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de Bordeaux 29 (2017), 647–680

Realizable Classes and Embedding Problems

par Cindy (Sin Yi) TSANG

Résumé. Soit K un corps de nombres et soit OK son anneau
des entiers. Soit G un groupe fini et soit Kh une K-algèbre ga-
loisienne de groupe G. Si Kh/K est modérée, son anneau des
entiers Oh est un OKG-module localement libre d’après un théo-
rème classique d’E. Noether et définit une classe dans le groupe
des classes Cl(OKG) des OKG-modules localement libres. On note
R(OKG) l’ensemble de toutes ces classes. En combinant les tra-
vaux de L.R. McCulloh et J. Brinkhuis, on prouve que la structure
de R(OKG) est liée à l’étude de problèmes de plongement lorsque
G est abélien.

Abstract. LetK be a number field and denote byOK its ring of
integers. Let G be a finite group and let Kh be a Galois K-algebra
with group G. If Kh/K is tame, then its ring of integers Oh is a
locally free OKG-module by a classical theorem of E. Noether and
it defines a class in the locally free class group Cl(OKG) of OKG.
We denote by R(OKG) the set of all such classes. By combining
the work of L.R. McCulloh and J. Brinkhuis, we shall prove that
the structure of R(OKG) is connected to the study of embedding
problems when G is abelian.

1. Introduction and Preliminaries

Let K be a number field and denote by OK its ring of integers. Let Kc

be a fixed algebraic closure of K and define ΩK := Gal(Kc/K). Let G be a
finite group and let ΩK act trivially on G (on the left). Then, the set of all
isomorphism classes of G-Galois K-algebras (see Subsection 1.3 for a brief
review of Galois algebras) is in one-to-one correspondence with the pointed
Galois cohomology set H1(ΩK , G). For each h ∈ H1(ΩK , G), we will write
Kh for a Galois algebra representative of h and Oh for the ring of integers
in Kh.

If Kh/K is tame, then a classical theorem of E. Noether implies that Oh
is locally free over OKG and hence defines a class cl(Oh) in the locally free
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class group Cl(OKG) of OKG. Such a class in Cl(OKG) is called realizable.
Define

H1
t (ΩK , G) := {h ∈ H1(ΩK , G) | Kh/K is tame}.

Then, there is a natural map

(1.1) gal : H1
t (ΩK , G) −→ Cl(OKG); gal(h) := cl(Oh)

whose image is equal to the set

R(OKG) := {cl(Oh) : h ∈ H1
t (ΩK , G)}

of all realizable classes in Cl(OKG).
In [2], J. Brinkhuis related the study of these realizable classes to that

of embedding problems as follows. Let K/k be a Galois subextension of K
and set Σ := Gal(K/k).

Definition 1.1. Given a group extension E of Σ by G, say

E : 1 G Γ Σ 1,

a solution to the embedding problem (K/k,G,E) is a finite Galois exten-
sion N/K such that N/k is also Galois, and that there exist isomorphisms
Gal(N/K) ' G and Gal(N/k) ' Γ making the diagram

1 1

1 1

Gal(N/K) Gal(N/k) Gal(K/k)

G Γ Σ

' '

commute. If in addition N/K is tame, then we call N/K a tame solution.

Now, assume that G is abelian. The pointed set H1(ΩK , G) is then equal
to Hom(ΩK , G) and has a group structure. Let Kt be the maximal tamely
ramified extension of K lying in Kc and let Ωt

K := Gal(Kt/K) act trivially
on G (on the left). Then, the subset H1

t (ΩK , G) may be naturally identified
with Hom(Ωt

K , G) (see Remark 1.17 below) and in particular is a subgroup
of H1(ΩK , G). The map gal, however, is not a homomorphism in general,
but is only weakly multiplicative in the following sense. Let MK denote the
set of primes in OK . For h ∈ Hom(Ωt

K , G), define

(1.2) d(h) := {v ∈MK | Kh/K is ramified at v}.

Then, for all h1, h2 ∈ Hom(Ωt
K , G), we have

(1.3) gal(h1h2) = gal(h1) gal(h2) whenever d(h1) ∩ d(h2) = ∅.

This weak multiplicativity of gal was first proved by Brinkhuis in [2, Propo-
sition 3.10] and it also follows from [7, Theorem 6.7] of L.R. McCulloh.
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In what follows, we will further fix a left Σ-module structure of G. In [2,
Theorem 5.1], Brinkhuis constructed a commutative diagram

(1.4)

H1(Gal(Kt/k), G) Hom(Ωt
K , G)Σ H2(Σ, G)

Cl(OKG)Σ H2(Σ, (OKG)×)

res tr

gal i∗

ξ

(see Section 2 below for the construction and notation), where the top row
is exact and all of the maps except possibly gal are homomorphisms. This
diagram (1.4) will be referred to as the basic diagram.

Remark 1.2. Diagram (1.4) above is a slightly modified and abridged ver-
sion of the basic diagram constructed in [2, Theorem 5.1]. For example, the
Picard group of OKG was used in place of Cl(OKG), but these two groups
are canonically isomorphic when G is abelian (see [4, Theorem 55.26], for
example). In Theorem 2.11, we will give a proof of the facts that (1.4) com-
mutes, that the top row is exact, and that all of the maps except possibly
gal are homomorphisms.

The commutativity of (1.4) relates the study of realizable classes to that
of embedding problems as follows. Let h ∈ Hom(Ωt

K , G)Σ be given and as-
sume that h is surjective, in which caseKh is isomorphic to N := (Kt)ker(h).
As we will show in Proposition 2.3 below, the field N is a tame solution
to the embedding problem (K/k,G,Eh), where the equivalence class of Eh
is determined by tr(h). Now, suppose also that i∗ is injective (as is shown
in [1, Theorem 4.1], this is so when K is a C.M. field and when G or Σ has
odd order). If tr(h) 6= 1 (which corresponds to Eh being non-split), then we
have cl(Oh) 6= 1 as well since (1.4) commutes and ξ is a homomorphism.

We continue to assume that G is abelian. In [7, Theorem 6.17 and Corol-
lary 6.20], McCulloh gave a complete characterization of the set R(OKG)
and showed that it is in fact a subgroup of Cl(OKG). It is then natural to
ask whether the group structure of R(OKG) is also related to the study of
embedding problems. More precisely, consider the subsets

(1.5)
RΣ(OKG) := {cl(Oh) : h ∈ Hom(Ωt

K , G)Σ}
Rs(OKG) := {cl(Oh) : h ∈ Hom(Ωt

K , G)Σ and tr(h) = 1}

of R(OKG). The classes in RΣ(OKG) will be called Σ-realizable. We want
to determine whether these two subsets are also subgroups of Cl(OKG), and
if so, whether the group structure of their quotient RΣ(OKG)/Rs(OKG) is
related to that of H2(Σ, G).
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In this paper, by combining the work of Brinkhuis and McCulloh, we will
prove the following partial result. Given a set V of primes in OK , define
Hom(Ωt

K , G)Σ
V := {h ∈ Hom(Ωt

K , G)Σ | Kh/K is unramified at all v ∈ V }.
Then, define

RΣ(OKG)V := {cl(Oh) : h ∈ Hom(Ωt
K , G)Σ

V };
Rs(OKG)V := {cl(Oh) : h ∈ Hom(Ωt

K , G)Σ
V with tr(h) = 1}.

We will write exp(G) for the exponent of the group G.

Theorem 1.3. Let K/k be a Galois extension of number fields and let G
be a finite abelian group. Let Σ = Gal(K/k) act trivially on G (on the left),
and let V = VK denote the set of primes in OK which are ramified over k.
Assume also that k contains all exp(G)-th roots of unity.

(1) Both RΣ(OKG)V and Rs(OKG)V are subgroups of Cl(OKG). More-
over, given h ∈ Hom(Ωt

K , G)Σ
V and any finite set T of primes in OK ,

there exists h′ ∈ Hom(Ωt
K , G)Σ

V such that
(a) Kh′/K is a field extension;
(b) Kh′/K is unramified at all v ∈ T ;
(c) cl(Oh′) = cl(Oh);
(d) tr(h′) = tr(h).

(2) The natural surjective map

φ : tr(Hom(Ωt
K , G)Σ

V ) −→ RΣ(OKG)V
Rs(OKG)V

defined by
φ(tr(h)) := cl(Oh)Rs(OKG)V for h ∈ Hom(Ωt

K , G)Σ
V

is a well-defined homomorphism. Moreover, if the map i∗ in the
basic diagram is injective, then φ is an isomorphism.

Remark 1.4. Suppose now that |G| is odd. Then, for each h ∈ H1(ΩK , G),
there exists a fractional ideal Ah in Kh whose square is the inverse different
ideal of Kh/K by Hilbert’s formula (see [9, Chapter IV, Proposition 4],
for example). If Kh/K is tame, by [12, Theorem 1] or [5, Theorem 1 in
Section 2], we know that Ah is locally free over OKG and so it defines a
class cl(Ah) in Cl(OKG). For G abelian, by adapting the tools developed
by McCulloh in [7], the author has shown in [10, Theorems 1.2(b) and 1.3]
that the map

galA : H1
t (ΩK , G) −→ Cl(OKG); galA(h) := cl(Ah)

is weakly multiplicative in the sense of (1.3) and that

At(OKG) := {cl(Ah) : h ∈ H1
t (ΩK , G)}
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is a subgroup of Cl(OKG). Using these two facts, the author shows in [11,
Theorems 1.4.4 and 1.4.5] that Theorems 2.11 and 1.3 still hold when gal
and Oh are replaced by galA and Ah, respectively, provided that |G| is odd.
The proofs of the corresponding statements are essentially the same.

In the subsequent subsections, we will give a brief review of locally free
class groups and Galois algebras. From Section 2 onwards, we will take G to
be an abelian group. In Section 2, we construct the basic diagram and show
that it commutes. In Section 3, we will first recall the necessary definitions
and then state the characterization of R(OKG) given in [7, Theorem 6.17].
In Section 4, we will modify this characterization and prove Theorem 1.3.

1.1. Notation and Conventions. Throughout this paper, the symbol G
denotes a fixed finite group. We will also use the convention that all of the
homomorphisms in the cohomology groups considered are continuous.

The symbol F will always denote either a number field or a finite exten-
sion of Qp for some prime number p. Given any such F , we will define:

OF := the ring of integers in F ;
F c := a fixed algebraic closure of F ;
OF c := the integral closure of OF in F c;
ΩF := Gal(F c/F );
F t := the maximal tamely ramified extension of F in F c;
Ωt
F := Gal(F t/F );

MF := the set of all finite primes in F .

We will let ΩF and Ωt
F act trivially on G (on the left). We will also choose

a compatible set {ζn : n ∈ Z+} of primitive roots of unity in F c, that is,
we have (ζmn)m = ζn for all m,n ∈ Z+. For G abelian, we will write Ĝ for
the group of irreducible F c-valued characters on G.

In the case that F is a number field, for each v ∈MF we will define:

Fv := the completion of F with respect to v;
iv := a fixed embedding F c −→ F cv extending the natural

embedding F −→ Fv;
ĩv := the embedding ΩFv −→ ΩF induced by iv.

We will also use iv to denote the isomorphism F c −→ iv(F c) induced by iv
and i−1

v for the inverse of this isomorphism. The embedding ĩv : ΩFv −→ ΩF

is then defined by

(1.6) ĩv(ω) := i−1
v ◦ ω ◦ iv.
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Moreover, if {ζn : n ∈ Z+} is the chosen compatible set of primitive roots
of unity in F c, then for each v ∈ MF , we will choose {iv(ζn) : n ∈ Z+} to
be the compatible set of primitive roots of unity in F cv .

1.2. Locally Free Class Groups. Let F be number field. We recall the
definition and an idelic description of the locally free class group Cl(OFG)
of OFG (see [4, Chapter 6] for more details).

Definition 1.5. An OFG-lattice is a (left) OFG-module which is finitely
generated and projective as an OF -module. Two OFG-lattices X and X ′

are said to be stably isomorphic if there exists k ∈ Z+ such that
X ⊕ (OFG)k ' X ′ ⊕ (OFG)k.

The stable isomorphism class of X will be denoted by [X].

Remark 1.6. If two OFG-lattices are isomorphic, then they are certainly
stably isomorphic. The converse holds as well if G is abelian (see [4, Propo-
sition 51.2 and Theorem 51.24], for example).

Definition 1.7. An OFG-lattice X is locally free over OFG (of rank one)
if OFv ⊗OF X and OFvG are isomorphic as OFvG-modules for all v ∈MF .

Definition 1.8. The locally free class group of OFG is the set
Cl(OFG) := {[X] : X is a locally free OFG-lattice}

equipped with the following group operation. Given any pair of locally free
OFG-lattices X and X ′, by [3, Corollary 31.7], there exists a locally free
OFG-lattice X ′′ such that X ⊕X ′ ' OFG⊕X ′′. It is easy to see that [X ′′]
is uniquely determined by [X] and [X ′]. We then define [X][X ′] := [X ′′].

The group operation of Cl(OFG) is often written additively. We write it
multiplicatively instead since we will use an idelic description of Cl(OFG),
which we recall below.

Definition 1.9. Let J(FG) be the restricted direct product of the groups
(FvG)× with respect to the subgroups (OFvG)× for v ∈MF . Let

∂ : (FG)× −→ J(FG)
denote the diagonal map and let

U(OFG) :=
∏

v∈MF

(OFvG)×

be the group of unit ideles.

For each idele c = (cv) ∈ J(FG), define

(1.7) OFG · c :=
⋂

v∈MF

(OFvG · cv ∩ FG).
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Since every locally free OFG-lattice may be embedded into FG, the map
(1.8) j : J(FG) −→ Cl(OFG); j(c) := [OFG · c]
is surjective. It is also a homomorphism by [3, Theorem 31.19].

Theorem 1.10. If G is abelian, then the map j induces an isomorphism

Cl(OFG) ' J(FG)
∂((FG)×)U(OFG) .

Proof. See [4, Theorem 49.22 and Exercise 51.1], for example. �

1.3. Galois Algebras and Resolvends. Let F be a number field or a
finite extension of Qp. Below, we give a brief review of Galois algebras and
resolvends (see [7, Section 1] for more details).

Definition 1.11. A G-Galois F -algebra or Galois F -algebra with group G
is a commutative semi-simple F -algebra N on which G acts (on the left)
as a group of automorphisms such that NG = F and [N : F ] = |G|, where
[N : F ] denotes the dimension of N over F . Two G-Galois F -algebras are
said to be isomorphic if there is an F -algebra isomorphism between them
which preserves the action of G.

Consider the F c-algebra Map(G,F c) on which G acts (on the left) by
(s · a)(t) := a(ts) for a ∈ Map(G,F c) and s, t ∈ G.

Recall that ΩF acts trivially on G by definition. For each h ∈ Hom(ΩF , G),
let hG denote the group G endowed with the twisted ΩF -action given by

ω · s := h(ω)s for s ∈ G and ω ∈ ΩF .

Now, consider the F -subalgebra and G-submodule

Fh := MapΩF (hG,F c)

of Map(G,F c) consisting of the maps hG −→ F c which preserve the ΩF -
action. If {si} is a set of coset representatives of h(ΩF )\G and

(1.9) F h := (F c)ker(h),

then evaluation at the elements si induces an isomorphism

Fh '
∏

h(ΩF )\G
F h

of F -algebras. This gives [Fh : F ] = [G : h(ΩF )][F h : F ] = |G|. Identifying
F with the set of constant F -valued functions in Fh, we see that (Fh)G = F
as well. It follows that Fh is a G-Galois F -algebra.

It is not hard to check that every G-Galois F -algebra is isomorphic to Fh
for some h ∈ Hom(ΩF , G), and that for any h, h′ ∈ Hom(ΩF , G), we have
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Fh ' Fh′ if and only if h and h′ differ by an element in Inn(G). Hence, the
map h 7→ Fh induces a bijective correspondence between the pointed set

H1(ΩF , G) := Hom(ΩF , G)/ Inn(G)
and the set of all isomorphism classes of G-Galois F -algebras. In particular,
if G is abelian, then H1(ΩF , G) = Hom(ΩF , G) and hence the set of all iso-
morphism classes of G-Galois F -algebras has a natural group structure.

Definition 1.12. Given h ∈ Hom(ΩF , G), let F h := (F c)kerh be as in (1.9)
and let Oh := OFh . Define the ring of integers of Fh by

Oh := MapΩF (hG,Oh).

Remark 1.13. For F a number field, given h ∈ Hom(ΩF , G), define

(1.10) hv ∈ Hom(ΩFv , G); hv := h ◦ ĩv
for each prime v ∈MF . It was proven in [7, (1.4)] that (Fv)hv ' Fv ⊗F Fh,
and similarly we have Ohv ' OFv ⊗OF Oh.

Definition 1.14. Given h ∈ Hom(ΩF , G), we say that Fh/F or h is un-
ramified (respectively, tame) if F h/F is unramified (respectively, tame).

Definition 1.15. Define the resolvend map rG : Map(G,F c) −→ F cG by

rG(a) :=
∑
s∈G

a(s)s−1.

It is clear that rG is an isomorphism of F cG-modules, but not an isomor-
phism of F cG-algebras because it does not preserve multiplication.

Given a ∈ Map(G,F c), it is easy to check that a ∈ Fh if and only if
(1.11) ω · rG(a) = rG(a)h(ω) for all ω ∈ ΩF .

The following proposition shows that resolvends may also be used to iden-
tify elements a ∈ Fh for which Fh = FG · a or Oh = OFG · a.

Proposition 1.16. Let a ∈ Fh.
(1) We have Fh = FG · a if and only if rG(a) ∈ (F cG)×.
(2) For G abelian, we have Oh = OFG ·a with h unramified if and only

if rG(a) ∈ (OF cG)×. Moreover, if F is a finite extension of Qp and
if h is unramified, then there exists a ∈ Oh such that Oh = OFG ·a.

Proof. See [7, Proposition 1.8] for (1) and [7, (2.11) and Proposition 5.5]
for (2). The second statement in (2) in fact holds even when G is non-
abelian by a classical theorem of Noether. �

Remark 1.17. Clearly a homomorphism h ∈ Hom(ΩF , G) is tame if and
only if it factors through the quotient map ΩF −→ Ωt

F . So, the subset of
Hom(ΩF , G) consisting of the tame homomorphisms may be identified with
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Hom(Ωt
F , G) as follows. Any tame h̃ ∈ Hom(ΩF , G) may be identified with

the element h ∈ Hom(Ωt
F , G) defined by

h(ω) := h̃(ω̃) for ω ∈ Ωt
F ,

where ω̃ ∈ ΩF denotes any lift of ω. Conversely, any h ∈ Hom(Ωt
F , G) may

be identified with the element h̃ ∈ Hom(ΩF , G) defined by

h̃(ω) := h(ω|F t) for ω ∈ ΩF .

The above identifications will be used repeatedly in the rest of this paper.
In particular, given any h ∈ Hom(Ωt

F , G), all of the definitions and results
introduced in this subsection still apply.

2. The Basic Diagram

In this section, let K/k denote a fixed Galois extension of number fields
and let Σ := Gal(K/k). We will assume that G is abelian and fix a left Σ-
module structure on G. Below, we construct the basic diagram (1.4), which
was first introduced by Brinkhuis in [2, Theorem 5.1] in order to relate the
study of realizable classes to that of embedding problems (cf. Remark 1.2
above and the discussion following it). The map gal in (1.4) is that defined
in (1.1), and the map

i∗ : H2(Σ, G) −→ H2(Σ, (OKG)×)
is that induced by the natural inclusion G −→ (OKG)×. The construction
of the horizontal rows will be explained in the subsequent subsections. We
will also show that the top row is exact, that all of the maps except possibly
gal are homomorphisms, and that (1.4) commutes.

In what follows, we will let Gal(Kt/k) act on G (on the left) via the nat-
ural quotient map Gal(Kt/k) −→ Σ and the given left Σ-action on G. Via
the natural left Gal(Kt/k)-action on Kt, this extends to a left Gal(Kt/k)-
action on KtG. As mentioned in Remark 1.17, we will identify Hom(Ωt

K , G)
with the subset of Hom(ΩK , G) consisting of the tame homomorphisms. We
will also use the following notation.

Definition 2.1. For each γ ∈ Σ, fix a lift γ ∈ Gal(Kt/k) of γ with 1 = 1.

2.1. The Top Row: Hochschild–Serre Sequence. Recall that Ωt
K acts

trivially onG (on the left) by definition. From the Hochschild–Serre spectral
sequence (see [8, Chapter II], for example) associated to the group extension

1 Ωt
K Gal(Kt/k) Σ 1,

we then obtain an exact sequence

(2.1) H1(Gal(Kt/k), G) Hom(Ωt
K , G)Σ H2(Σ, G).res tr
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Here res is given by restriction and tr is the transgression map. We remark
that (2.1) is also part of the five-term inflation-restriction exact sequence in
group cohomology (see [8, Proposition 1.6.7], for example). We will give the
definitions of the Σ-action on Hom(Ωt

K , G) and the map tr in this setting.
Definition 2.2. Given h ∈ Hom(Ωt

K , G) and γ ∈ Σ, define
(h · γ)(ω) := γ−1 · h(γωγ−1) for all ω ∈ Ωt

K .

This definition is independent of the choice of the lift γ since G is abelian.
The transgression map tr : Hom(Ωt

K , G)Σ −→ H2(Σ, G) (see [8, Proposi-
tion 1.6.6], for example) is defined by

tr(h) := [(γ, δ) 7→ h((γ)(δ)(γδ)−1)],
where [−] denotes the cohomology class. This definition is also independent
of the choice of the lifts γ for γ ∈ Σ.

Below, we will explain how the exact sequence (2.1) is related to the study
of embedding problems. To that end, observe that each group extension

E : 1 G Γ Σ 1ι

of Σ by G induces a canonical left Σ-module structure on G via conjugation
in Γ as follows. For each γ ∈ Σ, choose a lift σ(γ) of γ in Γ. Then, define
(2.2) γ ∗ s := ι−1(σ(γ)ι(s)σ(γ)−1) for γ ∈ Γ and s ∈ G.
This definition does not depend upon the choice of the lift σ(γ) because G
is abelian. In addition, define a map cE : Σ× Σ −→ G by
(2.3) cE(γ, δ) := ι−1(σ(γ)σ(δ)σ(γδ)−1).
Denote by E(K/k,G) the set of all equivalence classes of the group exten-
sions of Σ by G such that (2.2) coincides with the left Σ-action on G that we
have fixed. It is well-known (see [8, Theorem 1.2.4], for example) then that
the map E 7→ cE induces a bijective correspondence between E(K/k,G)
and the group H2(Σ, G), and the map cE represents the trivial cohomology
class if and only if E splits.
Proposition 2.3. Let h ∈ Hom(Ωt

K , G)Σ. If h is surjective, then Kh is a
tame solution to the embedding problem (K/k,G,Eh), where Eh is a group
extension of Σ by G whose equivalence class corresponds to tr(h).
Proof. The extension Kh/k is Galois because Gal(Kt/Kh), which is equal
to ker(h), is normal in Gal(Kt/k). To see why, let ωk ∈ Gal(Kt/k) be given
and write ωk = γω0 for γ ∈ Σ and ω0 ∈ Ωt

K . For any ω ∈ ker(h), we have
h(ωkωω−1

k ) = h(γω0ωω
−1
0 γ−1)

= γ · (h · γ)(ω0ωω
−1
0 )

= γ · (h(ω0)h(ω)h(ω0)−1),
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where the last equality follows because h is Σ-invariant and is a homomor-
phism on Ωt

K . Since ω ∈ ker(h), we see that ωkωω−1
k ∈ ker(h) and so ker(h)

is indeed normal in Gal(Kt/k). We set Γh := Gal(Kh/k).
Observe that h induces an isomorphism h : Gal(Kh/K) −→ G since h is

surjective. Let ι : G −→ Gal(Kh/K) −→ Γh be the homomorphism (h)−1

followed by the natural inclusion Gal(Kh/K) −→ Gal(Kh/k). We obtain a
group extension

Eh : 1 G Γh Σ 1ι

of Σ by G for which the diagram

1 1

1 1

Gal(Kh/K) Gal(Kh/k) Gal(K/k)

G Γh Σι

h

clearly commutes, and Kh/K is clearly tame. Hence, the extension Kh/K
is a tame solution to the embedding problem (K/k,G,Eh).

Finally, for each γ ∈ Σ, choose σ(γ) := γ|Kh to be a lift of γ in Γh. Given
any s ∈ G, there exists ω ∈ Ωt

K such that h(ω) = s because h is surjective.
The left Σ-action on G defined as in (2.2) is then given by

γ ∗ s = h((γ|Kh)(ω|Kh)(γ|Kh)−1)
= h(γωγ−1)
= γ · s,

where the last equality follows because h is Σ-invariant. This shows that the
equivalence class of Eh lies in E(K/k,G). Also, the map cEh : Σ×Σ −→ G
in (2.3) is given by

cEh(γ, δ) = h((γ|Kh)(δ|Kh)(γδ|Kh)−1)
= h((γ)(δ)(γδ)−1)

and so the equivalence class of Eh corresponds to tr(h), as claimed. �

2.2. The Bottom Row: Fröhlich-Wall Sequence. Observe that OKG
is equipped with a canonical left Σ-action, namely that induced by the
given left Σ-action on G and OK . For all γ ∈ Σ and β, β′ ∈ OKG, we have

γ · (β + β′) = γ · β + γ · β′ and γ · (ββ′) = (γ · β)(γ · β′).
That is, the ring OKG is a Σ-ring. From the Fröhlich-Wall sequence associ-
ated to OKG (see [2, Section 1], for example), we obtain a homomorphism

ξ : Cl(OKG)Σ −→ H2(Σ, (OKG)×).
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We will recall the definitions of the Σ-action on Cl(OKG) and the map ξ.

2.2.1. The left Σ-action on Cl(OKG).

Definition 2.4. Let X and X ′ be two (left) OKG-modules. A semilinear
isomorphism from X to X ′ is a group isomorphism ϕ : X −→ X ′ satisfying

ϕ(β · x) = (γ · β) · ϕ(x) for all β ∈ OKG and x ∈ X

for some γ ∈ Σ. Any such γ ∈ Σ is called a grading of ϕ.

Definition 2.5. Let [X] ∈ Cl(OKG) and γ ∈ Σ. Define γ · [X] := [Y ] if
there exists a semilinear isomorphism ϕ : X −→ Y having γ as a grading.
It is clear that the isomorphism class [Y ] of Y (cf. Remark 1.6) is uniquely
determined by that of X. Note also that such a Y always exists, as we may
take Y := Xγ to be the abelian group X equipped with the structure

(2.4) β ∗ x := (γ−1 · β) · x for β ∈ (OKG)× and x ∈ Xγ

as an OKG-module and take ϕ = idX to be the identity map on X.

Clearly Definition 2.5 defines a left Σ-action on the group Cl(OKG). The
next proposition shows that Cl(OKG) is in fact a left Σ-module under this
action and so Cl(OKG)Σ is a subgroup of Cl(OKG).

Proposition 2.6. Let [X], [X ′] ∈ Cl(OKG). For all γ ∈ Σ, we have

γ · ([X][X ′]) = (γ · [X])(γ · [X ′]).

Proof. Let [X ′′] ∈ Cl(OKG) be such that [X ′′] = [X][X ′]. By Definition 1.8,
this means that there exists an OKG-isomorphism

ϕ : X ⊕X ′ −→ OKG⊕X ′′.

Let Xγ denote the group X equipped with the OKG-structure defined as
in (2.4), and similarly for X ′γ and X ′′γ . Let ψγ : OKG −→ OKG denote the
bijective map defined by β 7→ γ · β. Then, the map

(ψγ ⊕ idX′′) ◦ ϕ : Xγ ⊕X ′γ −→ OKG⊕X ′′γ
is an isomorphism of OKG-modules and so [X ′′γ ] = [Xγ ][X ′γ ], as desired. �

The next proposition ensures that diagram (1.4) is well-defined.

Proposition 2.7. Let h ∈ Hom(Ωt
K , G)Σ. For all γ ∈ Σ, the map

(2.5) ϕγ : rG(Oh) −→ rG(Oh); ϕγ(rG(a)) := γ · rG(a)

is well-defined and is a semilinear isomorphism having γ as a grading. Con-
sequently, we have γ · [Oh] = [Oh] and so gal(Hom(Ωt

K , G)Σ) ⊂ Cl(OKG)Σ.
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Proof. Fix γ ∈ Σ. First, we verify that ϕγ(rG(Oh)) ⊂ rG(Oh) so that ϕγ is
well-defined. To that end, let a ∈ Oh be given. Since rG is bijective, there
exists a′ ∈ Map(G,Kc) such that rG(a′) = γ · rG(a). We will use (1.11) to
show that a ∈ Kh. Given ω ∈ Ωt

K , note that γ−1ωγ ∈ Ωt
K and that

γ−1ωγ · rG(a) = rG(a)h(γ−1ωγ)

by (1.11) since a ∈ Kh. This implies that

ω · rG(a′) = γ · (γ−1ωγ · rG(a))
= rG(a′)(h · γ−1)(ω)
= rG(a′)h(ω),

where the last equality holds because h is Σ-invariant. Again by (1.11), we
then see that a′ ∈ Kh. Since a ∈ Oh, it is clear that a′ ∈ Oh and so ϕγ is
well-defined. It is then obvious that ϕγ is a semilinear isomorphism having
γ as a grading by definition. The above shows that γ · [rG(Oh)] = [rG(Oh)],
which in turn implies that γ · [Oh] = [Oh] because rG restricts to an OKG-
isomorphism Oh ' rG(Oh). �

2.2.2. The homomorphism ξ.

Definition 2.8. Given a (left) OKG-module X, let Sem(X) denote the set
of all pairs (ϕ, γ), where ϕ : X −→ X is a semilinear isomorphism having γ
as a grading, equipped with the group operation (ϕ, γ)(ϕ′, γ′) := (ϕϕ′, γγ′).
Also, let Aut(X) denote the group of OKG-automorphisms on X. The map

gX : Sem(X) −→ Σ; gX(ϕ, γ) := γ

is then a homomorphism with ker(gX) = Aut(X).

Now, consider [X] ∈ Cl(OKG)Σ. The map gX is surjective because [X] is
Σ-invariant. Also, since X is locally free over OKG (of rank one), an OKG-
automorphism on X is of the form ψβ : x 7→ β · x, where β ∈ (OKG)×. So,
we may identify Aut(X) with (OKG)×. We then obtain a group extension

EX : 1 (OKG)× Sem(X) Σ 1iX gX

of Σ by (OKG)×, where iX(β) := (ψβ, 1).
Notice that EX induces a left Σ-module structure on (OKG)× via con-

jugation in Sem(X) as follows. For each γ ∈ Σ, choose a lift (ϕγ , γ) of γ in
Sem(Σ). Then, define (cf. (2.2))

(2.6) γ ∗ β := ι−1
X ((ϕγψβϕ−1

γ , 1)) for γ ∈ Γ and β ∈ (OKG)×.

But for any x ∈ (OKG)×, we have

(ϕγψβϕ−1
γ )(x) = ϕγ(β · ϕ−1

γ (x)) = (γ · β) · x = ϕγ·β(x).
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This means that (2.6) coincides with the existing left Σ-action on (OKG)×.
Thus, analogously to the bijective correspondence between E(K/k,G) and
H2(Σ, G) described in Subsection 2.1, the group extension EX corresponds
to a cohomology class in H2(Σ, (OKG)×). In particular, the class is repre-
sented by the 2-cocycle dX : Σ × Σ −→ (OKG)× which is uniquely deter-
mined by the equations (cf. (2.3))

(2.7) dX(γ, δ) · x = (ϕγϕδϕ−1
γδ )(x) for all x ∈ X.

Definition 2.9. Define ξ : Cl(OKG)Σ −→ H2(Σ, (OKG)×) by setting

ξ([X]) := [dX ],

where [−] denotes the cohomology class. It is not difficult to check that this
definition depends only on the isomorphism class [X] of X (cf. Remark 1.6).

Proposition 2.10. The map ξ is a homomorphism.

Proof. Given [X], [X ′] ∈ Cl(OKG)Σ, define X ′′ := X ⊗OKG X ′. Since G is
abelian, [4, Theorem 55.16] implies that X ′′ is a locally free OKG-module
(of rank one), and [X][X ′] = [X ′′] (cf. the proof of [4, Theorem 55.26]).

Since [X] and [X ′] are Σ-invariant, for each γ ∈ Σ, there exist semilinear
automorphisms ϕγ and ϕ′γ onX andX ′, respectively, having γ as a grading.
Then, clearly ϕ′′γ := ϕγ ⊗ϕ′γ is a semilinear automorphism on X ′′ having γ
as a grading. Let dX , dX′ , and dX′′ be defined as in (2.7). For all γ, δ ∈ Σ,
x ∈ X, and x′ ∈ X ′, we have

dX′′(γ, δ) · (x⊗ x′) = (ϕ′′γϕ′′δϕ′′−1
γδ )(x⊗ x′)

= (ϕγϕδϕ−1
γδ )(x)⊗ (ϕ′γϕ′δϕ′−1

γδ )(x′)
= (dX(γ, δ) · x)⊗ (dX′(γ, δ) · x′)
= (dX(γ, δ)dX′(γ, δ)) · (x⊗ x′).

Thus, we have dX′′ = dXdX′ and so ξ([X ′′]) = ξ([X])ξ([X ′]), as desired. �

2.3. Commutativity. We now show that the basic diagram commutes.

Theorem 2.11. The basic diagram (1.4) commutes. Moreover, the row at
the top is exact, and all of the maps except possibly gal are homomorphisms.

Proof. Note that diagram (1.4) is well-defined by Proposition 2.7. Now, we
already know that the top row is exact. The maps res, tr, and i∗ are plainly
homomorphisms, and ξ is a homomorphism by Proposition 2.10. Hence, it
remains to verify the equality i∗ ◦ tr = ξ ◦ gal.

Let h ∈ Hom(Ωt
K , G)Σ be given. By Definition 2.2, the class (i∗ ◦ tr)(h)

is represented by the 2-cocycle d : Σ× Σ −→ (OKG)× defined by

d(γ, δ) := h((γ)(δ)(γδ)−1).
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Next, set X := rG(Oh) and note that rG restricts to an OKG-isomorphism
Oh ' X, so gal(h) = [X]. For each γ ∈ Σ, let ϕγ : X −→ X be as in (2.5),
which is a semilinear isomorphism having γ as a grading by Proposition 2.7.
Then, by Definition 2.9, the class (ξ◦gal)(h) is represented by the 2-cocycle
dX : Σ× Σ −→ (OKG)× defined by the equations

dX(γ, δ) · x = ((γ)(δ)(γδ)−1) · x for all x ∈ X.
But (γ)(δ)(γδ)−1 ∈ Ωt

K and x ∈ rG(Oh). It then follows from (1.11) that
((γ)(δ)(γδ)−1) · x = h((γ)(δ)(γδ)−1)) · x for all x ∈ X.

This shows that dX = d, whence (i∗ ◦ tr)(h) = (ξ ◦ gal)(h), as desired. �

3. Characterization of Realizable Classes

In this section, we will assume that G is abelian. For the moment, let F
be a number field. Recall that by a classical theorem of Noether, given any
tame homomorphism h ∈ Hom(ΩF , G), we have that Oh is locally free over
OFG and hence defines a class cl(Oh) in Cl(OFG). Below, we explain how
this class cl(Oh) may be computed using resolvends (recall Definition 1.15).
It will also be helpful to recall the notation introduced in (1.7) and (1.8).

First, since Oh is locally free over OFG (of rank one), for each v ∈ MF

there exists av ∈ Ohv such that
(3.1) Ohv = OFvG · av.
Next, by the Normal Basis Theorem, there exists b ∈ Fh such that
(3.2) Fh = FG · b.
Since FvG · av = Fhv = FvG · b for all v ∈MF and OFvG · av = OFvG · b for
all but finitely many v ∈MF , there exists c = (cv) ∈ J(FG) such that
(3.3) av = cv · b
for all v ∈MF . We see that the FG-module isomorphism FG −→ Fh given
by β 7→ β · b restricts to an OFG-module isomorphism OFG · c −→ Oh and
so cl(Oh) = j(c). Recall that the resolvend map rG : Map(G,F cv ) −→ F cvG
is an FvG-module isomorphism. Equation (3.3) is then equivalent to
(3.4) rG(av) = cv · rG(b).
Hence, in order to compute the class cl(Oh), it is sufficient to compute the
resolvends rG(b) and rG(av). Notice that the resolvend rG(b) of an element
b ∈ Fh satisfying (3.2) is already characterized by Proposition 1.16(1).

The main purpose of this section is to recall the characterization of the
class cl(Oh) proved by McCulloh in [7] (see Theorem 3.10 below and the dis-
cussion following (3.22)). To avoid repetition, we will only give an overview
of the ideas involved below, and then recall the necessary definitions in the
subsequent subsections.
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As is explained above, the characterization of the class cl(Oh) reduces
to the computation of the resolvend rG(av) of an element av ∈ Ohv satis-
fying (3.1) for each prime v ∈ MF . To that end, recall from Remark 1.17
that hv may be regarded as an element of Hom(Ωt

Fv
, G). By Definition 3.8

below, the homomorphism hv then factors into
hv = hnrv h

tot
v ,

where hnrv , htotv ∈ Hom(Ωt
Fv
, G) are such that hnrv is unramified and F h

tot
v

v /Fv
is totally ramified. As in the proof of [7, Theorem 5.6], we may decompose
the resolvend rG(av) as
(3.5) rG(av) = rG(av,nr)rG(av,tot),
where Ohnrv = OFvG · av,nr and Ohtotv = OFvG · av,tot. Observe that the re-
solvend rG(av,nr) of such an element av,nr ∈ Ohnrv is already characterized
by Proposition 1.16(2). As for the resolvend rG(av,tot), it may be charac-
terized using the Stickelberger transpose and local prime F-elements, which
we define in Subsections 3.2 and 3.3, respectively. Rather than resolvends
we will in fact use reduced resolvends, which we define in Subsection 3.1.

3.1. Cohomology and Reduced Resolvends. Let F be a number field
or a finite extension of Qp. Following [7, Sections 1 and 2], we use cohomol-
ogy to define reduced resolvends and explain how they may be regarded as
functions on characters of G.

Recall that ΩF acts trivially on G (on the left) by definition. Define

H(FG) := ((F cG)×/G)ΩF and H(OFG) := ((OF cG)×/G)ΩF .

Taking ΩF -cohomology of the short exact sequence

(3.6) 1 G (F cG)× (F cG)×/G 1

then yields the exact sequence

(3.7) 1 G (FG)× H(FG) Hom(ΩF , G) 1,rag δ

where H1(ΩF , (F cG)×) = 1 is a consequence of Hilbert’s Theorem 90. Al-
ternatively, given h ∈ Hom(ΩF , G), observe that a coset rG(a)G ∈ H(FG)
belongs to the preimage of h under δ if and only if

h(ω) = rG(a)−1(ω · rG(a)) for all ω ∈ ΩF ,

which is equivalent to Fh = FG · a by (1.11) and Proposition 1.16(1). Such
an element a ∈ Fh always exists by the Normal Basis Theorem and so δ is
indeed surjective.

The same argument above also shows that
(3.8) H(FG) = {rG(a)G | Fh = FG · a for some h ∈ Hom(ΩF , G)}.
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Similarly, the argument above and Proposition 1.16(2) imply that

H(OFG) =
{

rG(a)G
∣∣∣∣ Oh = OFG · a for some
unramified h ∈ Hom(ΩF , G)

}
.

Definition 3.1. Given rG(a)G ∈ H(FG), define rG(a) := rG(a)G, called
the reduced resolvend of a. Also, define ha ∈ Hom(ΩF , G) by

ha(ω) := rG(a)−1(ω · rG(a)),
called the homomorphism associated to rG(a). This definition is indepen-
dent upon the choice of the representative rG(a), and we have Fh = FG · a
by (1.11) and Proposition 1.16(1).

Definition 3.2. For F a number field, let J(H(FG)) be the restricted di-
rect product of the groups H(FvG) with respect to the subgroups H(OFvG)
for v ∈MF . Let

η : H(FG) −→ J(H(FG))
denote the diagonal map and let

U(H(OFG)) :=
∏

v∈MF

H(OFvG)

be the group of unit ideles.
Next, recall Definition 1.9 and notice that the homomorphism

(3.9)
∏

v∈MF

ragFv : J(FG) −→ J(H(FG))

is clearly well-defined, where ragFv is the map in (3.7). The diagram

(FG)× J(FG)

H(FG) J(H(FG))

∂

η

∏
v

ragFvragF

clearly commutes. By abuse of notation, we will also write rag = ragF for
the homomorphism in (3.9).

To interpret reduced resolvends as functions on characters of G, recall
that Ĝ denotes the group of irreducible F c-valued characters on G. Define

det : ZĜ −→ Ĝ; det
(∑

χ

nχχ

)
:=
∏
χ

χnχ

and set
(3.10) A

Ĝ
:= ker(det).
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Applying the functor Hom(−, (F c)×) to the short exact sequence

1 A
Ĝ

ZĜ Ĝ 1det

then yields the short exact sequence

(3.11)
1 Hom(Ĝ, (F c)×) Hom(ZĜ, (F c)×)

Hom(A
Ĝ
, (F c)×) 1,

where exactness on the right follows because (F c)× is divisible and therefore
injective. We will identify (3.6) with (3.11) as follows.

First, we have canonical identifications

(F cG)× = Map(Ĝ, (F c)×) = Hom(ZĜ, (F c)×).

The second identification is given by extending the maps Ĝ −→ (F c)× via
Z-linearity, and the first is induced by characters as follows. Each resolvend
rG(a) ∈ (F cG)× gives rise to a map ϕ ∈ Map(Ĝ, (F c)×) defined by

(3.12) ϕ(χ) :=
∑
s∈G

a(s)χ(s)−1 for χ ∈ Ĝ.

Conversely, given ϕ ∈ Map(Ĝ, (F c)×), one recovers rG(a) by the formula

(3.13) a(s) := 1
|G|

∑
χ

ϕ(χ)χ(s) for s ∈ G.

Since G = Hom(Ĝ, (F c)×) canonically, the third terms

(F cG)×/G = Hom(A
Ĝ
, (F c)×)

in (3.6) and (3.11), respectively, are naturally identified as well.
Taking ΩF -invariants, we then obtain the identification

(3.14) H(FG) = HomΩF (A
Ĝ
, (F c)×).

Under this identification, it is clear from (3.12) that

(3.15) H(OFG) ⊂ HomΩF (A
Ĝ
,O×F c),

and from (3.13) that the above inclusion is in fact an equality when F is a
finite extension of Qp for a prime p not dividing |G|.

3.2. The Stickelberger Transpose. Let F be a number field or a finite
extension of Qp and let {ζn : n ∈ Z+} denote the chosen compatible set of
primitive roots of unity in F c. We recall the definition of the so-called Stick-
elberger transpose, which was first introduced by McCulloh in [7, Section 4]
(see [7, Proposition 5.4] for the motivation of the definition).
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Definition 3.3. For each χ ∈ Ĝ and s ∈ G, let υ(χ, s) ∈ {0, 1, . . . , |s| − 1}
be the unique integer such that χ(s) = (ζ|s|)υ(χ,s) and define

〈χ, s〉 := υ(χ, s)/|s|.
Extending this definition by Q-linearity, we obtain a pairing

〈 , 〉 : QĜ×QG −→ Q,
called the Stickelberger pairing. The map

Θ : QĜ −→ QG; Θ(ψ) :=
∑
s∈G
〈ψ, s〉s

is called the Stickelberger map.

Proposition 3.4. For ψ ∈ ZĜ, we have Θ(ψ) ∈ ZG if and only if ψ ∈ A
Ĝ
.

Proof. See [7, Proposition 4.3]. �

Notice that ΩF acts on Ĝ canonically via its action on the roots of unity
in F c. Now, up until this point, we have let ΩF act trivially on G. Below, we
introduce other ΩF -actions on G, one of which will make the Stickelberger
map preserve the ΩF -action.

Definition 3.5. Let m := exp(G) and let µm be the group of m-th roots
of unity in F c. The m-th cyclotomic character of ΩF is the homomorphism

κ : ΩF −→ (Z/mZ)×

defined by the equations
ω(ζ) = ζκ(ω) for ω ∈ ΩF and ζ ∈ µm.

For n ∈ Z, let G(n) be the group G equipped with the ΩF -action given by

ω · s := sκ(ωn) for s ∈ G and ω ∈ ΩF .

We will need G(−1). But of course, if F contains all exp(G)-th roots of
unity, then κ is trivial and ΩF acts trivially on G(n) = G(0) for all n ∈ Z.

Proposition 3.6. The map Θ : QĜ −→ QG(−1) preserves the ΩF -action.

Proof. See [7, Proposition 4.5]. �

From Propositions 3.4 and 3.6, we obtain an ΩF -equivariant map
Θ : A

Ĝ
−→ ZG(−1),

which in turn yields an ΩF -equivariant homomorphism
Θt : Hom(ZG(−1), (F c)×) −→ Hom(A

Ĝ
, (F c)×); f 7→ f ◦Θ.

Via restriction, we then obtain a homomorphism
Θt = Θt

F : HomΩF (ZG(−1), (F c)×) −→ HomΩF (A
Ĝ
, (F c)×),
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called the Stickelberger transpose.
Notice that we have a natural identification

HomΩF (ZG(−1), (F c)×) = MapΩF (G(−1), (F c)×).
To simplify notation, let

Λ(FG) := MapΩF (G(−1), F c);(3.16)
Λ(OFG) := MapΩF (G(−1),OF c).

Then, we may regard Θt as a map Λ(FG)× −→ H(FG) (recall (3.14)).

Definition 3.7. For F a number field, let J(Λ(FG)) be the restricted direct
product of the groups Λ(FvG)× with respect to the subgroups Λ(OFvG)×
for v ∈MF . Let

λ = λF : Λ(FG)× −→ J(Λ(FG))
denote the diagonal map and let

U(Λ(OFG)) :=
∏

v∈MF

Λ(OFvG)×

be the group of unit ideles.
Next, recall Definition 3.2 and observe that the homomorphism

(3.17)
∏

v∈MF

Θt
Fv : J(Λ(FG)) −→ J(H(FG))

is well-defined because (3.15) is an equality for all but finitely many v ∈MF .
Recall from Section 1.1 that we chose {iv(ζn) : n ∈ Z+} to be the compatible
set of primitive roots of unity in F cv . Hence, the diagram

(3.18)

Λ(FG)× J(Λ(FG))

H(FG) J(H(FG))

λ

η

∏
v

Θt
FvΘt

F

commutes. By abuse of notation, we will also use Θt = Θt
F to denote the

homomorphism in (3.17).

3.3. Local Prime F-Elements. Let F be a finite extension ofQp. Denote
by π = πF a chosen uniformizer in F and write q = qF for the order of the
residue field OF /(πF ). Let {ζn : n ∈ Z+} be the chosen compatible set of
primitive roots of unity in F c. Also, let Fnr denote the maximal unramified
extension of F contained in F c and set Ωnr

F := Gal(Fnr/F ).
Recall from Remark 1.17 that a tame h ∈ Hom(ΩF , G) may be regarded

as an element in Hom(Ωt
F , G). Any such homomorphism admits a factor-

ization as follows. First, we will recall the structure of the group Ωt
F (see [6,
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Sections 7 and 8], for example). On the one hand, the field Fnr is obtained
by adjoining to F all roots of unity of order coprime to p. This means that
Ωnr
F is a procyclic group which is topologically generated by the Frobenius

automorphism φ = φF given by
φ(ζn) = ζqn for all (n, p) = 1.

On the other hand, the field F t is obtained by adjoining to Fnr all the n-th
roots of π for n ∈ N coprime to p and so Gal(F t/Fnr) is a procyclic group.
We will choose a coherent set of radicals

{π1/n : n ∈ Z+}
such that (π1/mn)n = π1/m and define πm/n := (π1/n)m for all m,n ∈ Z+.
These radicals of π, together with the chosen roots of unity, then determine
a distinguished topological generator σ = σF of Gal(F t/Fnr) given by

(3.19) σ(π1/n) = ζnπ
1/n for all (n, p) = 1.

Letting φ also denote the lifting of φ in Ωt
F that fixes the radicals π1/n for

all (n, p) = 1, we then see that Ωt
F is topologically generated by φ and σ.

Notice that we have the relation φσφ−1σ−1 = σq−1, and define
G(q−1) := {s ∈ G | the order of s divides q − 1}.

Since G is abelian, for any h ∈ Hom(Ωt
F , G), we must have h(σ) ∈ G(q−1).

Definition 3.8. Given h ∈ Hom(Ωt
F , G), define

hnr ∈ Hom(Ωt
F , G); hnr(φ) := h(φ) and hnr(σ) := 1;

htot ∈ Hom(Ωt
F , G); htot(φ) := 1 and htot(σ) := h(σ).

Clearly h = hnrhtot, called the factorization of h with respect to σ. Notice
that hnr is unramified, and we know that F htot = F (π1/|s|) for s := htot(σ)
by [7, Proposition 5.4].

Now, let h ∈ Hom(Ωt
F , G) be given and suppose that Oh = OFG · a. As

in the proof of [7, Theorem 5.6], we may decompose the resolvend rG(a) as
rG(a) = rG(anr)rG(atot),

where Ohnr = OFG · anr and Ohtot = OFG · atot. This is the same decom-
position mentioned in (3.5). The resolvend rG(anr) is already characterized
by Proposition 1.16(2). In [7, Proposition 5.4], McCulloh showed that the
element atot ∈ Ohtot may be chosen such that its reduced resolvend rG(atot)
is equal to Θt(fs) for some fs ∈ Λ(FG)× (recall (3.16)), where s := h(σ).

Definition 3.9. Given s ∈ G(q−1), define fs = fF,s ∈ Λ(FG)× by

fs(t) :=
{
π if t = s 6= 1
1 otherwise.



668 Cindy (Sin Yi) Tsang

Observe that fs indeed preserves the ΩF -action because all (q− 1)-st roots
of unity are contained in F , so elements in G(q−1) are fixed by ΩF , as is π.
Such a map in Λ(FG)× is called a prime F-element over F . We will write

FF := {fs : s ∈ G(q−1)}
for the collection of all of prime F-elements over F .

3.4. Approximation Theorems. Let F be a number field and define
(3.20) F = FF := {f ∈ J(Λ(FG)) | fv ∈ FFv for all v ∈MF }.
We are now ready to state the characterization of the set

R(OFG) := {cl(Oh) : tame h ∈ Hom(ΩF , G)}
of all realizable classes in Cl(OFG) that was proved by McCulloh in [7]. It
will be helpful to recall (1.8) and Definition 3.2.

Theorem 3.10. Let h ∈ Hom(ΩF , G), say Fh = FG · b. Then, we have h
is tame if and only if there exists c ∈ J(FG) such that
(3.21) rag(c) = η(rG(b))−1uΘt(f)
for some u ∈ U(H(OFG)) and f = (fv) ∈ F. Also, if (3.21) holds, then

(1) for all v ∈MF , we have fv = fFv ,sv for sv := hv(σFv);
(2) for all v ∈MF , we have fv = 1 if and only if hv is unramified;
(3) j(c) = cl(Oh).

Proof. See [7, Theorem 6.7]. We remark that the decomposition of rag(c)
in (3.21) comes from equation (3.4) and the decomposition (3.5). �

Theorem 3.10 implies that R(OFG) may be characterized as follows. For
c ∈ J(FG), we have j(c) ∈ R(OFG) if and only if rag(c) is an element of
(3.22) η(H(FG))U(H(OFG))Θt(F).
Using two approximations theorems, McCulloh showed in [7, Theorem 6.17]
that in the above, the set F may be replaced by the group J(Λ(FG)), which
then shows that R(OFG) is a subgroup of Cl(OFG) (see [7, Corollary 6.20]).

Below, we state the two approximation theorems, which will play a cru-
cial role in the proof of Theorem 1.3. To that end, we need some notation.
It will be helpful to recall (3.16) and Definition 3.5.

Definition 3.11. Let m be an ideal in OF . For each v ∈MF , let
Um(OF cv ) := (1 + mOF cv ) ∩ (OF cv )×;

U ′m(Λ(OFvG)) := {gv ∈ Λ(OFvG)× | gv(s) ∈ Um(OF cv ) for all s ∈ G \ {1}}.
Define

U ′m(Λ(OFG)) :=
( ∏
v∈MF

U ′m(Λ(OFvG))
)
∩ J(Λ(FG)).
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Definition 3.12. For g ∈ J(Λ(FG)) and s ∈ G, define

gs :=
∏

v∈MF

gv(s) ∈
∏

v∈MF

(F cv )×.

Theorem 3.13. Let m be an ideal in OF divisible by both |G| and exp(G)2.
Then, we have Θt(U ′m(Λ(OFG))) ⊂ U(H(OFG)).

Proof. See [7, Proposition 6.9]. �

Theorem 3.14. Let g ∈ J(Λ(FG)) and let T be any finite subset of MF .
Then, there exists f = (fv) ∈ F such that fv = 1 for all v ∈ T and

g ≡ f (mod λ(Λ(FG)×)U ′m(Λ(OFG))).

Moreover, we may choose f ∈ F so that for each s ∈ G(−1) with s 6= 1,
there exists ω ∈ ΩF such that fω·s 6= 1.

Proof. See [7, Proposition 6.14]. �

4. Characterization of Σ-Realizable Classes

In this section, let K/k denote a fixed Galois extension of number fields
and let Σ := Gal(K/k). We will assume that G is abelian and fix a left Σ-
module structure on G. We will choose Kc = Qc and kc = Qc, where Qc is
a fixed algebraic closure of Q containing K, as well as the same compatible
set {ζn : n ∈ Z+} of primitive roots of unity in Qc for both k and K. We
will identify Hom(Ωt

K , G) with the subset of Hom(ΩK , G) consisting of the
tame homomorphisms as in Remark 1.17.

Definition 4.1. Let VK denote the set of primes inMK which are ramified
over k, and let Vk denote the set of primes in Mk lying below those in VK .

The purpose of this section is to characterize the Σ-realizable classes (re-
call (1.5) and see (4.8)) coming from the homomorphisms h ∈ Hom(Ωt

K , G)Σ

for which hv is unramified at all v ∈ VK , under the assumptions in Theo-
rem 1.3. We will do so by refining the characterization of realizable classes
sated in Theorem 3.10. The crucial step is to make suitable choices for the
embeddings iv : Qc −→ Kc

v and the uniformizers πv in Kv for v ∈MK . We
will need the following notation.

Definition 4.2. For each prime w ∈Mk, let iw : Qc −→ kcw be the chosen
embedding extending the natural embedding k −→ kw. This determines a
distinguished prime vw ∈MK lying above w for which the vw-adic absolute
value on K is induced by iw. For each prime v ∈MK lying above w, choose
an element γv ∈ Σ such that v = vw ◦ γ−1

v , and we choose γvw = 1. Also,
we will fix a lift γv ∈ Ωk of γv with γvw = 1.
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4.1. Choices of Embeddings.

Definition 4.3. Given v ∈MK , let w ∈Mk be the prime lying below v and
note that the v-adic absolute value on K is induced by iw ◦ γv−1. Then, by
restricting iw ◦γv−1, we obtain an embedding K −→ kcw which extends to a
continuous embedding Kv −→ kcw. We will then lift this to an isomorphism
ε−1
v : Kc

v −→ kcw and define iv : Qc −→ Kc
v by setting iv := εv ◦ iw ◦ γv−1,

which clearly extends the natural embedding K −→ Kv.

For all v ∈MK and w ∈Mk with w lying below v, define γ̃v := εv ◦ ε−1
vw .

By the choices made in Definition 4.3, the diagram

Kc
vw kcw Kc

v

Qc Qc Qc

γ̃v

εvw εv

ivw

γv

iw iv

commutes. Observe also that γ̃vw = 1 and we have the relation

(4.1) iv = γ̃v ◦ ivw ◦ γv−1.

Via identifying Hom(Ωt
K , G) with the subset of Hom(ΩK , G) consisting of

the tame homomorphisms as in Remark 1.17, we have the following result.

Proposition 4.4. Let h ∈ Hom(Ωt
K , G)Σ. Let v ∈MK and let w ∈Mk be

the prime lying below v. Then, we have

hv(γ̃v ◦ ω ◦ γ̃v−1) = γv · hvw(ω) for all ω ∈ ΩKvw .

Proof. We have hv = h◦ ĩv by definition (recall (1.6) and (1.10)). Using the
relation (4.1), we then see that for all ω ∈ ΩKvw , we have

hv(γ̃v ◦ ω ◦ γ̃v−1) = h(i−1
v ◦ γ̃v ◦ ω ◦ γ̃v−1 ◦ iv)

= h(γv ◦ i−1
vw ◦ ω ◦ ivw ◦ γv

−1)
= γv · (h · γv)(i−1

vw ◦ ω ◦ ivw)
= γv · hvw(ω),

where the last equality holds because h is Σ-invariant. �

4.2. Choices of Uniformizers and their Radicals. For each w ∈Mk,
let πw be a chosen uniformizer in kw and let {π1/n

w : n ∈ Z+} be the chosen
coherent set of radicals of πw in kcw (recall Subsection 3.3 above).
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Definition 4.5. Given v ∈MK \VK , let w ∈Mk be the prime lying below
v. We choose πv := εv(πw) to be the uniformizer inKv, and π1/n

v := εv(π1/n
w )

for n ∈ Z+ to the be coherent radicals of πv in Kc
v. As for v ∈ VK , we will

choose the uniformizer πv in Kv and its radicals in Kc
v arbitrarily.

Lemma 4.6. Let v ∈ MK \ VK and let w ∈ Mk be the prime lying below
v. Then, we have π1/n

v = γ̃v(π1/n
vw ) for all n ∈ Z+.

Proof. Since K/k is Galois and v /∈ VK , plainly we have vw /∈ VK . Using
the equality γ̃v = εv ◦ ε−1

vw , we then see that

π1/n
v = εv(π1/n

w ) = γ̃v(εvw(π1/n
w )) = γ̃v(π1/n

vw )

for all n ∈ Z+ by Definition 4.5. �

The choices made in Definitions 4.3 and 4.5 in turn determine a distin-
guished topological generator σv = σKv of Gal(Kt

v/K
nr
v ) (recall (3.19)). In

particular, because we chose {iv(ζn) : n ∈ Z+} to be the compatible set of
primitive roots of unity in Kc

v, we have

(4.2) σv(π1/n
v ) = iv(ζn)π1/n

v for (n, p) = 1,

where p is the rational prime lying below v. By abuse of notation, we will
also use σv to denote a chosen lift of σv in ΩKv . By identifying Hom(Ωt

K , G)
with the subset of Hom(ΩK , G) consisting of the tame homomorphisms as
in Remark 1.17, we then have the following result.

Proposition 4.7. Let h ∈ Hom(Ωt
K , G)Σ. Let v ∈MK \VK and let w ∈Mk

be the prime lying below v. Then, we have

hv(σv) = γv · hvw(σvw)

provided that ζev is contained in k, where ev := |hv(σv)|.

Proof. We already know from Proposition 4.4 that

hv(γ̃v ◦ σvw ◦ γ̃v−1) = γv · hvw(σvw).

Thus, it suffices to show that hv(γ̃v ◦ σvw ◦ γ̃v−1) = hv(σv), or equivalently,
that γ̃v ◦ σvw ◦ γ̃v−1 and σv have the same action on L := (Kt

v)ker(hv).
Let hv = hnrv h

tot
v be the factorization of hv with respect to σv (recall

Definition 3.8). Let Lnr := (Kv)h
nr
v and Ltot := (Kv)h

tot
v . Then, clearly we

have L ⊂ LnrLtot. Because Lnr/Kv is unramified, both γ̃v ◦ σvw ◦ γ̃v−1 and
σv act as the identity on Lnr. We also know that Ltot = Kv(π1/ev

v ) by [7,
Proposition 5.4]. Hence, it remains to show that

(γ̃v ◦ σvw ◦ γ̃v−1)(π1/ev
v ) = σv(π1/ev

v ).
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Notice that π1/ev
v = γ̃v(π1/ev

vw ) by Lemma 4.6 because v /∈ VK . Using (4.2),
we then obtain

(γ̃v ◦ σvw ◦ γ̃v−1)(π1/ev
v ) = γ̃v(ivw(ζev)π1/ev

vw )

= (γ̃v ◦ ivw)(ζev)π1/ev
v

= (γ̃v ◦ ivw ◦ γv−1)(ζev)π1/ev
v

= iv(ζev)π1/ev
v

= σv(π1/ev
v ),

where γv−1(ζev) = ζev because ζev ∈ k and iv = γ̃v ◦ ivw ◦ γv−1 by (4.1). So,
indeed γ̃v ◦ σvw ◦ γ̃v−1 and σv have the same action on L, as desired. �

4.3. Embeddings of Groups of Ideles. In this subsection, assume fur-
ther that k contains all exp(G)-th roots of unity. Then, we have

Λ(FG) = Map(G,F ) for F ∈ {k,K, kw,Kv},
where w ∈Mk and v ∈MK (recall (3.16) and Definition 3.5). It will also be
helpful to recall Definitions 3.2 and 3.7. The isomorphisms εv for v ∈ MK

in Definition 4.3 then the following embeddings of groups of ideles.

Definition 4.8. Define ν : J(Λ(kG)) −→ J(Λ(KG)) by
ν(g)v := εv ◦ gw for each v ∈MK ,

where w ∈Mk is the prime lying below v.

Definition 4.9. Define µ : J(H(kG)) −→ J(H(KG)) by
µ((rG(a))v := rG(εv ◦ aw) for each v ∈MK ,

where w ∈ Mk is the prime lying below v, and aw ∈ Map(G, kcw) is such
that rG(aw) = rG(a)w. Notice that the definition of µ does not require that
k contains all exp(G)-th roots of unity.

First, we prove two basic properties of the map ν. Notice that the choices
of the uniformizers πw in kw for w ∈Mk determine a subset Fk ⊂ J(Λ(kG))
(recall Definition 3.9 and (3.20)). Similarly, the choices of the uniformizers
πv in Kv for v ∈MK in Definition 4.5 determine a subset FK ⊂ J(Λ(KG)).

Proposition 4.10. Let f = (fw) ∈ Fk. Let v ∈MK \VK and let w ∈Mk be
the prime lying below v. If fw = fkw,sw , then ν(f)v = fKv ,sw . In particular,
if fw = 1 for all w ∈ Vk, then ν(f) ∈ FK .

Proof. Let qw and qv denote the orders of the residue fields of kw and Kv,
respectively. The order of sw divides qw − 1 and hence divides qv − 1. Since
v /∈ VK , we have πv = εv(πw) and it is clear that ν(f)v = fKv ,sw . Thus, we
have ν(f)v ∈ FKv . If fw = 1 for all w ∈ Vk, then ν(f)v = 1 lies in FKv for
all v ∈ VK as well. We then deduce that ν(f) ∈ FK in this case. �
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Proposition 4.11. Let f = (fv) ∈ FK . Write fv = fKv ,sv for v ∈MK . If
(1) sv = 1 for all v ∈ VK ; and
(2) sv = svw for all v ∈MK and w ∈Mk with w lying below v,

then we have f = ν(g) for some g ∈ J(Λ(kG)).

Proof. For each w ∈Mk, define gw ∈ Λ(kwG)× = Map(G, k×w ) by

gw(s) :=
{
πw if s = svw 6= 1
1 otherwise.

We have g := (gw) ∈ J(Λ(kG)) because f ∈ J(Λ(KG)) implies that sv = 1
for all but finitely many v ∈MK . To prove that f = ν(g), let v ∈MK and
let w ∈Mk be the prime lying below v. If svw 6= 1, then sv 6= 1 by (2) and
so v /∈ VK by (1). Since πv = εv(πw) by definition and sv = svw by (2), we
have ν(g)v = fKv ,sv . If svw = 1, then sv = 1 by (2) and ν(g)v = 1 = fKv ,sv .
This shows that f = ν(g) and so f ∈ ν(J(Λ(kG))), as claimed. �

Next, we show that certain diagrams involving ν and µ commute.

Proposition 4.12. The diagram

Λ(kG)× J(Λ(kG))

Λ(KG)× J(Λ(KG))

λk

λK

νιΛ

commutes, where ιΛ is the map induced by the natural inclusion k −→ K.

Proof. Recall that λk and λK denote the diagonal maps. Let g ∈ Λ(kG)×.
Also, let v ∈MK and let w ∈Mk be the prime lying below v. Then

(ν ◦ λk)(g)v = εv ◦ iw ◦ g
= iv ◦ γv ◦ g
= iv ◦ g
= (λK ◦ ιΛ)(g)v,

where εv ◦ iw = iv ◦ γv by Definition 4.3 and γv ◦ g = g because g takes
values in k. So, we have ν ◦ λk = λK ◦ ιΛ, as desired. �
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Proposition 4.13. The diagram

J(Λ(kG)) J(Λ(KG))

J(H(kG)) J(H(KG))

ν

µ

Θt
KΘt

k

commutes.

Proof. Let g = (gw) ∈ J(Λ(kG)). Also, let v ∈MK and let w ∈Mk be the
prime lying below v. On the one hand, we have
(4.3) (Θt

K ◦ ν)(g)v = Θt
K(εv ◦ gw).

On the other hand, let rG(aw) ∈ H(kwG) be such that Θt
k(gw) = rG(aw).

Then, we have
(4.4) (µ ◦Θt

k)(g)v = rG(εv ◦ aw).

Now, let Ĝw and Ĝv be the groups of irreducible kcw- and Kc
v-valued charac-

ters on G, respectively. Recall the notation A
Ĝw

and A
Ĝv

in (3.10). Then,
we have rG(aw)(ψ) = Θt

k(gw)(ψ) for all ψ ∈ A
Ĝw

via the identification

H(kwG) = HomΩkw (A
Ĝw
, (kcw)×)

in (3.14). We will use the analogous identification
H(KvG) = HomΩKv (A

Ĝv
, (Kc

v)×)

in (3.14) to show that the expressions in (4.3) and (4.4) are equal.
To that end, let ψ ∈ A

Ĝv
and write ψ =

∑
χ nχχ. Define

ε−1
v ◦ ψ :=

∑
χ

nχ(ε−1
v ◦ χ),

which clearly lies in A
Ĝw

. Since rG(aw) = Θt
k(gw), we deduce that

rG(εv ◦ aw)(ψ) = εv(rG(aw)(ε−1
v ◦ ψ))(4.5)

= εv

( ∏
s∈G

gw(s)〈ε
−1
v ◦ψ,s〉

)
=
∏
s∈G

(εv ◦ gw)(s)〈ψ,s〉

= Θt
K(εv ◦ gw)(ψ),

where the third equality follows because 〈ε−1
v ◦ ψ, s〉 = 〈ψ, s〉 for all s ∈ G.

To see why, note that it suffices to show that 〈ε−1
v ◦ χ, s〉 = 〈χ, s〉 holds for

all χ ∈ Ĝv and all s ∈ G. It will be helpful to recall that we chose the same



Realizable Classes and Embedding Problems 675

compatible set {ζn : n ∈ Z+} of roots of unity in Qc for k and K. Also, we
chose {iv(ζn) : n ∈ Z+} and {iw(ζn) : n ∈ Z+} to be the compatible sets of
roots of unity in Kc

v and kcw, respectively.
Now, let χ ∈ Ĝv and s ∈ G be given. Let υ = υ(χ, s) be defined as in

Definition 3.3. Then, we have χ(s) = iv(ζ|s|)υ and 〈χ, s〉 = υ/|s|. We have

(ε−1
v ◦ χ)(s) = (ε−1

v ◦ iv)(ζ|s|)υ

= (iw ◦ γv−1)(ζ|s|)υ

= iw(ζ|s|)υ,

where ε−1
v ◦ iv = iw ◦ γv−1 by Definition 4.3 and γv−1(ζ|s|) = ζ|s| because k

contains all exp(G)-th roots of unity. Then, by Definition 3.3, we see that
〈ε−1
v ◦ χ, s〉 = υ/|s| as well. Hence, the third equality in (4.5) indeed holds.

It follows that (4.3) and (4.4) are equal, and so Θt
K ◦ ν = µ ◦Θt

k. �

4.4. Preliminary Definitions. In this subsection, assume that the given
left Σ-action on G is trivial. Then, the left Ωk-action on G induced by the
natural quotient map Ωk −→ Σ and the left Σ-action on G is trivial, which
agrees with our definition in Subsection 1.1 above. Analogous to (2.1), from
the Hochschild–Serre spectral sequence associated to the group extension

1 ΩK Ωk Σ 1,

we obtain an exact sequence

(4.6) Hom(Ωk, G) Hom(ΩK , G)Σ H2(Σ, G).res tr

Here res is the obvious restriction map. The Σ-action on Hom(ΩK , G) and
the transgression map tr are defined analogously as in Definition 2.2. More
precisely, for each γ ∈ Σ, fix a lift γ ∈ Ωk of γ with 1 = 1.

Definition 4.14. Given h ∈ Hom(ΩK , G) and γ ∈ Σ, define

(h · γ)(ω) := γ−1 · h(γωγ−1) for all ω ∈ ΩK .

The transgression map tr : Hom(ΩK , G)Σ −→ H2(Σ, G) is defined by

tr(h) := [(γ, δ) 7→ h((γ)(δ)(γδ)−1)],

where [−] denotes the cohomology class. These definitions do not depend
on the choice of the lifts γ for γ ∈ Σ.

If we regard Hom(Ωt
K , G) as the subset of Hom(ΩK , G) consisting of the

tame homomorphisms via Remark 1.17, then the Σ-action on Hom(Ωt
K , G)

and the transgression map tr on Hom(Ωt
K , G)Σ induced by Definition 4.14

agree with those in Definition 2.2. In particular, the identical notation does
not cause any confusion.
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Definition 4.15. Define (recall Definition 3.1)
HΣ(KG) := {rG(a) ∈ H(KG) | ha ∈ Hom(ΩK , G)Σ};
Hs(KG) := {rG(a) ∈ H(KG) | ha ∈ Hom(ΩK , G)Σ and tr(ha) = 1}.

It is clear that both of the sets above are subgroups of H(KG).

Proposition 4.16. If k contains all exp(G)-th roots of unity, then (recall
Definitions 3.2 and 3.7)

(Θt
K ◦ ν)(λk(Λ(kG)×)) ⊂ η(Hs(KG)).

Proof. Suppose that k contains all exp(G)-th roots of unity. The map ν is
then defined and results from Subsection 4.3 apply. Now, let g ∈ Λ(kG)×.
Recall that ιΛ : Λ(kG)× −→ λ(KG)× denotes the map induced by the
natural inclusion k −→ K. Then, we have

(Θt
K ◦ ν)(λk(g)) = (Θt

K ◦ λK)(ιΛ(g)) = (η ◦Θt
K)(ιΛ(g)),

where ν ◦ λk = λK ◦ ιΛ by Proposition 4.12 and Θt
K ◦ λK = η ◦Θt

K because
diagram (3.18) commutes. It remains to show that Θt

K(ιΛ(g)) ∈ Hs(KG).
Recall that H(kG) = ((QcG)×/G)Ωk and H(KG) = ((QcG)×/G)ΩK by

definition. From the identification in (3.14), we get a commutative diagram

HomΩk(A
Ĝ
, (Qc)×) HomΩK (A

Ĝ
, (Qc)×)

H(kG) H(KG)
ιH

,

where the two horizontal maps are the obvious inclusions induced by the
inclusion ΩK ⊂ Ωk. If Θt

k(g) = rG(a), then clearly Θt
K(ιΛ(g)) = ιH(rG(a)).

So, the homomorphism h associated to Θt
K(ιΛ(g)) is equal to res(ha), where

ha is the homomorphism associated to rG(a). Since (4.6) is exact, this shows
that tr(h) = 1 and so Θt

K(ιΛ(g)) ∈ Hs(KG). This proves the claim. �

4.5. Proof of Theorem 1.3(1).

Proof. Let ρΣ denote the composition of the homomorphism rag from Def-
inition 3.2 followed by the natural quotient map

J(H(KG)) −→ J(H(KG))
η(HΣ(KG))U(H(OKG))(Θt

K ◦ ν)(J(Λ(kG))) .

We will show that RΣ(OKG)V is a subgroup of Cl(OKG) by showing that
(4.7) j−1(RΣ(OKG)V ) = ker(ρΣ),
or equivalently, for c ∈ J(KG), we have j(c) ∈ RΣ(OKG)V if and only if
(4.8) rag(c) ∈ η(HΣ(KG))U(H(OKG))(Θt

K ◦ ν)(J(Λ(kG))).
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To that end, let c ∈ J(KG) be given. First, assume that (4.8) holds, so

(4.9) rag(c) = η(rG(b))−1u(Θt
K ◦ ν)(g)

for some rG(b) ∈ HΣ(KG), u ∈ U(H(OKG)), and g ∈ J(Λ(kG)). Let m be
any ideal in Ok. Then, by Theorem 3.14, there exists f = (fw) ∈ Fk such
that fw = 1 for all primes w ∈ Vk and

g ≡ f mod λk(Λ(kG)×)U ′m(Λ(OkG)).

Choosing m to be divisible by |G| and exp(G)2, the above then yields

Θt
k(g) ≡ Θt

k(f) mod Θt
k(λk(Λ(kG)×))U(H(OkG))

by Theorem 3.13. Since µ ◦ Θt
k = Θt

K ◦ ν by Proposition 4.13, applying µ
to the above equation and using Proposition 4.16, we then obtain

(4.10) (Θt
K ◦ ν)(g) ≡ (Θt

K ◦ ν)(f) mod η(Hs(KG))U(H(OKG)).

Thus, by changing b and u in (4.9) if necessary, we may assume that g = f .
Notice that ν(f)v = 1 for all v ∈ V and that ν(f) ∈ FK by Proposition 4.10.
Hence, if h := hb is the homomorphism associated to rG(b), then h is tame
with hv unramified for all v ∈ V and j(c) = cl(Oh) by Theorem 3.10. Since
rG(b) ∈ HΣ(KG), we know that h is Σ-invariant, and so j(c) ∈ RΣ(OKG)V .

Conversely, assume that j(c) = cl(Oh) for some h ∈ Hom(Ωt
K , G)Σ

V , with
Kh = KG · b say. By Theorem 3.10, we know that j(c′) = cl(Oh) for some
idele c′ ∈ J(KG) such that

(4.11) rag(c′) = η(rG(b))−1uΘt
K(f ′),

where u ∈ U(H(OKG)) and f ′ = (f ′v) ∈ FK . In fact, for each v ∈ MK , we
have f ′v = f ′Kv ,sv for sv = hv(σKv), and sv = 1 if v ∈ V . Since the Σ-action
on G is trivial, we have sv = svw for all v ∈MK and w ∈Mk with w lying
below v from Proposition 4.7. Proposition 4.11 then implies that f ′ = ν(g)
for some g ∈ J(Λ(kG)). Since j(c) = j(c′), by Theorem 1.10, we have

c ≡ c′ mod ∂((KG)×)U(OKG).

Clearly rag((KG)×) ⊂ Hs(KG), and so we may rewrite (4.11) as

(4.12) rag(c) = η(rG(b)rG(b′))−1uu′(Θt
K ◦ ν)(g)

for some rG(b′) ∈ Hs(KG) and u′ ∈ U(H(OKG)). Note that rG(b) ∈
HΣ(KG) because h is Σ-invariant, and so (4.8) holds. This proves (4.7). It
remains to show the existence of h′ ∈ Hom(Ωt

K , G)Σ
V satisfying (1a) to (1d).

Let T be a finite set of primes in OK . First, note that the same discussion
following (4.9) shows that there exists f = (fw) ∈ Fk satisfying (4.10). So,
by changing b′ and u′ in (4.12) if necessary, we may assume that g = f . By
Theorem 3.14, we may also assume that fw = 1 for all w ∈Mk lying below
the primes in V ∪ T , and that fs 6= 1 for all s ∈ G \ {1} (note that Ωk acts
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trivially on G(−1) because k contains all exp(G)-th roots of unity). Then,
by Proposition 4.10, we see that ν(f)v = 1 for all v ∈ V ∪T and ν(f) ∈ FK .

Now, let h′ be the homomorphism associated to rG(b)rG(b′). From (4.12)
and Theorem 3.10, we see that h′ is tame with h′v unramified for v ∈ V ∪T
and that j(c) = cl(Oh), so both (2) and (3) hold. Because rG(b′) ∈ Hs(KG)
and h = hb is Σ-invariant, clearly h′ ∈ Hom(Ωt

K , G)Σ
V and tr(h′) = tr(h),

which proves (4). Finally, for each s ∈ G\{1}, we have fs 6= 1 by choice and
so fw = fkw,s for some w ∈Mk. If v ∈MK is the prime lying above w, then
ν(f)v = fKv ,s by Proposition 4.10 and thus h′v(σKv) = s by Theorem 3.10.
This means that h′ is surjective and so Kh′ is a field, as claimed in (1).

Since gal is weakly multiplicative in the sense of (1.3), the above implies
that Rs(OKG)V is closed under multiplication. Because Cl(OKG) is finite,
it follows that Rs(OKG)V is also a subgroup of Cl(OKG). This completes
the proof of the theorem. �

4.6. Structure of the Quotient Group RΣ(OKG)V /Rs(OKG)V .
Below, we assume all of the hypotheses in Theorem 1.3. The setsRΣ(OKG)V
and Rs(OKG)V are subgroups of Cl(OKG) by Theorem 1.3(1). The next
proposition is a corollary of Theorem 1.3(1), and it relates the group struc-
ture of RΣ(OKG)V /Rs(OKG)V to that of H2(Σ, G).

Proposition 4.17. Let h, h1, h2 ∈ Hom(Ωt
K , G)Σ

V .
(1) There exists hs ∈ Hom(Ωt

K , G)Σ
V with tr(hs) = 1 such that

cl(Oh1) cl(Oh2) = cl(Oh1h2hs).

(2) We have cl(Oh) cl(Oh−1) ≡ 1 mod Rs(OKG)V .
(3) If tr(h1) = tr(h2), then cl(Oh1) ≡ cl(Oh2) mod Rs(OKG)V .

Proof. By Theorem 1.3(1), there exists h′2 ∈ Hom(Ωt
K , G)Σ

V such that

cl(Oh′2) = cl(Oh2), tr(h′2) = tr(h2), d(h′2) ∩ d(h1) = ∅

(recall (1.2)). Since gal is weakly multiplicative (recall (1.3)), we obtain

cl(Oh1) cl(Oh2) = cl(Oh1h′2
) = cl(Oh1h2hs),

where hs := h−1
2 h′2 and clearly tr(hs) = 1. This proves (1), and (2) follows

from applying (1) to h1 = h and h2 = h−1. Note that (1) and (2) together
imply that there exists hs ∈ Hom(Ωt

K , G)Σ
V with tr(hs) = 1 such that

cl(Oh1) cl(Oh2)−1 ≡ cl(Oh1) cl(Oh−1
2

) ≡ cl(Oh1h
−1
2 hs

) mod Rs(OKG)V .

Hence, if tr(h1) = tr(h2), then tr(h1h
−1
2 hs) = 1 and thus cl(Oh1) ≡ cl(Oh2)

mod Rs(OKG)V , as desired. �
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4.7. Proof of Theorem 1.3(2).

Proof. The map φ is well-defined by Proposition 4.17(3). Next, by Propo-
sition 4.17(1), given any h1, h2 ∈ Hom(Ωt

K , G)Σ
V , we have

cl(Oh1) cl(Oh2) = cl(Oh1h2hs)
for some hs ∈ Hom(Ωt

K , G)Σ
V with tr(hs) = 1. This implies that

φ(tr(h1))φ(tr(h2)) = φ(tr(h1h2hs)) = φ(tr(h1h2))
and so φ is indeed a homomorphism. This proves the first claim.

Next, let h ∈ Hom(Ωt
K , G)Σ

V be such that tr(h) ∈ ker(φ). In other words,
we have cl(Oh) ∈ Rs(OKG)V . By Theorem 1.3(1), we know that

cl(Oh)−1 = cl(Ohs)
for some hs ∈ Hom(Ωt

K , G)Σ
V with tr(hs) = 1. In particular, we may as-

sume that d(hs)∩ d(h) = ∅ (recall (1.2)). Since gal is weakly multiplicative
(recall (1.3)), we then deduce that

1 = cl(Oh) cl(Ohs) = cl(Ohhs).
Now, recall Theorem 2.11. Because ξ is a homomorphism, the above implies
that (ξ ◦ gal)(hhs) = 1. Since the basic diagram (1.4) is commutative, this
yields (i∗ ◦ tr)(hhs) = 1. Hence, if i∗ is injective, then tr(hhs) = 1 and so
tr(h) = 1. In this case, the map φ is injective and so is an isomorphism. �
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