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A Gap in the Spectrum of the Faltings Height

par Steffen LÖBRICH

Résumé. Nous montrons que le minimum hmin de la hauteur de
Faltings stable sur des courbes elliptiques trouvé par Deligne est
suivi par un écart. C’est-à-dire qu’il y a une constante C > 0 telle
que pour toute courbe elliptique E/K à réduction partout semi-
stable sur un corps de nombres K, nous avons ou h(E/K) = hmin
ou h(E/K) ≥ hmin + C. Nous déterminons une telle constante
absolue explicitement. Pour les courbes elliptiques à réduction in-
stable, nous montrons au contraire qu’il n’y a pas de tel écart.

Abstract. We show that the minimum hmin of the stable Falt-
ings height on elliptic curves found by Deligne is followed by a gap.
This means that there is a constant C > 0 such that for every ellip-
tic curve E/K with everywhere semistable reduction over a num-
ber fieldK, we either have h(E/K) = hmin or h(E/K) ≥ hmin+C.
We determine such an absolute constant explicitly. On the con-
trary, we show that there is no such gap for elliptic curves with
unstable reduction.

1. Introduction and Statement of Results

The Faltings height was introduced by Faltings in his famous proof of
the Mordell conjecture [4] and gives a notion of arithmetic complexity for
abelian varieties over number fields. In this article we will only consider
elliptic curves, the abelian varieties of dimension 1. The spectrum of values
of the Faltings height h(E/K) for E an elliptic curve over a number field
K (see Definition 2.3) was first examined by Deligne [2], who showed that
it attains a minimum precisely at elliptic curves with j-invariant 0 and
everywhere good reduction. Deligne also gave an explicit expression for the
minimal value using the Chowla–Selberg formula. Throughout this article
we follow Deligne’s normalization.
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Theorem 1.1 (Deligne). The Faltings height for elliptic curves is mini-
mal precisely at elliptic curves with j-invariant 0 having everywhere good
reduction. The minimum is given by

hmin = −1
2 log

(
1√
3

(Γ(1/3)
Γ(2/3)

)3)
= −0.74875248 . . . .

The minimal value of the Faltings height arises from elliptic curves with
complex multiplication by the ring of integers of Q(

√
−3). The Chowla–

Selberg formula and its generalization by Nakkajima and Taguchi [7] ex-
press the Faltings heights of CM-curves in terms of finite sums involving
the Gamma-function. However, it is only in the CM-case that such explicit
expressions for the Faltings height are known.

Zhang showed that heights on arithmetic varieties induced by hermit-
ian line bundles with smooth metric have isolated minima (see [10, Corol-
lary 5.7]). It is therefore natural to ask if the minimum of the Faltings
height on elliptic curves is also isolated. If so, one can try to determine
an explicit gap and look for a second minimum. The stable Faltings height
hstab (defined in Section 2) is obtained by extending the number field such
that the curve has everywhere semistable reduction. We show that, similar
to the Weil height (see Definition 2.1), the values of the Faltings height can
get arbitrarily close to hmin, while for the stable Faltings height there is a
gap behind hmin. More precisely, the main result of this article is

Theorem 1.2. There is a C > 0 such that for every elliptic curve E/K
we have

hstab(E/K) = hmin or hstab(E/K) ≥ hmin + C,

or equivalently, for every elliptic curve E/K with j-invariant not equal to 0
we have

h(E/K) ≥ hmin + C.

Moreover, we can choose C = 4.601 · 10−18.

For the proof we relate the Faltings height to the modular height (see
Definition 2.2) of an elliptic curve. Silverman estimated the Faltings height
from below and above by the modular height [8]. In Section 3 we will
employ estimates for the j-function by Faisant and Philibert [3] in order to
determine an absolute constant for the estimate from below. This will be a
key ingredient for the full proof given in Section 4. To study the growth of
the Faltings height, we need a result by Masser [6] on the vanishing of the
non-holomorphic Eisenstein series of weight 2.
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On the other hand, we have

Theorem 1.3. For every ε > 0 there is a number field K and an elliptic
curve E/K with j-invariant 0 such that

hmin < h(E/K) < hmin + ε.

We show this in Section 5 by constructing elliptic curves with j-inva-
riant 0 over an appropriate sequence of number fields. These curves have
bad reduction at only one prime ideal lying over a totally ramified prime
number that can be kept small.

The smallest value of the stable Faltings height on elliptic curves apart
from hmin that we could find by numerically testing elliptic curves with
roots of unity and small Salem numbers as j-invariants in SAGE [9] is
h1 = −0.74862817 . . . , attained at curves with j-invariant 1 and everywhere
good reduction. However, we could not prove that the stable Faltings height
attains a second minimum.

2. Definitions and Preliminaries

In this section we define the modular height and the Faltings height of
an elliptic curve. Throughout we denote by K a number field and by OK
its ring of integers. We write E/K for an elliptic curve over K and jE for
its j-invariant. We denote by τ = x + iy a variable in the complex upper
half-plane H and write q = q(τ) = e2πiτ , ∆(τ) = (2π)12q

∏
n≥1(1 − qn)24

for the modular discriminant and j(τ) = 1
q + 744 + . . . for the modular

j-function. We also define the closed fundamental domain
F := {τ ∈ H : −1

2 ≤ Re τ ≤ 1
2 and |τ | ≥ 1}.

For every prime number p, we define a p-adic absolute value | · |p on Q
by |x|p := p− ordp x for x ∈ Q∗ and |0|p := 0. A place of a number field K
is an equivalence class of non-trivial absolute values on K. Let M0

K denote
the set of all non-archimedean places of K. It is well known that every non-
archimedean place on K uniquely corresponds to a non-zero prime ideal in
OK , so we will freely identify these two sets. Every non-archimedean place
p ∈ M0

K restricts to a non-archimedean place on Q corresponding to some
prime number p. We define | · |p to be the absolute value in p that restricts
to | · |p. Let Kp denote the completion of K with respect to the metric
defined by p. The local degree of p is defined as np := [Kp : Qp].

Definition 2.1. The (absolute logarithmic) Weil height of an algebraic
number α ∈ K is defined as

h(α) := 1
[K : Q]

 ∑
p∈M0

K

np log max{1, |α|p}+
∑

σ:K↪→C
log max{1, |σ(α)|}

 ,
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where the second sum runs over all embeddings σ : K ↪→ C.
The product formula implies that the Weil height does not depend on

the number field K containing α. If α ∈ Q∗ and α = s
t for coprime integers

s, t, then we simply have
h(α) = log max{|s|, |t|}.

Definition 2.2. The modular height of an elliptic curve over a number
field is the absolute logarithmic Weil height of its j-invariant.

Now we define the Faltings height of an elliptic curve E/K. Let ∆E/K

denote theminimal discriminant of E/K. For every embedding σ : K ↪→ C,
we write jσ for σ(jE) and choose a τσ ∈ H such that j(τσ) = jσ.
Definition 2.3. The Faltings height of E/K is given by

h(E/K) := 1
12[K : Q]

(
log |NK/Q(∆E/K)| −

∑
σ:K↪→C

log(|∆(τσ)| Im(τσ)6)

)
+ 1

2 log π.

Remark 2.1. The 1
2 log π-term has conventional reasons, as we follow the

definition of Deligne [2]. There are several normalizations of the Faltings
height going around, all of them differing only by an additive constant.
Faltings’s original definition [4] does not have the 1

2 log π-term. Silverman’s
definition [8] differs from Faltings’s by −2 log 2π, because he defines the
∆-function with a prefactor of (2π)−12 instead of (2π)12. Of course, our
results on the existence and size of a gap are independent of the chosen
normalization.

The definition is motivated by Arakelov theory. For an abelian variety
A/K with Néron model A/OK , every embedding σ : K ↪→ C induces a
norm on the sheaf of Néron differentials ωA/OK . These norms make ωA/OK
into a metrized line bundle on OK . The Faltings height of A/K is originally
defined to be the normalized Arakelov degree of ωA/OK (see [4, §3]). In case
of elliptic curves this is equivalent to Definition 2.3 (see [8, Proposition 1.1]).

The Faltings height of E/K depends on the field K. However, it is the
same for every field over which E has everywhere semistable reduction. To
get rid of the dependence, we define the stable Faltings height hstab by choos-
ing a finite field extension L/K such that E/L has everywhere semistable
reduction and setting hstab(E/K) := h(E/L). The stable Faltings height
does not depend on the field K and the chosen field extension. We have
hstab(E/K) ≤ h(E/K) for every elliptic curve E/K with equality if and
only if E/K has everywhere semistable reduction.

Sometimes we want to split the Faltings height into an archimedean and
a non-archimedean part. We set

h0(E/K) := 1
12[K : Q] log |NK/Q(∆E/K)|
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and
h∞(E/K) := − 1

12[K : Q]
∑

σ:K↪→C
log(|∆(τσ)| Im(τσ)6),

so that
h(E/K) = h0(E/K) + h∞(E/K) + 1

2 log π.
Note that h0 is non-negative. The next proposition tells us how the Faltings
height behaves under field extensions.

Proposition 2.1. Let E/K be an elliptic curve and L/K a finite field
extension. Then we have

(i) h∞(E/L) = h∞(E/K)
(ii) h0(E/L) ≤ h0(E/K) and h0(E/L) = h0(E/K) if E/K has every-

where semistable reduction.
(iii) h0(E/K) = 0 if and only if E/K has everywhere good reduction.

Proof.
(i) For every embedding σ : K ↪→ C there are [L : K] embeddings of L

that restrict to σ on K. For every such embedding ρ : L ↪→ C, we
have ρ(jE) = σ(jE), so we may assume that τρ = τσ. Hence

log(|∆(τσ)| Im(τσ)6) = 1
[L : K]

∑
ρ:L↪→C
ρ|σ

log(|∆(τρ)| Im(τρ)6).

Summing over all σ and averaging implies the statement.
(ii) The ideal ∆E/L divides ∆E/KOL with equality if E/K has every-

where semistable reduction. Thus
NL/Q(∆E/L) ≤ NL/Q(∆E/KOL) = NK/Q(∆E/K)[L:K]

with equality if E/K has everywhere semistable reduction.
(iii) E/K has everywhere good reduction if and only if ∆E/K = OK if

and only if h0(E/K) = 0. �

In particular, if E/K has everywhere potential good reduction, then
hstab(E/K) = h∞(E/K) + 1

2 log π. A well-known result from the theory of
elliptic curves states that this is the case if and only if jE is an algebraic
integer.

3. An Estimate between Faltings Height and Modular Height

In this section we estimate the Faltings height explicitly from below
against the modular height. We factor the principal ideal (jE) as (jE) =
AD−1 for coprime integral ideals A,D ⊂ OK . Then D divides ∆E/K with
equality if and only if E/K has everywhere semistable reduction. Hence we
can write ∆E/K = DγE/K for some integral ideal γE/K , such that γE/K =
OK if and only if E/K has everywhere semistable reduction. The ideal
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γE/K is called the unstable discriminant of E/K. Silverman proved the
following result.

Proposition 3.1 ([8, Proposition 2.1]). There are constants C1, C2 such
that for every elliptic curve E/K we have

C1 ≤ 1
12h(jE) + 1

12[K:Q] log |NK/Q(γE/K)| − h(E/K)

≤ 1
2 log(1 + h(jE)) + C2.

(3.1)

In particular, if E/K has everywhere semistable reduction, there is a con-
stant C with ∣∣∣ 1

12h(jE)− h(E/K)
∣∣∣ ≤ 1

2 log(1 + h(jE)) + C.

Gaudron and Rémond showed that one can choose C1 = 0.72 (cf. [5,
Lemme 7.9]). They proved the result for curves with everywhere semistable
reduction, but it easily extends to the unstable case. We want determine
an absolute C2 in (3.1) in order to find a lower bound for the Faltings
height in terms of the modular height. In fact, we show that one can choose
C2 = 2.071.

Proposition 3.2. Let E/K be an elliptic curve over a number field K with
j-invariant jE. Then
h(E/K) > 1

12h(jE)− 1
2 log(1 + h(jE)) + 1

12[K:Q] log |NK/Q(γE/K)| − 2.071.

Before we prove Proposition 3.2 we need some preparation. To treat the
archimedean part we apply estimates for the j-function by Faisant and
Philibert.

Lemma 3.1 ([3, §2 Lemme 1]).
(i) For every τ ∈ H we have |j(τ)| ≤ j(i Im τ).
(ii) For every y ≥ 1 we have j(iy) ≤ e2πy + 1193.
(iii) For every τ ∈ F we have Im τ ≤ 3

2 log max{e, |j(τ)|}.

Now we establish a bound for |j(τ)| in terms of Im τ .

Lemma 3.2. For every τ ∈ F we have
log max{1, |j(τ)|} ≤ 2π Im τ + log 1193 < 2π Im τ + 7.09.

Proof. First we show that

|j(τ)| ≤ e4π/
√

3 + 1193 < 2609

for every τ ∈ F with Im τ ≤ 1. Since j is a modular function, we have
j(iy) = j(− 1

iy ) = j( iy ). It follows

|j(τ)| ≤ j(i Im τ) = j
(

i
Im τ

)
≤ e2π/ Im τ + 1193 ≤ e4π/

√
3 + 1193
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by Lemma 3.1 (i) and because of Im τ ≥
√

3
2 for τ ∈ F . Next observe that

for s, t ∈ R with 2 ≤ s ≤ t it holds that
log(s+ t) ≤ log(2t) = log 2 + log t ≤ log s+ log t,

so by Lemma 3.1 (i) and (ii) we have for Im τ ≥ 1

log |j(τ)| ≤ log
(
e2π Im τ + 1193

)
≤ 2π Im τ + log 1193.

Altogether this implies

log max{1, |j(τ)|} ≤
{

2π Im τ + log 1193 if Im τ ≥ 1
log(e4π/

√
3 + 1193) if Im τ ≤ 1,

for every τ ∈ F . Since Im τ ≥
√

3
2 and

log(e4π/
√

3 + 1193) < π
√

3 + log 1193
we have in any case

log max{1, |j(τ)|} ≤ 2π Im τ + log 1193 < 2π Im τ + 7.09. �

We also need the following inequality by Silverman.

Lemma 3.3 ([8], §2 Exercise 1). For every τ ∈ F we have
log |∆(τ)| < −2π Im τ + 22.16.

Proof. Since |q| ≤ e−
√

3π and log(1 + x) ≤ x for all x ≥ 0, we have∑
n≥1

log |1− qn| ≤
∑
n≥1

log(1 + |q|n) ≤
∑
n≥1

log(1 + e−
√

3πn)

≤
∑
n≥1

e−
√

3πn = 1
1− e−

√
3π
− 1.

We deduce that
log |∆(τ)| = log |q|+ 24

∑
n≥1

log |1− qn|+ 12 log(2π)

≤ −2π Im τ + 24
( 1

1− e−
√

3π
− 1

)
+ 12 log(2π)

< −2π Im τ + 22.16. �

Proof of Proposition 3.2. First we estimate the non-archimedean part
h0(E/K). Note that for every prime ideal p ⊂ OK we have

ordp(jE) =
{

ordp(A) if ordp(jE) ≥ 0
− ordp(D) if ordp(jE) ≤ 0

,

where (jE) = AD−1 as above, and thus

(3.2) max{1, |jE |p} = p
−min{0,ordp(jE)}/ep
p = p

ordp(D)/ep
p ,
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where pp is the unique prime number divided by p and ep the ramification
index of p in K/Q. It follows that

∑
p∈M0

K

np log max{1, |jE |p}
(3.2)= log

 ∏
p∈M0

K

p
np ordp(D)/ep
p

 = log |NK/Q(D)|

= log |NK/Q(DγE/K)| − log |NK/Q(γE/K)|

= log |NK/Q(∆E/K)| − log |NK/Q(γE/K)|

= 12[K : Q]h0(E/K)− log |NK/Q(γE/K)|.

(3.3)

Thus 12h0(E/K) is greater than or equal to the non-archimedean part of
the modular height of E/K with equality if and only if E/K has everywhere
semistable reduction.

Putting the inequalities from Lemma 3.2 and 3.3 together, we obtain
(3.4) − log |∆(τ)| > log max{1, |j(τ)|} − 29.25.
Moreover, Lemma 3.1 (iii) yields

log Im τ ≤ log log max{e, |j(τ)|}+ log 3
2

< log log max{e, |j(τ)|}+ 0.41
(3.5)

Now we can estimate the Faltings height. Setting d := [K : Q], we obtain

12dh(E/K) = 12dh0(E/K)−
∑

σ:K↪→C
log(|∆(τσ)| Im(τσ)6) + 6d log π

(3.3)
≥

∑
p∈M0

K

np log max{1, |jE |p}+ log |NK/Q(γE/K)|

−
∑

σ:K↪→C
log |∆(τσ)| − 6

∑
σ:K↪→C

log Im τσ + 6d log π

(3.4)
(3.5)
>

∑
p∈M0

K

np log max{1, |jE |p}+ log |NK/Q(γE/K)|

+
∑

σ:K↪→C

(
log max{1, |jE |σ} − 29.25

)
− 6

∑
σ:K↪→C

(
log log max{e, |jE |σ}+ 0.41

)
+ 6d log π

> d(h(jE)− 24.85)− 6
∑

σ:K↪→C
log log max{e, |jE |σ}

+ log |NK/Q(γE/K)|.

(3.6)
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The geometric-arithmetic mean inequality yields

∑
σ:K↪→C

log log max{e, |jE |σ} = log
( ∏
σ:K↪→C

log max{e, |jE |σ}
)

≤ log
(

1
d

∑
σ:K↪→C

log max{e, |jE |σ}
)d

≤ d log
(

1 + 1
d

∑
σ:K↪→C

log max{1, |jE |σ}
)

≤ d log(1 + h(jE)).

(3.7)

Now Proposition 3.2 follows by plugging (3.7) into (3.6). �

4. Proof of Theorem 1.2

Now we want to prove Theorem 1.2. Assume throughout this section that
jE 6= 0. Let % = −1+

√
3i

2 denote the third root of unity in H. For τ ∈ H we
define

V (τ) := − 1
12 log(|∆(τ)| Im(τ)6),

so that
h∞(E/K) = 1

[K : Q]
∑

σ:K↪→C
V (τσ).

Also note that V (%) = hmin + 1
2 log π. Since ∆ is a modular cusp form of

weight 12, the function V is invariant under the action of SL2(Z) on H
and goes to infinity for Im τ → ∞. Therefore we may assume that all the
{τσ}σ:K↪→C lie in F .

The idea is that if τ ∈ F\{%,−%2} is close to % or −%2, then |j(τ)|−1

becomes large. Consequently, h(j(τ)−1) = h(j(τ)) becomes large. If this
happens for too many {τσ}σ:K↪→C, then E/K has a large modular height.
Because of Proposition 3.2 the curve E/K cannot have a too small Faltings
height. If on the other hand a certain part of the {τσ}σ:K↪→C lies far from
both % and−%2, then the corresponding {V (τσ)}σ:K↪→C become too large for
E/K to have a small Faltings height. We will now make this idea rigorous
and divide the proof into several lemmas.

Remark 4.1. The function
x 7→ 1

12x−
1
2 log(1 + x)

is monotonically increasing for x ≥ 5 and becomes greater than 1.323 for
x ≥ 37.84. Thus if h(jE) ≥ 37.84 then
h(E/K) > 1

12h(jE)− 1
2 log(1 + h(jE))− 2.071 ≥ −0.748 > hmin + 0.0007

by Proposition 3.2.
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Lemma 4.1. Let P ∈ (0, 1) and assume that jE 6= 0 and that at least a
fraction of P of the conjugates {jσ}σ:K↪→C of jE satisfy

|jσ| ≤ e−37.84/P := ε(P ),

meaning that

|{σ : K ↪→ C : |jσ| ≤ ε(P )}| ≥ P · [K : Q].

Then we have h(jE) ≥ 37.84 and therefore h(E/K) ≥ hmin + 0.0007 by
Remark 4.1.

For the next lemmas we define

Bδ := {τ ∈ F : |τ − %| ≤ δ or |τ + %2| ≤ δ}.

Lemma 4.2. Let 0 ≤ ε ≤ 5.08 · 10−5 and δ = 0.027 · 3
√
ε. Then for every

τ ∈ Bδ we have |j(τ)| ≤ ε.

Lemma 4.3. Let δ ∈ (0, 1
2), q := −q(%) = e−π

√
3 and define

δ′ := 1
2δ
√

1− δ2

4 −
√

3
4 δ

2

and

C(δ′) := π

6 δ
′ − 1

2 log
(

1 + 2√
3
δ′
)

+ 2q(1− e−2πδ′)
1 + q

+ 2q3(1− e−6πδ′)
1 + q3

+ 2
(1− q2)(1− q2e−4πδ′) −

2
(1− q2)2 .

Then for every τ ∈ F\Bδ we have

V (τ) ≥ V (%) + C(δ′).

First we prove that Theorem 1.2 follows from Lemma 4.1–4.3:

Proof of Theorem 1.2. By Lemma 4.1 we either have h(E/K) ≥ hmin +
0.0007 or at most a fraction of P of the {jσ}σ:K↪→C satisfy |jσ| ≤ ε(P ). Let

δ(P ) := 0.027 · 3
√
ε(P ).

Note that ε(P ) ≤ e−37.84 < 5.08 · 10−5 and δ(P ) < 1
2 for every P ∈ (0, 1).

It follows from Lemma 4.2 that at most a fraction of P of the {τσ}σ:K↪→C
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satisfy τσ ∈ Bδ(P ). In this case Lemma 4.3 implies

h(E/K) ≥ h∞(E/K) + 1
2 log π

= 1
[K : Q]

∑
σ:K↪→C

V (τσ) + 1
2 log π

= 1
[K : Q]

 ∑
σ:K↪→C
τσ∈Bδ(P )

V (τσ) +
∑

σ:K↪→C
τσ /∈Bδ(P )

V (τσ)

+ 1
2 log π

≥ 1
[K : Q]

 ∑
σ:K↪→C
τσ∈Bδ(P )

hmin +
∑

σ:K↪→C
τσ /∈Bδ(P )

(hmin + C(δ′(P )))


≥ hmin + (1− P )C(δ′(P )),

where

δ′(P ) := 1
2δ(P )

√
1− δ(P )2

4 −
√

3
4 δ(P )2

and C(δ′) as in Lemma 4.3. As P was arbitrary, we obtain a gap of

min{0.0007, maxP∈(0,1)(1− P )C(δ′(P ))}.

We will see that maxP∈(0,1)(1 − P )C(δ′(P )) is much smaller than 0.0007,
so the gap function is given by

P 7−→ (1− P )C(δ′(P ))

= (1− P )
(π

6 δ
′(P )− 1

2 log
(

1 + 2√
3
δ′(P )

)
+ 2q(1− e−2πδ′(P ))

1 + q

+ 2q3(1− e−6πδ′(P ))
1 + q3 + 2

(1− q2)(1− q2e−4πδ′(P ))
− 2

(1− q2)2

)
.

Numerical computations at high precision in SAGE [9] suggest that the
function has a maximum at 0.964 . . . . So we choose P = 0.964 and obtain
a gap of 4.601 · 10−18. �

Now we prove Lemma 4.1–4.3.

Proof of Lemma 4.1. First note that ε(P ) = e−37.84/P < 1 for P ∈ (0, 1).
Assuming that at least a fraction of P of the {jσ}σ:K↪→C satisfy |jσ| ≤ ε(P )
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and that jE 6= 0 we obtain

h(j−1
E ) ≥ 1

[K : Q]
∑

σ:K↪→C
log max{1, |jσ|−1}

≥ 1
[K : Q]

∑
σ:K↪→C
|jσ |≤ε

log max{1, |jσ|−1}

= 1
[K : Q]

∑
σ:K↪→C
|jσ |≤ε

− log |jσ| ≥ −P log ε(P ) = 37.84.

It is well-known that h(α−1) = h(α) for every α ∈ Q \ {0}, which proves
Lemma 4.1. �

Proof of Lemma 4.2. Bilu, Luca and Pizarro-Madariaga showed that
|j(τ)| ≤ 47000 · |τ − %|3

for all τ ∈ F with |τ − %| ≤ 0.001 (see [1], Proposition 2.2). Thus if ε ≤
5.08 · 10−5 and δ = 0.027 · 3

√
ε, then δ ≤ 0.001 and |j(τ)| ≤ ε for all τ ∈ F

with |τ − %| ≤ δ. The same statement holds for −%2 instead of %. �

To prove Lemma 4.3, we first show that we can restrict ourselves to the
half-line Re τ = −1

2 :

Lemma 4.4. For all τ = x+ iy ∈ F we have
V (τ) ≥ V (−1

2 + iy)

and V is monotonically increasing on the half line defined by x = −1
2 and

y ≥
√

3
2 .

Proof. We regard V as a function of the real variables x, y and examine the
partial derivatives. Let

E2(x, y) := 1− 24
∑
n≥1

nqn

1− qn −
3
πy

denote the non-holomorphic Eisenstein series of weight 2. Direct calculation
shows that

∂xV (x, y)− i∂yV (x, y) = −πi
6 E2(x, y).

According to Masser’s proof of Lemma 3.2 in [6], we have E2(x, y) ∈ R and
hence ∂xV (x, y) = 0 if and only if x ∈ 1

2Z. In the expression

|∆(x, y)| = (2π)12|q|
∏
n≥1
|1− qn|24 = (2π)12|q|

∏
n≥1

(1− 2 Re(qn) + |q|2n)12

only the Re(qn)-term depends on x. For fixed y > 0 the product is minimal
if q > 0, i.e. x ∈ Z. Therefore it has to be maximal for x ∈ 1

2 + Z. Hence
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V (x, y) = − 1
12 log(|∆(x, y)|y6) is minimal for x ∈ 1

2 + Z if y is fixed. Fur-
thermore, Masser’s proof shows that the only zero of E2 on the half-line
x = −1

2 in H is %. Since ∂yV is continuous and limy→∞ V (x, y) =∞, it fol-
lows that ∂yV (−1

2 , y) > 0 for y >
√

3
2 , hence V is monotonically increasing

on this half-line. �

Proof of Lemma 4.3. For δ ∈ (0, 1
2), the upper intersection point w of the

circle |τ − %| = δ and the unit circle has imaginary part

Imw =
√

3
2 + 1

2δ
√

1− δ2

4 −
√

3
4 δ

2 = Im %+ δ′.

Since this is the smallest possible imaginary part on the two arcs consti-
tuting ∂Bδ ∩ F , we have Im τ ≥ Imw = Im %+ δ′ for every τ ∈ F\Bδ. By
Lemma 4.4 we have

V (τ) ≥ V (−1
2 + i Im τ) ≥ V (%+ iδ′)

for every τ ∈ F\Bδ, so it suffices to show the estimate for %+iδ′ ∈ −1
2 +iR.

For the rest of the proof we set q := −q(%) = e−π
√

3 and t := e−2πδ′ so that
q(% + iδ′) = −qt. First we estimate the difference of the infinite product
of ∆(τ).

log
∏
n≥1
|1− (−qt)n| − log

∏
n≥1
|1− (−q)n| =

∑
n≥1

log
∣∣∣∣1− (−qt)n

1− (−q)n

∣∣∣∣
≤
∑
n≥1

(1− (−qt)n

1− (−q)n − 1
)

=
∑
n≥1

(−q)n(1− tn)
1− (−q)n

(∗)
≤ −q(1− t)1 + q

− q3(1− t3)
1 + q3 + 1

1− q2

∑
n≥1

q2n(1− t2n)


= −q(1− t)1 + q

− q3(1− t3)
1 + q3 − 1

(1− q2)(1− q2t2) + 1
(1− q2)2

For (∗) we used that since 0 < q, t < 1 we have

(−q)n(1− tn)
1− (−q)n < 0

for n odd and 0 < qn < q2 for n ≥ 2 even.
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Hence we have for τ ∈ F\Bδ:
V (τ)−V (%)

≥ V (%+ iδ′)− V (%)

= − 1
12 log

∣∣∣∣∆(%+ iδ′)
∆(%)

∣∣∣∣− 1
2 log

(
1 + 2δ′√

3

)
= π

6 δ
′ − 2

∑
n≥1

log
∣∣∣∣∣1− e−2πnδ′(−q)n

1− (−q)n

∣∣∣∣∣− 1
2 log

(
1 + 2δ′√

3

)

≥ π

6 δ
′ − 1

2 log
(

1 + 2√
3
δ′
)

+ 2q(1− e−2πδ′)
1 + q

+ 2q3(1− e−6πδ′)
1 + q3

+ 2
(1− q2)(1− q2e−4πδ′) −

2
(1− q2)2 = C(δ′). �

5. A Construction for the Case jE = 0

In this section we show that if E/K with jE = 0 is not supposed to have
everywhere semistable reduction, then h(E/K) can get arbitrarily close to
hmin.

First we recall a well-known result on Eisenstein polynomials. Let K be
a number field, p ⊂ OK a prime ideal, f ∈ OK [X] a monic Eisenstein
polynomial for p of degree n and α a zero of f . Then f is irreducible in
K[X] and p is totally ramified in the extension K(α)/K. If in particular
K = Q, p = (p) and furthermore f(0) = p, then pOQ(α) = αnOQ(α) and
NQ(α)/Q(α) = (−1)np.

Lemma 5.1. Let n ≥ 1 and p a prime number with p ≡ (−1)n mod 9. Then
there is a monic polynomial f of the form

(5.1) f(X) = (X − 1)n +
n∑
k=1

9kbk(X − 1)n−k

with bk ∈ Z and f(0) = p that is Eisenstein for p. If α is a zero of f , then
1
9(α− 1) is an algebraic integer.

Proof. Let p = (−1)n+9m and f a polynomial of the form (5.1). We have to
show that there is a vector b = (b1, . . . , bn)> ∈ Zn such that f(0) = p and f
is Eisenstein for p. Let a1, . . . , an ∈ Z such that f(X) = Xn+

∑n
k=1 akX

n−k.
We have

f(0) = an =
n∑
k=1

(−1)n−k9kbk + (−1)n.

Thus the condition that f(0) = p can be written as

(5.2) ψ(b) :=
n∑
k=1

(−1)n−k9k−1bk = m.
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One integral solution is u1 = ((−1)n−1m, 0, . . . , 0)>, so the solution set
of (5.2) is given by u1 + kerψ. We write Fnp for the n-dimensional vector
space over the field with p elements and a tilde for component-wise reduc-
tion mod p. Obviously ker ψ̃ is an (n− 1)-dimensional subspace of Fnp that
contains k̃erψ. Since kerψ is a primitive subgroup of Zn, the subspace k̃erψ
is also (n − 1)-dimensional. Hence we have ker ψ̃ = k̃erψ, i.e. every vector
ṽ ∈ ker ψ̃ lifts to a vector v ∈ kerψ.

Let now a = (a1, . . . , an−1)> ∈ Zn−1. Then a and b are related by the
system of linear equations

9 0 · · · 0
−9(n− 1) 92 · · · 0

...
... . . . ...

(−1)n9(n− 1) · · · 9n−1 0



b1
b2
...
bn

+


−n(n

2
)
...

(−1)n−1n

 =


a1
a2
...

an−1


which we will write as Ab + u2 = a. A is a lower triangle (n − 1) × n-
matrix with nonzero diagonal entries and therefore has rank (n − 1). The
coefficients ak are divisible by p if

Ãb̃+ ũ2 = ã = 0.
Since the diagonal entries of A are not divisible by p, the reduced matrix
Ã also has rank (n − 1) and we have ker Ã = {0}n−1 × Fp. It follows that
ker ψ̃ ∩ ker Ã = {0}, so Ã defines a bijection between ker ψ̃ and Fn−1

p . Let
ũ := Ãũ1 + ũ2. Then the system

Ãb̃′ + ũ = 0
has a unique solution b̃′ ∈ ker ψ̃, that lifts to an integral vector b′ ∈ kerψ.

Let b = u1 + b′. Then ψ(b) = m and
Ãb̃+ ũ2 = Ã(ũ1 + b̃′) + ũ2 = Ãb̃′ + ũ = 0,

so the polynomial defined by b has the desired properties.
Let eventually p be a prime in OQ(α) lying over 3. Then

|α− 1|np ≤ max1≤k≤n |9kbk(α− 1)n−k|p ≤ 9−k0 |α− 1|n−k0
p

for some k0. Thus |α− 1|p ≤ 9−1. �

Now we are ready to construct the appropriate number fields.

Proof of Theorem 1.3. For an algebraic integer α ∈ Q∗, we consider elliptic
curves with j-invariant 0 given by the equations
(5.3) E1 : Y 2 + αY = X3

with discriminant ∆1 = −27α4 and
(5.4) E2 : Y 2 = X3 + (%2 − 1)X2 − %2X + i

3
√

3(α2 − 1),
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where again % = −1+
√

3i
2 , with discriminant ∆2 = 16α4. Note that jE1 =

jE2 = 0. One can think of E2 as a disturbed Legendre equation. Let ζ8 =
e−iπ/8, K = Q( 3√4, 4√27ζ8) and L = K(α). Then we have [K : Q] = 12 and
i, %,
√

3 ∈ K. The discriminant of the extension K/Q is 216 · 315, so 2 and
3 are the only primes that ramify in K/Q. The change of variables

X = 1
3√4

((1− %)X ′ − 1), Y = 1
2( 4√27ζ8Y

′ − α)

shows that E1/L and E2/L are isomorphic. We denote the corresponding
curve by E/L. Now we assume that α is coprime to 2 and 3. Then (5.3)
is a minimal Weierstraß equation at every prime in OL lying over 2. If

1
3
√

3(α2 − 1) is an algebraic integer, then (5.4) is integral and therefore min-
imal at every prime in OL dividing 3. In this case, E/L has bad reduction
only at primes dividing α.

Our task is to choose a suitable α. Let n ≥ 1 and p a prime number with
p ≡ (−1)n mod 9. By Lemma 5.1 there is a monic polynomial f ∈ Z[X] of
degree n that is Eisenstein for p and of the form (5.1) with f(0) = p. We
choose α to be a zero of f , so that 1

9(α − 1) and hence also 1
3
√

3(α2 − 1)
is an algebraic integer. Moreover, p factors as pOQ(α) = αnOQ(α). We have
p ≥ 5, so p does not ramify in K/Q. Let pOK = p1 · · · pm be the prime
factorization of pOK . Regarded as a polynomial in OK [X], f is monic and
Eisenstein for every pj and therefore irreducible in K[X]. Thus [L : K] = n
and every pj is totally ramified in L/K, say pjOL = Pn

j . Now we have

αnOL = pOL = p1 · · · pmOL = Pn
1 · · ·Pn

m.

It follows that αOL = P1 · · ·Pm, so αOL is unramified in L/Q(α). If q ⊂
OL is a prime ideal dividing αOL, then

ordq ∆1 = ordq ∆2 = ordq(α4OL) = 4 < 12.

It follows that (5.3) and (5.4) are minimal Weierstraß equations for E/L
at q. Hence

NL/Q(∆E/L) = NL/Q(α4) = NQ(α)/Q(α)4[L:Q(α)] = p4[L:Q(α)].

and

h0(E/L) = 1
12[L : Q] logNL/Q(∆E/L) = 4[L : Q(α)]

12[L : Q] log p = log p
3n .

We can keep p bounded as n grows, for example we may choose p = 17 for
n odd and p = 19 for n even. Then h0(E/L) gets arbitrarily close to 0. Since
h∞(E/L)+ 1

2 log π = hmin for all elliptic curves E/L with j-invariant 0, this
implies Theorem 1.3. �
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