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A factor of integer polynomials with
minimal integrals

par Carlo SANNA

Résumé. Pour chaque entier positif N , soit SN l’ensemble des
polynômes P (x) ∈ Z[x] de degré inférieur à N et d’intégrale po-
sitive non-nulle minimale sur [0, 1]. Ces polynômes sont liés à la
répartition des nombres premiers puisque, si l’on note ψ la fonction
de Tchebychev, on a

∫ 1
0 P (x) dx = exp(−ψ(N)). Nous démontrons

que, pour tout nombre entier positif N , il existe P (x) ∈ SN tel que
le polynôme (x(1−x))bN/3c divise P (x) dans Z[x]. Nous montrons
en fait que l’exposant bN/3c ne peut pas être amélioré. Ce résultat
est analogue à celui obtenu par Aparicio concernant les polynômes
de Z[x] de norme L∞ non-nulle minimale sur [0, 1]. En outre, il
est en quelque sorte l’amélioration d’un résultat de Bazzanella,
qui considérait xbN/2c et (1− x)bN/2c au lieu de (x(1− x))bN/3c.

Abstract. For each positive integer N , let SN be the set of
all polynomials P (x) ∈ Z[x] with degree less than N and minimal
positive integral over [0, 1]. These polynomials are related to the
distribution of prime numbers since

∫ 1
0 P (x) dx = exp(−ψ(N)),

where ψ is the second Chebyshev function. We prove that for any
positive integerN there exists P (x) ∈ SN such that (x(1−x))bN/3c

divides P (x) in Z[x]. In fact, we show that the exponent bN/3c
cannot be improved. This result is analog to a previous of Aparicio
concerning polynomials in Z[x] with minimal positive L∞ norm
on [0, 1]. Also, it is in some way a strengthening of a result of
Bazzanella, who considered xbN/2c and (1 − x)bN/2c instead of
(x(1− x))bN/3c.

1. Introduction
It is well-known that the celebrated Prime Number Theorem is equivalent

to the assertion:
ψ(x) ∼ x, as x→ +∞.
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Here ψ(x) is the second Chebyshev function, defined for x ≥ 0 as

ψ(x) :=
∑

pm≤x
log p,

where the sum is extended over all the prime numbers p and all the positive
integers m such that pm ≤ x.

In 1936, Gelfond and Shnirelman proposed an elementary and clever
method to obtain lower bounds for ψ(x) (see Gelfond’s comments in [5,
pp. 285–288]). In 1982, the same method was rediscovered and developed
by Nair [9, 10].

The main idea of the Gelfond–Shnirelman–Nair method is the follow-
ing: Given a positive integer N , let PN (x) be a polynomial with integer
coefficients and degree less than N , say

PN (x) =
N−1∑
n= 0

anx
n,

with a0, . . . , aN−1 ∈ Z. Now consider the integral of PN (x) over [0, 1], that
is

I(PN ) :=
∫ 1

0
PN (x) dx =

N−1∑
n= 0

an
n+ 1 .

Clearly, I(PN ) is a rational number whose denominator divides

dN := lcm{1, 2, . . . , N},

hence dN |I(PN )| is an integer. In particular, if we suppose I(PN ) 6= 0, then
dN |I(PN )| ≥ 1. Now dN = exp(ψ(N)), so we get

(1.1) ψ(N) ≥ log
( 1
|I(PN )|

)
.

Finally, from the trivial upper bound

|I(PN )| =
∣∣∣∣∫ 1

0
PN (x) dx

∣∣∣∣ ≤ ∫ 1

0
|PN (x)| dx ≤ max

x∈ [0,1]
|PN (x)| =: ‖PN‖,

we obtain

(1.2) ψ(N) ≥ log
( 1
‖PN‖

)
.

At this point, if we choose PN to have a sufficiently small norm ‖PN‖, then
a lower bound for ψ(x) follows from (1.2). For example, the choice

PN (x) = (x(1− x))2b(N−1)/2c

gives the lower bound

ψ(N) ≥ log 2 · (N − 2) > 0.694 · (N − 2).
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This motivates the study of the quantities

`N := min{‖P‖ : P (x) ∈ Z[x], deg(P ) < N, ‖P‖ > 0},

CN := 1
N

log
( 1
`N

)
,

and the set of polynomials

TN := {P (x) ∈ Z[x] : deg(P ) < N, ‖P‖ = `N};

the so-called Integer Chebyshev Problem [4].
In particular, Aparicio [1] proved the following theorem about the struc-

ture of polynomials in TN .

Theorem 1.1. Given any sufficiently large positive integer N , for all
P ∈ TN it holds

(x(1− x))bλ1Nc(2x− 1)bλ2Nc(5x2 − 5x+ 1)bλ3Nc | P (x)

in Z[x], where

λ1 ∈ [0.1456, 0.1495], λ2 ∈ [0.0166, 0.0187], λ3 ∈ [0.0037, 0.0053]

are some constants.

It is known that CN converges to a limit C, as N → +∞ (see [8, Chap-
ter 10]). Furthermore, Pritsker [11, Theorem 3.1] showed that

C ∈ ]0.85991, 0.86441[,

and this is the best estimate of C known to date.
As a consequence of Pritsker’s result, the Gelfond–Shnirelman–Nair me-

thod cannot lead to a lower bound better than

ψ(x) ≥ 0.86441 · x,

which is quite far from what is expected by the Prime Number Theorem.
To deal with this problem, Bazzanella [2, 3] suggested to study the poly-

nomials PN such that |I(PN )| is nonzero and minimal, or, without loss of
generality, such that I(PN ) is positive and minimal.

We recall the following elementary lemma about the existence of solutions
of some linear diophantine equations.

Lemma 1.2. Fix some integers c1, . . . , ck. Then the diophantine equation
k∑

i= 1
cixi = 1

has a solution x1, . . . , xk ∈ Z if and only if gcd{c1, . . . , ck} = 1. Moreover,
if a solution exists, then there exist infinitely many solutions.
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On the one hand, because of the above considerations, we known that if
I(PN ) > 0 then I(PN ) ≥ 1/dN . On the other hand, I(PN ) = 1/dN if and
only if

N−1∑
n= 0

dN
n+ 1 · an = 1,

and it is easy to see that each of the coefficients dN/(n + 1) is an integer
and

gcd
{

dN
n+ 1 : n = 0, . . . , N − 1

}
= 1.

Hence, by Lemma 1.2, there exist infinitely many polynomials PN such that
I(PN ) = 1/dN , so that (1.1) holds with the equality.

This leads to define the following set of polynomials

SN := {P (x) ∈ Z[x] : deg(P ) < N, I(P ) = 1/dN}.

Bazzanella proved some results about the roots of the polynomials in
SN . In particular, regarding the multiplicity of the roots x = 0 and x = 1,
he gave the following theorem [2, Theorem 1], which is vaguely similar to
Theorem 1.1.

Theorem 1.3. For each positive integer N , there exists P (x) ∈ SN such
that

xbN/2c | P (x)
in Z[x]. Moreover, the exponent bN/2c cannot be improved, i.e., there exist
infinitely many positive integers N such that

xbN/2c+1 - P (x)

for all P (x) ∈ SN . The same results hold if the polynomial xbN/2c is replaced
by (1− x)bN/2c.

Actually, what Bazzanella proved is that the maximum nonnegative in-
teger K(N) such that there exists a polynomial P (x) ∈ SN divisible by
xK(N), respectively by (1− x)K(N), is given by

K(N) = min{pm − 1 : p prime, m ≥ 1, pm > N/2},

so that Theorem 1.3 follows quickly.
Despite the similarity between Theorems 1.1 and 1.3, note that the state-

ment of Theorem 1.1 holds “for all P (x) ∈ TN”, while Theorem 1.3 only
says that “there exists P (x) ∈ SN”. However, this distinction is unavoid-
able, indeed: On the one hand, TN is a finite set, even conjectured to be a
singleton for any sufficiently large N [4, §5 Q2]. On the other hand, SN is
an infinite set and if P (x) ∈ SN then (dN + 1)P (x) − 1 ∈ SN , hence the
elements of SN have no common nontrivial factor in Z[x].
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The purpose of this paper is to move another step further in the direction
of a stronger analog of Theorem 1.1 for the set of polynomials SN . For we
prove the following theorem.

Theorem 1.4. For each positive integer N , there exist infinitely many
P (x) ∈ SN such that

(x(1− x))bN/3c | P (x)
in Z[x]. Moreover, the exponent bN/3c cannot be improved, i.e., there exist
infinitely many positive integers N such that

(x(1− x))bN/3c+1 - P (x),

for all P (x) ∈ SN .

We leave the following informal question to the interested readers:

Question. Let {QN (x)}N≥1 be a sequence of “explicit” integer polynomi-
als such that for each positive integer N it holds QN (x) | P (x) in Z[x],
for some P (x) ∈ SN . In light of Theorems 1.3 and 1.4, three examples
of such sequences are given by {xbN/2c}N≥1, {(1 − x)bN/2c}N≥1, and
{(x(1− x))bN/3c}N≥1.

How big can be

δ := lim inf
N→+∞

deg(QN )
N

?

Can δ be arbitrary close to 1, or even equal to 1?

Note that the sequences of Theorem 1.3 give δ = 1/2, while the sequence
of Theorem 1.4 gives δ = 2/3.

2. Preliminaries
In this section, we collect a number of preliminary results needed to prove

Theorem 1.4. The first is a classic theorem of Kummer [7] concerning the
p-adic valuation of binomial coefficients.

Theorem 2.1. For all integers u, v ≥ 0 and any prime number p, the p-
adic valuation of the binomial coefficient

(u+v
v

)
is equal to the number of

carries that occur when u and v are added in the base p.

Now we can prove the following lemma.

Lemma 2.2. For any positive integer N , and for all integers u, v ≥ 0 with
u+ v < N , we have that

(2.1) dN

(u+ v + 1)
(u+v
u

)
is an integer.
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Proof. We have to prove that for any prime number p ≤ N the p-adic
valuation of the denominator of (2.1) does not exceed νp(dN ) = blogpNc.
Write u+ v + 1 in base p, that is

u+ v + 1 =
s∑

i= i0

dip
i,

where i0 := νp(u+ v + 1) and di0 , . . . , ds ∈ {0, . . . , p− 1}, with di0 , ds > 0.
Hence, the expansion of u+ v in base p is

(2.2) u+ v =
s∑

i= i0+1
dip

i + (di0 − 1)pi0 +
i0−1∑
i= 0

(p− 1)pi.

In particular, by (2.2), we have that u+v written in base p has exactly s+1
digits, of which the i0 least significant are all equal to p− 1. Therefore, in
the sum of u and v in base p there occur at most s−i0 carries. Since, thanks
to Theorem 2.1, we know that i1 := νp

((u+v
v

))
is equal to the number of

carries occurring in the sum of u and v in base p, it follows that i1 ≤ s− i0.
In conclusion,

νp

(
(u+ v + 1)

(
u+ v

v

))
= i0 + i1 ≤ s ≤ blogpNc,

where the last inequality holds since u+ v + 1 ≤ N . �

We recall the value of a well-known integral (see, e.g., [6, §11.1.7.1,
Eq. 2]).

Lemma 2.3. For all integers u, v ≥ 0, it holds∫ 1

0
xu(1− x)v dx = 1

(u+ v + 1)
(u+v
v

) .
We conclude this section with a lemma that will be fundamental in the

proof of Theorem 1.4.

Lemma 2.4. Let N and m be integers such that N ≥ 1 and 0 ≤ m ≤
(N − 1)/2. The following statements are equivalent:

(1) There exist infinitely many P (x) ∈ SN such that (x(1−x))m | P (x)
in Z[x].

(2) For each prime number p ≤ N , there exists an integer hp such that
hp ∈ [m,N −m− 1] and

νp

(
(hp +m+ 1)

(
hp +m

m

))
= blogpNc.
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Proof. Let P (x) ∈ Z[x] be such that deg(P ) < N and

(x(1− x))m | P (x)

in Z[x]. Hence,

P (x) = (x(1− x))m
N−m−1∑
h=m

bhx
h−m,

for some bm, . . . , bN−m−1 ∈ Z. Then, by Lemma 2.3, it follows that

I(P ) =
N−m−1∑
h=m

bh

∫ 1

0
xh(1− x)m dx =

N−m−1∑
h=m

bh

(h+m+ 1)
(h+m
m

) .
Now we have P (x) ∈ SN if and only if I(P ) = 1/dN , i.e., if and only if

N−m−1∑
h=m

dN

(h+m+ 1)
(h+m
m

) · bh = 1.

Therefore, thanks to Lemma 2.2 and Lemma 1.2, we get infinitely many
P (x) ∈ SN if and only if

gcd
{

dN

(h+m+ 1)
(h+m
m

) : h = m, . . . , N −m− 1
}

= 1.

At this point, recalling that νp(dN ) = blogpNc for each prime number p,
the equivalence of (1) and (2) follows easily. �

3. Proof of Theorem 1.4
We are ready to prove Theorem 1.4. Put m := bN/3c, s := blogpNc,

and pick a prime number p ≤ N . In light of Lemma 2.4, in order to prove
the first part of Theorem 1.4 we have to show the existence of an integer
hp ∈ [m,N −m− 1] such that

(3.1) νp

(
(hp +m+ 1)

(
hp +m

m

))
= s.

Let us write N = `ps+r, for some ` ∈ {1, . . . , p−1} and r ∈ {0, . . . , ps−1}.
We split the proof in three cases:

Case ` ≥ 2. It is enough to take hp := `ps−m−1. In fact, on the one hand,
it is straightforward that (3.1) holds. On the other hand, since ` ≥ 2, we
have

hp = `ps −m− 1 ≥ 2
3(`+ 1)ps −m− 1 > 2

3N −m− 1 ≥ m− 1,

while clearly hp ≤ N −m− 1, hence hp ∈ [m,N −m− 1], as desired.
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Case m < ps−1. It holds
ps

3 ≤
N

3 < m+ 1 ≤ ps−1,

hence p = 2. Now it is enough to take h2 := 2s−m− 1. In fact, on the one
hand, it is again straightforward that (3.1) holds. On the other hand, since
m < 2s−1, we have

h2 = 2s −m− 1 > 2s − 2s−1 − 1 = 2s−1 − 1 ≥ m,

while obviously h2 ≤ N −m− 1, hence h2 ∈ [m,N −m− 1], as desired.

Case ` = 1 and m ≥ ps−1. This case requires more effort. We have

ps−1 ≤ m ≤ N

3 = ps + r

3 <
2ps

3 < ps,

hence the expansion of m in base p is

m =
s−1∑
i= 0

dip
i,

for some d0, . . . , ds−1 ∈ {0, . . . , p− 1}, with ds−1 > 0.
Let i1 be the least nonnegative integer not exceeding s such that

(3.2) di ≥
p− 1

2 , ∀ i ∈ Z, i1 ≤ i < s.

Moreover, let i2 be the greatest integer such that i1 ≤ i2 ≤ s and

di = p− 1
2 , ∀ i ∈ Z, i1 ≤ i < i2.

Note that, by the definitions of i1 and i2, we have

(3.3) di >
p− 1

2 , ∀ i ∈ Z, i2 ≤ i < s.

Clearly, it holds

(3.4) m =
∑

i2≤ i< s
dip

i +
∑

i1≤ i< i2

p− 1
2 pi +

∑
0≤ i< i1

dip
i.

Define now

(3.5) hp :=
∑

i2≤ i< s
dip

i +
∑

i1≤ i< i2

p− 1
2 pi +

∑
0≤ i< i1

(p− di − 1)pi.

Note that (3.5) is actually the expansion of hp in base p, that is, all the
coefficients of the powers pi belong to the set of digits {0, . . . , p−1}. At this
point, looking at (3.4) and (3.5), and taking into account (3.3), it follows



A factor of integer polynomials with minimal integrals 645

easily that in the sum of hp and m in base p there occur exactly s − i2
carries. Therefore, by Theorem 2.1 we have

(3.6) νp

((
hp +m

m

))
= s− i2.

Furthermore, from (3.4) and (3.5) we get

hp +m+ 1 = 2
∑

i2≤ i< s
dip

i +
∑

0≤ i< i2
(p− 1)pi + 1

= 2
∑

i2≤ i< s
dip

i + pi2 ,(3.7)

hence

(3.8) νp(hp +m+ 1) = i2.

Therefore, putting together (3.6) and (3.8) we obtain (3.1).
It remains only to prove that hp ∈ [m,N − m − 1]. If i2 = s, then

from (3.7) it follows that

hp +m+ 1 = 0 + ps ≤ N,

hence hp ≤ N −m− 1. If i2 < s, then from (3.2) it follows di2 ≥ (p− 1)/2,
hence di2 ≥ 1 and from (3.7) and (3.4) we obtain

hp +m+ 1 ≤ 2
∑

i2≤ i< s
dip

i + di2p
i2 ≤ 2m+m = 3m ≤ N,

so that again hp ≤ N − m − 1. If i1 = 0, then by (3.4) and (3.5) we
have immediately that hp = m. If i1 > 0, then by the definition of i1, we
have di1−1 < (p − 1)/2, i.e., di1−1 < p − di1−1 − 1, thus looking at the
expansions (3.4) and (3.5) we get that hp > m. Hence, in conclusion we
have hp ∈ [m,N −m− 1], as desired.

Regarding the second part of Theorem 1.4, take N := 3q, where q > 3 is
a prime number. Put m := bN/3c+ 1 = q + 1, and let h ∈ [m,N −m− 1]
be an integer. On the one hand, it is straightforward that q - h+m+ 1. On
the other, it is also easy to see that in the sum of h and m in base q there
is no carry, hence, by Theorem 2.1, we have that q -

(h+m
m

)
. Therefore,

νq

(
(h+m+ 1)

(
h+m

m

))
= 0 < 1 = blogqNc,

so that, thanks to Lemma 2.4, we have (x(1 − x))m - P (x) in Z[x], for all
P (x) ∈ SN . This completes the proof. �
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