxψK )

√
f(χ),

i.e., dxψK is the Haar measure of K which is self dual with respect to the
standard additive character ψK := ψQp ◦ TrK/Qp . Note that this definition
coincides with that in [4, 17] although in Breuning’s thesis ρ instead of
ρ shows up in the definition of τ : there implicitly the norm rest symbol
is normalized by sending πK to the arithmetic Frobenius automorphism,
i.e., opposite to the convention used here, whence one has to replace a
representation by its contragredient one.

Remark 4.2. An easy calculation shows that for our V the factor Γ(V ),
i.e., ΓL(V ) of [18, 3.3.4] or Γ∗(V ) of [1, 2.4], used for the correction of the
comparison isomorphism in the definition of βV,L/K is equal to 1.

5. Formulation of the ε-conjecture
In this section we follow closely the approach of [1] to construct an iso-

morphism

ε̃Ω,ξ(IndL/QpV ) : dΩ̃(0)→ Ω̃⊗Ω
{

dΩ(RΓ(L, V )) · dΩ(IndL/QpV )
}

satisfying the following condition
(?) : Let ρ : Ω → GLn(F ), n ≥ 1, [F : Qp] < ∞, be a continuous
representation. Then the image of ε̃Ω,ξ(IndL/QpV ) under Fn ⊗Ω − is the
ε-isomorphism of de Rham representations described in [18, Sec. 3.3].

The application of the determinant functor to (3.3) results in the iso-
morphism
(5.1) dΩ(1− φ) · dΩ(exp−1) · dΩ((1− φ∗)−1)
sending

dΩ(DL
cris(V )) · dΩ(RΓ(L, V ))−1 · dΩ(DL

cris(V ∗(1))∗)
to

dΩ(DL
cris(V )) · dΩ(DL

dR(V )) · dΩ(DL
cris(V ∗(1))∗),

which after base change (abbreviating Ω̃ ⊗Ω dΩ(−) by dΩ(−)Ω̃) and com-
position with

iddΩ(DLcris(V ))Ω̃
· βV,L/K · iddΩ(DLcris(V ∗(1))∗)Ω̃

and multiplication with
iddΩ(DLcris(V ))−1

Ω̃
· iddΩ(RΓ(L,V ))Ω̃

· iddΩ(DLcris(V ∗(1))∗)−1
Ω̃
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gives the desired isomorphism ε̃Ω,ξ(IndL/QpV ). Note that ε̃Ω,ξ(IndL/QpV )
satisfies the condition (?) automatically by construction (cf. the construc-
tion of the ε-isomorphisms of de Rham representations in [18, Sec. 3.3] and
Remark 4.2).

Above we constructed an isomorphism

ε̃Ω,ξ(IndL/QpV ) := (x, ỹ)

∈ Isom(dΩ(0),dΩ(RΓ(L, V )) · dΩ(IndL/QpV ))×K1(Ω) K1(Ω̃)
satisfying condition (?). Here we can and do assume that x arises by base
change from an isomorphism dΛ(0) ∼= dΛ(RΓ(L, T )) ·dΛ(IndL/QpT ) by [18,
Prop. 3.1.3]. In view of of the localization exact sequence for K-groups

1 // K1(Λ̃) // K1(Ω̃) ∂ // K0(Λ̃, Q̂ur
p ) // 0

(SK1(Λ̃) being trivial by [20, Cor. 2.28] and the map ∂ := ∂Λ̃,Ω̃ being
surjective by [4, Lem. 2.5 and §2.4.4]) we formulate

Conjecture 5.1 (Cnaep (L/K, V )). With the notation as above we have the
following equation ∂(ỹ) = 0 in K0(Λ̃, Q̂ur

p ). Equivalently, the class

[dΛ(RΓ(L, T ) · dΛ(IndL/QpT ), ε̃Ω,ξ(IndL/QpV )−1] ∈ π0(C(Λ, Ω̃))

associated with ε̃Ω,ξ(IndL/QpV ) becomes trivial in π0(C(Λ̃, Ω̃)).

In order to relate our conjecture to the approach of [4] we decided to
formulate the ε-conjecture in the language of relative K0-groups, but note
that due to the above short exact sequence this definition is also compatible
with [18, Conj. 3.4.3], which claims that ε̃Ω,ξ(IndL/QpV ) arises by change
of rings from an integral isomorphism
ε̃Λ,ξ(IndL/QpT ) ∈ Isom(dΛ(0),dΛ(RΓ(L, T )) ·dΛ(IndL/QpT ))×K1(Λ) K1(Λ̃).

Remark 5.2. Although for simplicity we restricted to the representation V
in the above conjecture it is obvious that the formulation extends easily to
general de Rham representations W.

Now we shall reformulate the conjecture in the language of Breuning:
The complex RΓ(L, T ) is a perfect complex of Λ-modules and IndL/QpT is a
finitely generated projective Λ-module, thusM• := RΓ(L, T )⊕IndL/QpT [0]
is a perfect complex of Λ-modules with H0(M•) ∼= IndL/QpT , H1(M•) ∼=
H1(L, T ), H2(M•) ∼= H2(L, T ) and Hi(M•) = 0 for i ≥ 3. There is an
isomorphism

compV ◦ exp−1 : H1(BdR ⊗M•)→ H0(BdR ⊗M•),
and we define CL/K := χ(M•, compV ◦ exp−1) ∈ K0(Λ, BdR) to be the
associated refined Euler characteristic.
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Set

Ucris := ∂([DL
cris(V ), 1− φ]) + ∂([DL

cris(V ∗(1))∗, (1− φ∗)−1]) ∈ K0(Λ,Qp).

Note that

∂([DL
cris(V ∗(1))∗, (1− φ∗)−1]) = −∂([DL

cris(V ∗(1)), 1− φ]),

since ∂([W ∗, ψ∗]) = ∂([W,ψ]), so that

Ucris = ∂([DL
cris(V ), 1− φ])− ∂([DL

cris(V ∗(1)), 1− φ]).

Finally, the multiplication of α̃V,L/K with t and the equivariant ε-factor
translates in the language of relative K0-groups into the summation of
their images under ∂.

Consider the class

CL/K + ∂Λ,BdR(t) + ∂Λ,BdR(εD(L/K, V )).

This belongs to K0(Λ, Q̂ur
p ), because it is invariant under the action of GQurp

and K0(Λ, Q̂ur
p ) = K0(Λ, BdR)GQurp . The conjecture Cnaep (L/K, V ) takes the

form:

(5.2) CL/K +Ucris+∂(t)+∂(εD(L/K, V )) becomes trivial in K0(Λ̃, Q̂ur
p ).

Indeed, we have to compare the two trivialisations, one given by the def-
inition of ε̃Ω,ξ(IndL/QpV ) and the other one hidden in the above relative K-
theory classes (more precisely, the latter expression is mapped under ΨΛ̃,Ω̃
in (2.5) to the first one): the class CL/K contains the isomorphisms compV ,
which corresponds to the constituent α̃V,L/K , and exp−1, which is part of
the identifications (5.1); the remaining Euler factors in (5.1) correspond to
the class Ucris. Finally, as mentioned above already, the difference between
α̃V,L/K and αV,L/K is represented by the classes ∂(t) and ∂(εD(L/K, V )).

This is similar to a conjecture stated and proved by Breuning for V =
Qp(1), as explained in the Appendix A.1. But we want to point out that
his conjecture is an equation in K0(Λ,Qp) which in some sense is stronger.

6. Tamely ramified extension
Let L/K be a tamely ramified extension, then OL is a finitely generated

projective Λ-module (see [17, Cor. 1]). Let χurQp be a continuous unramified
character of GQp such that χur is its restriction to GK . We fix an element
tur ∈ (Ẑurp

×
(χurQp))

GQp . Note that two such elements differ by an element of
Z×p . Then (O

L̂ur
(χur))G(Lur/L) and OL are isomorphic as Λ-modules by

l ∈ OL 7−→ tur · l ∈ (O
L̂ur

(χur))G(Lur/L).
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Thus every element l̃ ∈ (O
L̂ur

(χur))G(Lur/L) can be written as

l̃ = tur · l = tur ·
∑
g∈G

agg(b), ag ∈ OK

for a normal integral basis b of OL over OK [17, Cor. 1]. Obviously, the
same is true for L and (L̂ur(χur))G(Lur/L).

Denote by v a basis of Zp(χurQp), then the element v⊗ξ constitutes a basis
of T . Moreover, DdR(IndL/QpV ) ∼= DL

dR(V ) (resp. DdR(IndL/QpV (−1)) ∼=
DL
dR(V (−1)) is a one-dimensional L-vector space with the basis eχurQp ,1 :=

tur ·t−1⊗(v⊗ξ) (resp. eχurQp ,0 := tur⊗v). In particular, they are isomorphic as
Ω-modules and we have a commutative diagram of BdR[G]-modules (with
an action of GQp)

(6.1) BdR ⊗Qp DL
dR(V ) compV

∼=
//

��

BdR ⊗Qp IndL/QpV

t·⊗f
��

BdR ⊗Qp DL
dR(V (−1))

compV (−1)

∼=
// BdR ⊗Qp IndL/QpV (−1),

where the map t· is the multiplication with t and f(v ⊗ ξ) = v.
Warning: the left vertical arrow in the above diagram is an isomorphism of
Ω-modules induced by eχurQp ,1 7→ eχurQp ,0

, whereas the right vertical arrow is
an isomorphism of BdR[G]-modules with an action of GQp and is responsible
for the later normalization on K1-groups.

Set K• := RΓ(L, T )⊕OLeχurQp ,1[0], a perfect complex of Λ-modules with

H0(K•) ∼= OLeχurQp ,1, H1(K•) ∼= H1(L, T ), H2(K•) ∼= H2(L, T )

and
Hi(K•) = 0 for i 6= 0, 1, 2.

The composition rule for the refined Euler characteristic gives the equality

(6.2) CL/K = χ(K•, exp−1) + [OLeχurQp ,1, compV , IndL/QpT ]

in K0(Λ̃, BdR) (or even in K0(Λ, BdR)).
Recall that F(pL) is a cohomologically trivial Λ-module (see [12, Proposi-

tion 3.9] or apply Proposition 2.5). Moreover, by [11, Lemma 1.1] F(pL)[−1]
is a perfect complex of Λ-modules. We set

EL/K(F(pL)) := F(pL)[−1]⊕OL[0],
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a perfect complex of Λ-modules with
H0(EL/K(F(pL))) ∼= OL, H1(EL/K(F(pL))) ∼= F(pL)

and Hi(EL/K(F(pL))) = 0 for i 6= 0, 1. Using the identification

LeχurQp ,1
= DL

dR(V ) = tV (L) ∼= Ĝa(L) = L,

the Λ-module isomorphism OLeχurQp ,1
∼= OL and the diagram (3.4) we get

the equality

(6.3) χ((K•), exp−1) = χ(EL/K(F(pL)), logF )
+ [Zp[G/I], 1−χur(FrK)−1FrK ,Zp[G/I]]

in K0(Λ,Qp), the maps exp−1 and logF being Ω-module-isomorphisms, by
the additivity [7, prop. 1.2.2]. The last term above represents H2(L, T ) by
Proposition 2.5 (4).

Now let n0 ∈ N be big enough such that

logF : F(pn0
L )

∼=−→ Ĝa(pn0
L ) = pn0

L .

Then F(pn0
L ) is a projective Λ-submodule of finite index in F(pL) (pn0

L
being a projective Λ-module; indeed, since L/K is tame, all pnL are Λ-
projective), hence we can define EL/K(F(pn0

L )) analogously to the previous
consideration. But

[F(pn0
L ), logF , pn0

L ] = 0 in K0(Λ,Qp),
so that

(6.4)
χ(EL/K(F(pn0

L )), logF ) = [F(pn0
L ), logF , pn0

L ] + [pn0
L , id,OL]

= [pn0
L , id,OL].

The exact sequence

0 // F(pn0
L ) s // F(pL) // F(pL)/F(pn0

L ) // 0

gives rise to a distinguished triangle of perfect complexes of Λ-modules

EL/K(F(pn0
L )) j // EL/K(F(pL)) // cone(j),

where j = s∗ ⊕ idOL , such that

H0(cone(j)) = 0, H1(cone(j)) ∼= F(pL)/F(pn0
L )

and Hi(cone(j)) = 0 for i ≥ 2. This triangle together with (6.4) leads to
the equalities

(6.5)
χ(EL/K(F(pL)), logF ) = χ(EL/K(F(pn0

L )), logF ) + χ(cone(j), 0)

= [pn0
L , id,OL] + χ(F(pL)/F(pn0

L )[−1], 0).
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The quotients F(pL)/F(pn0
L ) and pL/p

n0
L are filtered by the images of

F(piL) and piL , respectively, for i ≥ 1. The associated graded objects
considered as complexes are canonically isomorphic perfect complexes of
Λ-modules, thus by [2, Prop. 2.1(iii)] we have the equality

(6.6)

χ(F(pL)/F(pn0
L )[−1], 0) = χ(pL/pn0

L [−1], 0)

= [pL, id, pn0
L ]

= [OL, id, pn0
L ]− [OL, id, pL].

Let qK = pf := [OK : pK ] and eI := 1
|I|
∑
i∈I i be the idempotent of

Ω associated to the inertia subgroup I of G. Let ]x ∈ K1(Ω) ⊂ K1(Ω̃)
be defined for every element x ∈ Cent(Ω) as follows. If Cent(Ω) =

∏
Fi

is the Wedderburn decomposition of Cent(Ω) into a product of fields and
x = (xi) under this decomposition, then ]x = (]xi) with ]xi = xi if xi 6= 0
and ]xi = 1 if xi = 0.

The normal basis theorem for OL/pL over Zp/pZp implies that there
exists a short exact sequence of G/I-modules

0 // p · Zp[G/I]f // Zp[G/I]f // OL/pL // 0.

Using this sequence we compute that
(6.7) [OL, id, pL] = −∂(](qKeI)).
Observing (6.6) and (6.7) the equality (6.5) becomes

(6.8)
χ(EL/K(F(pL)), logF ) = [pn0

L , id,OL] + [OL, id, pn0
L ] + ∂(](qKeI))

= ∂(](qKeI)).

Write Σ(L) for the set of all embeddings L → Qp fixing Qp. For each
σ ∈ Σ(K) we fix σ̂ ∈ Σ(L) such that σ̂|K = σ. Let b ∈ OL be a K[G]-
basis of L and let χ be an irreducible Qp-valued character of G. The norm
resolvent is defined by

NK/Qp(b|χ) :=
∏

σ∈Σ(K)
Detχ(

∑
g∈G

σ̂(g(b))g−1) ∈ Qp
×
,

where Detχ is the homomorphism Qp[G]× → Qp
× given by

Detχ(
∑
g∈G

agg) := det(
∑
g∈G

agρχ(g))

and ρχ : G→ GLχ(1)(Qp) is a matrix representation with character χ. Note
that the definition of NK/Qp(b|χ) depends on the choice of the σ̂. We also
let {aσ : σ ∈ Σ(K)} be a fixed Zp-basis of OK and define

δK := det((η(aσ))η,σ∈Σ(K)) ∈ Qp
×
.
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This is a square root of the discriminant of K and depends on the choice
of the aσ.

Lemma 6.1. There is an equality

[OLeχurQp ,1, compV , IndL/QpT ] + ∂(t) = ∂(θ) in K0(Λ̃, BdR),

where θ = (θχ)χ∈Irr(G) ∈ K1(Qp[G]) with θχ = δ
χ(1)
K NK/Qp(b|χ).

Proof. The unramified representation V (−1) is Cp-admissible (see [15,
Prop. 3.56]), thus we may replace the ring BdR by Cp in the definition
of the comparison isomorphism getting

compV (−1),L/Qp : Cp⊗Qp DdR(IndL/QpV (−1))
∼=→ Cp⊗Qp IndL/QpV (−1),

c⊗ x 7→ cx

a Cp-linear map, which commutes with the action of GQp . Taking invariants
under G(Qp/L

ur) on both sides and using the theorem of Ax-Sen-Tate the
isomorphism above becomes

compV (−1),L/Qp : L̂ur ⊗Qp LeχurQp ,0
∼=→ L̂ur ⊗Qp IndL/QpV (−1)

and is induced (via tensor product Qp⊗Zp) by

O
L̂ur
⊗Zp OLeχurQp ,0

∼=→ O
L̂ur
⊗Zp IndL/QpT (−1).

From diagram (6.1) we deduce that

(6.9) [OLeχurQp ,1, compV , IndL/QpT ] + ∂(t)

= [OLeχurQp ,0, compV (−1), IndL/QpT (−1)]

in K0(Λ̃, L̂ur) ⊆ K0(Λ̃, BdR), whence to prove the lemma we have to com-
pute the last class.

Let Vtriv ∼= Qp denote the trivial representation of GK and let V (−1) =
Qpv. Fix a set R of representatives of GQp |GK (inducing the set of σ̂ as
chosen above). There is a commutative diagram of Cp[G]-modules (with an
action of GQp)

Cp ⊗Qp DL
dR(Vtriv)

compVtriv
∼=

//

f1
��

Cp ⊗Qp IndL/QpVtriv

f2
��

Cp ⊗Qp DL
dR(V (−1))

compV (−1)

∼=
// Cp ⊗Qp IndL/QpV (−1),
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where we use the following identifications
Cp ⊗Qp IndL/QpVtriv ∼= Zp[GQp ]⊗Zp[GK ] Cp[G]],

Cp ⊗Qp IndL/QpV (−1) ∼= Zp[GQp ]⊗Zp[GK ] (Cp[G]] ⊗Qpv),
DL
dR(Vtriv) ∼= L, DL

dR(V (−1)) ∼= LeχurQp ,0
,

for which the maps are given by the formulas

compVtriv(q ⊗ l) =
∑
τ∈R

(
τ ⊗

∑
g∈G qτg(l)g−1

)
,

compV (−1)(q ⊗ leχurQp ,0) =
∑
τ∈R

(
τ ⊗

∑
g∈G qt

urτg(l)g−1
)
,

f1
(
q ⊗ l

)
= q ⊗ leχurQp ,0,

f2
(
τ ⊗ w

)
= τ ⊗ (turw ⊗ v), τ ∈ R, w ∈ Cp[G]].

Indeed, the two first formulae arise by combining the comparison iso-
morphism (4.1) with the general formula IndHG (B ⊗ V ) ∼= B ⊗ IndHGV from
representation theory in the same way as in the proof of [27, lem. A.5]. It
follows, that

(6.10) [OL, compVtriv , IndL/QpTtriv]
= [OLeχurQp ,0, compV (−1), IndL/QpT (−1)] + [OL, f1,OLeχurQp ,0]

+ [IndL/QpT (−1), f−1
2 , IndL/QpTtriv]

in K0(Λ,Cp). But the images of the last two classes in K0(Λ̃,Cp) are trivial,
as f1 and f2 are Λ̃-module-isomorphisms. Now we are reduced to computing
[OL, compVtriv , IndL/QpTtriv]. For this we set

HL := ⊕
η∈Σ(L)

Zp,

which becomes a free Λ-module under the (left) G-action
g((aη)η) = (aηg)η.

We consider the following commutative diagram of Cp[G]-modules (with an
action of GQp)

(6.11) Cp ⊗Qp DL
dR(Vtriv)

compVtriv
∼=

//

ρL
∼= **

Cp ⊗Qp IndL/QpVtriv
ϕ1

��
Cp ⊗Zp HL,

where the maps ϕ1 and ρL are given by the formulas
ρL(q ⊗ l) =

(
qη(l)⊗ 1

)
η∈Σ(L), q ∈ Cp, l ∈ L;

ϕ1

(∑
τ∈R

(
τ ⊗

∑
g∈G

aτgg
))

=
(
aτg−1 ⊗ 1

)
τg=η∈Σ(L)

, ∀ ag ∈ Cp, τ ∈ R.
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From the diagram (6.11) we deduce the equality

(6.12) [OL, compVtriv , IndL/QpTtriv]+[IndL/QpTtriv, ϕ1, HL] = [OL, ρL, HL]

in K0(Λ,Cp). Further, [4, Lem. 4.16] says that the last class is equal to
∂(θ), so that we have

(6.13) [OL, compVtriv , IndL/QpTtriv] = ∂(θ).

because the class [IndL/QpTtriv, ϕ1, HL] is obviously zero. �

Lemma 6.2. Let L/K be (at most) tamely ramified. Then there exists
v′ ∈ Λ×, such that Detχ(v′) = χurQp

(
NK/Qp(f(χ)) ·dχ(1)

K/Qp
)
for all χ ∈ Irr(G),

whence

∂(εD(L/K, V )) = ∂(
(
ε(IndK/Qp(ρχ),−ψξ)−1

)
χ∈Irr(G)

).

in K0(Λ, BdR) by Lemma 4.1 and (4.2).

Proof. The character χurQp : Q×p → Z×p being a homomorphism we have

χurQp
(
NK/Qp(f(χ)) · dχ(1)

K/Qp
)

= χurQp(NK/Qp(f(χ))) · χurQp(d
χ(1)
K/Qp).

Let χurQp(p) =: u′ ∈ Z×p and let dK/Qp = pm. Then for u′m ∈ Z×p ⊂ Λ×,
χ ∈ Irr(G)

χurQp(d
χ(1)
K/Qp) = χurQp(p)

m·χ(1) = u′m·χ(1) = det(ρχ(u′m1G)) = Detχ(u′m).

Recall qK = pf and eI = 1
|I|
∑
i∈I i ∈ Λ, as (|I|, p) = 1. Let v′′ :=(

u′

u′·eI+(1G−eI)
)f . Then for χ ∈ Irr(G)

Detχ(v′′) = Detχ(u′)f ·Detχ(u′ · eI + (1G − eI))−f

= u′f ·χ(1) · det(u′ · ρχ(eI) + ρχ(1G)− ρχ(eI))−f .

There exists a basis of Vρ = Vρχ , such that

ρχ(eI) =



1 ∗ . . . ∗
0 1 ∗ . . . ∗

. . .
0 . . . 0 1 ∗ . . . ∗
0 0 0 . . . 0 ∗

. . .
0 0 0 0 0 . . . 0


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and

ρχ(1G)− ρχ(eI) =



0 ∗ . . . ∗
0 0 ∗ . . . ∗

. . .
0 . . . 0 0 ∗ . . . ∗
0 0 . . . 0 1 ∗

. . .
0 0 0 0 . . . 0 1


,

as eI + 1G − eI = 1G. It follows, that det(u′ · ρχ(eI) + ρχ(1G) − ρχ(eI)) =
u′rank(ρχ(eI)), hence

Detχ(v′′) = u′f ·(χ(1)−rank(ρχ(eI))).

But

χ(1) = dimVρ, rank(ρχ(eI)) = dim Im(ρχ(eI)) = dimV I
ρ ,

so that χ(1) − rank(ρχ(eI)) = codim V I
ρ . Further, since χ is a tamely

ramified character, the Artin conductor f(χ) is equal to p
codim V Iρ
K (see [22,

p. 22]), whence

Detχ(v′′) = χurQp(p
f ·codim V Iρ ) = χurQp(NK/Qp(p

codim V Iρ
K )) = χurQp(NK/Qp(f(χ))).

Now we set v′ := v′′ · (u′)m. It remains to prove v′ ∈ Λ× and for this it is
enough to show that u′ · eI + (1− eI) ∈ Λ×. But

(u′ · eI + (1G − eI)) · (eI + u′ · (1G − eI)) = u′1G ∈ Λ×. �

Lemma 6.3.
(i) ∂([DL

cris(V ), 1− φ]) = −∂(](qKeI))
(ii) ∂([DL

cris(V ∗(1)), 1− φ]) = [Zp[G/I], 1− χur(FrK)FrK ,Zp[G/I]]

Proof.
(i) Let L0 and K0 be the maximal unramified extension of Qp contained

in L and K respectively, [K0 : Qp] = fK , [L0 : K0] = fL/K . Denote by FrL,
FrK and τ = FrQp the arithmetic Frobenius of L, K and Qp, respectively.
Then FrK = FrfKQp . After choosing a normal basis of OL0 over Zp we have

DL
cris(V ) = L0eχurQp ,1

∼=
fK−1⊕
i=0

Qp[G/I]τ i
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with φ(eχurQp ,1) = p−1χurQp(Fr
−1
Qp )eχurQp ,1, i.e., by the semi-linearity of φ on the

last Qp[G/I]-module the operator 1− φ is represented by the matrix

1 0 . . . 0 −AFrK
−A 1 0 . . . 0

0 . . . . . . . . . ...
... . . . −A 1 0
0 0 0 −A 1


with respect to the basis 1, τ, . . . , τ fK−1, where A =

χur(Fr−1
Qp )

p . Thus

∂[DL
cris(V ), 1− φ]) = ∂

(
]((1− p−fKχur(Fr−1

K )FrK)eI)
)

= ∂
(
]
( 1
pfK

(pfK − χur(Fr−1
K )FrK)eI

))
= −∂(](qKeI)),

since pfK −χur(Fr−1
K )FrK ∈ Zp[G/I]× as can be seen by a standard argu-

ment using the geometric series.
(ii) Analogously,

∂([DL
cris(V ∗(1)), 1− φ]) = ∂

(
]((1− χur(FrK)FrK)eI)

)
= [Zp[G/I], 1− χur(FrK)FrK ,Zp[G/I]]. �

Theorem 6.4. Let L/K be a Galois extension of p-adic fields which is
(at most) tamely ramified and let V = Qp(χur)(1). Then Cnaep (L/K, V ) is
equivalent to the vanishing of

(6.14) ∂(θ) + ∂((εD(L/K, V )))

in K0(Λ̃, Q̂ur
p ) ⊆ K0(Λ̃, BdR).

Proof. The proof is given by (5.2), (4.2), (6.2), (6.3), (6.8), Lemmata 6.1
and 6.3. �

Now by Lemmata 6.2 and 6.1 the equation (6.14) means that there exists
w ∈ K1(Λ̃) such that

(6.15) Detχ(w) =
δ
χ(1)
K NK/Qp(b|χ)

ε(IndK/Qp(ρχ),−ψξ)

for all χ ∈ IrrQ̄p(G).
Let τ ′ := τQp(IndK/Qp1K), where 1K is the trivial character of G.
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Lemma 6.5. There exists a unit u′ ∈ Z×p and σ′ ∈ G such that

ε(IndK/Qp(ρχ),−ψξ, dx) = (u′τ ′d−1
K/Qp)

χ(1)Detχ(σ′)ε(ρχ, ψK , dx)

for all χ.

Proof. As Gauss sums are additive and behave inductive on degree 0 char-
acters we have

ε(IndK/Qp(ρχ),−ψξ, dx)
ε(IndK/Qp(1K),−ψξ, dx)χ(1) =

ε(ρχ,−ψξ ◦ TrK/Qp , dx)
ε(1K ,−ψξ ◦ TrK/Qp , dx)χ(1) .

But by [25, (3.2.6.1)] ε(1K ,−ψξ ◦ TrK/Qp , dx) = dK/Qp as the measure of
OK is normalized to be 1 and the conductor n(−ψξ ◦ TrK/Qp) equals the
exponent of the different of K/Qp. Note that there exists σ ∈ G(Q̄p/Qur

p )
such that κ(σ)ψQp = −ψξ, where κ denotes the cyclotomic character of
GQp . Hence, using (2) in [18, §3.2.2] we obtain

ε(IndK/Qp(1K),−ψξ,dx) = ε(IndK/Qp(1K)| · |
1
2
p ,−ψξ,dx)

√
f(IndK/Qp(1K))

= ε(IndK/Qp(1K)| · |
1
2
p ,κ(σ)ψξ,dx)

√
f(IndK/Qp(1K))

= τQp(IndK/Qp(1K))det(σ; IndK/Qp(1K))
= τ ′det(σ̄; IndK/Qp(1K))

by [25, (3.4.5)] . Using (3.4.4) in [25] we also have

ε(ρχ,−ψξ ◦ TrK/Qp , dx) = ε(ρχ, κ(σ)ψQp ◦ TrK/Qp , dx)
= Detχ(σ′)ε(ρχ, ψQp ◦ TrK/Qp , dx)

for some σ′ ∈ G. �

Moreover, by [4, Lem. 4.29] or [5, Lem. 3.7] δK/ι(τ ′) ∈ (Zurp )×, hence
(6.15) is equivalent to the existence of w′ ∈ K1(Λ̃) such that

(6.16) Detχ(w′) =
d
χ(1)
K/QpNK/Qp(b|χ)
ε(ρχ, ψK , dx) =

NK/Qp(b|χ)
τK(ρχ)

for all χ ∈ IrrQ̄p(G) where the last equality holds by the following calcula-
tion

τK(ρχ) = ε(ρχ| |
1
2
p , ψK , dxψK )f(χ)

1
2

= ε(ρχ, ψK , dxψK )f(χ)−
1
2 q
−χ(1)n(ψK )

2
K f(χ)

1
2

= ε(ρχ, ψK , dx)q−χ(1)n(ψK)
K

= ε(ρχ, ψK , dx)d−χ(1)
K/Qp
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using (3.4.5) in [25] for the second equality and the normalization factor
dxψK
dx = q

−χ(1)n(ψK )
2

K in the third one.
By an old result of M. Taylor in Galois module theory (see [4, (32)], [5,

(3.4)] or [17, Thm 31]) the term NK/Qp (b|χ)
τK(ρχ) stems from an integral unit, be-

cause the non-ramified characteristic ](−FrKeI) in [17] is an integral unit
itself. More precisely, there exists a finite at most tamely ramified exten-
sion F of Qp with ring of integers OF and ω′′ in OF [G]× satisfying (6.16).
Combining lem. 2.4, (the proof of) lem. 2.8 of [5] as well as [4, (31)] one im-
mediately verifies that each σ in the inertia subgroup I(F/Qp) of G(F/Qp)
acts trivially on Det(w′′). By [20, thm. 2.21] we know that

Det(OF [G]×)I(F/Qp) = Det((OF )I(F/Qp)[G]×)
whence we also find ω′ ∈ K1(Λ̃) satisfying (6.16). Altogether we now have
proven the following theorem:

Theorem 6.6 (Main Theorem). Let K be a finite extension of Qp and L/K
be a (at most) tamely ramified Galois extension with G = G(L/K). Let
χur : GK → Z×p be a continuous unramified character with χur(GL) 6= 1.
Let V be either Qp(χur) or Qp(χur)(1) – a p-adic representation of GK .
Then the conjecture Cnaep (L/K, V ) holds.

Proof. Only the case V = Qp(χur) is missing, which follows immediately
from the functorial behavior under taking Kummer dual (see [19,
Prop. 3.14(1)]). �

Appendix A. Compatibilities
A.1. Breunings result for V = Qp(1) revisited. We just sketch how
our approach has to be modified for V = Qp(1) and how it then compares
to Breunings setting.

As mentioned earlier our formulation of Conjecture 5.1 also extends to
the case V = Qp(1). If we want to reformulate it in the style of (5.2) we have
to observe that now H1(M•) ∼= H1(L, T ) ∼= L̂× and H2(M•) ∼= H2(L, T ) ∼=
Zp, thus the trivialisation needs the additional summand v̂L induced by
the valuation map vL : L× → Z. Then the corresponding class is CL/K :=
χ(M•, (compV ◦ exp−1) ⊕ v̂L) ∈ K0(Λ, BdR) and the class CL/K + ∂(t)
corresponds to CBreuL/K in [5] as can be easily checked using (6.9) and (6.12).
Since 1 − φ is not longer a bijection on DL

cris(V ∗(1)) = DL
cris(Qp) also

the class Ucris has to be adjusted and then corresponds to the ’correction
term’ML/K , the origin of which seems completely unclear in [5] (as there is
no reference to p-adic Hodge theory). Finally, our factor ∂(εD(L/K,Qp(1)))
corresponds to the class TL/K in [5] if one uses Lemma 6.2 and the comment
on different conventions before Remark 4.2 - apparently Breuning never
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discusses the relation of his Gauss sums to the involved representation
Qp(1) at all. Finally, the term UL/K does not show up in our approach
as we consider the classes in K0(Λ̃, BdR) in (5.2), which is in accordance
with the vanishing (see [5, prop. 2.12]; although Breuning only states that
his element UL/K vanishes in K0(Otp[G],Qp), where Otp denotes the ring of
integers in the maximal tamely ramified extension of Qp, his proof actually
shows that it already vanishes in K0(Λ̃,Qp)) of that class in the latter
K-group, whence the statement (5.2) indeed corresponds to the vanishing
RL/K := TL/K + CL/K + UL/K − ML/K in that group according to [5,
cor. 3.5].

If now V = Qp(1) is twisted by an unramified character χur : GK →
G(L/K)→ Z×p , then the twisting commutes with forming Galois cohomol-
ogy etc. because χur is trivialised by GL. Since also the ε-constants behave
well under unramified twists, it is easy to check that Breuning’s arguments
above can be adjusted to prove our conjecture also in that situation. Since
we do not need the result in this article, we leave this to the interested
reader.

A.2. Some remarks concerning the various approaches in the lit-
erature. In [19, §3.1] one can find a rather detailed comparison with the
approaches of Perrin-Riou, Benois and Berger as well as Fukaya and Kato.
Here we only want to give some comments. Since Benois and Berger use
Perrin-Riou’s big exponential map, their setting generalises and refines that
of Perrin-Riou, of course. Since Fukaya and Kato allow also non-abelian ex-
tensions their setting is more general. Restricting to abelian extensions L/K
one of the main differences between the latter two consists in the fact that
Fukaya and Kato use the individual specialisations to the various twists
by (Artin) characters instead of working with Ω̃ = Q̂p[G(L/K)] as Benois
and Berger. Also Breuning puts all the characters together, i.e., works with
the regular representation rather than the irreducible ones. In his language
the evaluation at characters is described via the reduced norm, which we
compare in the next subsection with the specialisation in [18]. Moreover,
he works within relative K-groups. The translation into the language of
determinants we have indicated in the main text (the discussion after Con-
jecture 5.1, and §2.1.3).

A.3. The reduced norm and specialisation in [18]. The reduced norm
plays the crucial role in the work of Fröhlich, Taylor, Breuning etc. while
in the description of Fukaya and Kato [18] it does not show up at all. In
order to check whether both approaches coincide (in settings where both
are defined and apply) one has to check certain compatibilities, which we
are going to recall in this appendix.
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We fix a finite group G. Let F be a finite extension of Qp over which all
the absolutely irreducible representations Irr(G) of G are defined and set
A := F [G]. Every such representation ρ induces a F -algebra homomorphism
Tρ : A → EndK(Vρ) sending the central idempotent eρ to idVρ . Consider
the reduced norm isomorphism

nr : K1(A) ∼=
∏

ρ∈Irr(G)
F× = Z(A)×

sending a class [P, a] consisting of a projective, finitely generated (left) A-
module P together with an A-linear automorphism

a 7−→ (detF (HomA(Vρ, a)))ρ .

Using the following lemma we get an alternative description of this map.
Let T be finitely generated Zp-module with a continuous GK-action and
consider its deformation

T := Zp[G]⊗Zp T,

a (Zp[G], GK)-bimodule, where Zp[G] acts by left multiplication on the left
tensor factor while the action of σ ∈ GK is induced by σ(λ⊗t) = λσ̄−1⊗σt,
where σ̄ denotes the image of σ in G.

Lemma A.1. There are canonical isomorphisms
HomA(Vρ, A⊗Zp[G] T) ∼= V ∗ρ ⊗Zp T

∼= Vρ ⊗Zp[G] T

of F [GK ]-modules, where the GK-action is induced by the action on T on
the outer terms, while it is diagonally in the middle term (V ∗ρ = Vρ∗ is
considered as GK-module via the projection onto G here).

Proof. The inverse of the first isomorphism is induced by sending ω ⊗ t to
the map

ω̃ : Vρ → A⊗Zp[G] T, v 7→
∑
g∈G

ω(g−1v)g ⊗ t.

Now the statement is easily checked. �

Hence we get immediately that
nr([P, a]) = (detF (HomA(Vρ, a)))ρ = (detF (Vρ ⊗A a)))ρ .

In particular, the ρ-component can also be determined in the way of Fukaya
and Kato [18]. Furthermore we have a commutative diagram

A×
can //

Nr %%

K1(A),

nr
xx∏

ρ∈Irr(G) F
×
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where can sends a ∈ A to [A, a] considering now a as right multiplication
by it while

Nr : A× →
∏

ρ∈Irr(G)
F×

sends a to (detF (Tρ(a)))ρ.
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