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On matrices of endomorphisms of abelian varieties

Yuri G. Zarhin

(Recommended by Linus Kramer)

Abstract. We study endomorphisms of abelian varieties and their ac-
tion on the `-adic Tate modules. We prove that for every endomor-
phism one may choose a basis of each Q`-Tate module such that the
corresponding matrix has rational entries and does not depend on `.

1. Introduction

Let X be an abelian variety of positive dimension g over an algebraically closed field
K of arbitrary characteristic. We write End(X ) for the endomorphism ring of X and
End0(X ) for the correspondingQ-algebra

End0(X ) := End(X )⊗Q,

which is a finite-dimensional semisimple algebra over Q. If n is any integer, then we
write nX ∈ End(X ) for multiplication by n in X , which is an isogeny if n 6= 0. For example,
1X is the identity automorphism of X .

One may view End(X ) = End(X )⊗1 as an order in End0(X ). Let ` 6= char(K ) be a prime
and T`(X ) be the `-adic Tate module of X , which is a free Z`-module of rank 2g [6]. We
write V`(X ) for the correspondingQ`-vector space

V`(X ) = T`(X )⊗Z` Q`
of dimension 2g .

By functoriality, there is the natural injective ring homomorphism (see [6])

End(X ) → EndZ` (T`(X )),u 7→ u`

that extends by Z`-linearity to the injective Z`-algebra homomorphism

End(X )⊗Z` ,→ EndZ` (T`(X )), u 7→ u`

and extends byQ`-linearity to the injectiveQ`-algebra homomorphism

End0(X )⊗QQ` = End(X )⊗Q` ,→ EndQ` (V`(X )), u 7→ u`

(see [9, 6]).
If u ∈ End0(X ), then let us consider the monic characteristic polynomial of degree 2g

Pu(t ) := det(t Id−u`,V`(X )) ∈Q`[t ]

of u` ∈ EndQ` (V`(X )). (Here Id : V`(X ) →V`(X ) is the identity map.) A classical result of
Weil [6, Sect. 19, Th. 4 on p. 180 and Definition on p. 182] asserts that if u ∈ End(X ),
then Pu(t ) lies in Z[t ] and does not depend on the choice of `. It readily follows that if
u ∈ End0(X ), then Pu(t ) lies inQ[t ] and does not depend on the choice of `.
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The aim of this note is to prove the following assertion.

Theorem 1.1. Let X be an abelian variety of positive dimension g over an algebraically
closed field K of arbitrary characteristic. Let u ∈ End0(X ). Then there exists a square
matrix M(u) of size 2g with entries inQ that enjoys the following property.

If ` is any prime 6= char(K ), then there is a basis of the 2g -dimensionalQ`-vector space
V`(X ) such that the corresponding matrix of u` ∈ EndQ` (V`(X )) coincides with M(u).

Remark 1.2. In the case of characteristic 0, the assertion of Theorem 1.1 reduces to the
case of K = C where it is obvious; in addition, if u ∈ End(X ), then one may chose bases
in the free Z`-modules T`(X ) in such a way that the corresponding matrices M(u) have
entries in Z and do not depend on the choice of `.

Examples 1.3. (i) Let E be a subfield of End0(X ) that contains 1X . Then E is a num-
ber field; let d be its degree overQ. The naturalQ`-algebra homomorphism

(1.1) E ⊗QQ`→ EndQ` (V`(X )), u 7→ u`

is injective [9, 6] and endows V`(X ) with the structure of a faithful E ⊗Q Q`-
module. It is known [8] that this module is free and its rank is

h := 2g

d

(in particular, d | 2g ). Let us choose an h-element basis

{z1, . . . , zh} ⊂V`(X )

of the E ⊗QQ`-module V`(X ). Also, choose a d-element basis

(1.2) BE = {α1, . . . ,αd } ⊂ E

of theQ-vector space E . Then the d-element set

(1.3) BE ,` := {α1 =α1 ⊗1, . . . ,αd =αd ⊗1} ⊂ E ⊗QQ`
is a basis of the d-dimensional Q`-vector space E ⊗Q Q`. It follows that the
2g (= dh)-element set

(1.4) BE ,`,X := {αi ,`z j | 1 ≤ i ≤ d , 1 ≤ j ≤ h} ⊂V`(X )

is a basis of the Q`-vector space V`(X ). (Here αi ,` ∈ EndQ` (V`(X )) is the image
of

αi =αi ⊗1 ∈ E ⊗QQ`
under the injective homomorphism (1.1).) Now assume that

u ∈ E = E ⊗1 ⊂ E ⊗QQ`,

and let M0(u) be the matrix of theQ-linear map

multu : E → E , w 7→ uw for all w ∈ E

with respect to BE (1.2). Clearly, M0(u) coincides with the matrix of theQ`-linear
map

E ⊗QQ`→ E ⊗QQ`, w 7→ uw

with respect to BE ,` (1.3). It follows that the matrix M(u) of u` w.r.t. BE ,`,X (1.4)
is the block diagonal matrix, whose all diagonal entries coincide with M0(u). In
particular, all entries of M(u) are rational numbers and M(u) does not depend
on the choice of `. Notice that we use the same basis BE ,`,X for all u ∈ E .
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(ii) Let m be a positive integer and let us consider the abelian variety Y = X m . Then
End0(Y ) = Matm(End0(X )) and there is the natural embedding

Matm(E) ⊂ Matm(End0(X )) = End0(Y ).

We also have

V`(Y ) =
m⊕

i=1
V`(X ), EndQ` (V`(Y )) = Matm(EndQ` (V`(X ))).

The basis BE ,`,X of V`(X ) gives rise to the obvious basis B (m)
E ,`,X of the Q`-vector

space
⊕m

i=1 V`(X ) =V`(Y ) that enjoys the following properties. If

u = (
ui j

)m
i , j=1 ∈ Matm(E) ⊂ Matm(End0(X )) = End0(Y ),

then the matrix of u` ∈ EndQ` (V`(Y )) w.r.t. B (m)
E ,`,X coincides with the block ma-

trix
(
M(ui j )

)m
i , j=1. In particular, all its entries lie in Q and do not depend on the

choice of `.

The paper is organized as follows. In Section 2 we discuss the plan of the proof of
Theorem 1.1. In particular, we obtain that Theorem 1.1 follows from certain auxiliary as-
sertions about endomorphism subalgebras of abelian varieties (Theorems 2.1 and 2.2)
and about elements of finite-dimensional semisimple algebras in characteristic 0 (The-
orem 2.4). The results about endomorphism subalgebras are proven in Section 3. The
assertion about semisimple algebras is proven in Section 4.

Acknowledgements. I am grateful to Fei Xu for interesting stimulating questions
about endomorphisms of abelian varieties and useful comments to the preliminary ver-
sion of the paper. My special thanks go to the referee, whose thoughtful comments
helped to improve the exposition.

2. Endomorphism subalgebras of abelian varieties: statements

In the course of the proof of Theorem 1.1, we will use the following assertions.

Theorem 2.1. Let D be a finite-dimensional Q-algebra with identity element 1D and let
W be a positive-dimensional abelian variety over K endowed with a Q-algebra embed-
ding τ : D ,→ End0(W ) that sends 1D to 1W . Suppose that r ≥ 2 is an integer and D
splits into a direct sum D = ⊕r

i=1 Di of r nonzero finite-dimensional Q-algebras Di . We
will identify Di ’s with the corresponding two-sided ideals in D. Then for all i = 1, . . . ,r
there exist positive-dimensional abelian subvarieties Wi ⊂W andQ-algebra embeddings
τi : Di ,→ End0(Wi ) that send 1Di to 1Wi and enjoy the following properties.

(i) The homomorphism of abelian varieties

S :
r∏

i=1
Wi →W, {wi }r

i=1 7→
r∑

i=1
wi

is an isogeny.
(ii) For each u =∑r

i=1 ui ∈ D with ui ∈ Di , for every i we have

{τi (ui )}r
i=1 ∈

r⊕
i=1

End0(Wi ) ⊂ End0

(
r∏

i=1
Wi

)
,

S ◦ (
{τi (ui )}r

i=1

)◦S−1 = τ(u) ∈ End0(W ).

Theorem 2.2. Let E be a number field, m a positive integer, Matm(E) the matrix algebra
of size m over E, and Z an abelian variety of positive dimension over K endowed with aQ-
algebra embedding κ̃ : Matm(E) ,→ End0(Z ) that sends the identity matrix Idm ∈ Matm(E)
to 1Z .
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Then there are a positive-dimensional abelian variety X over K , a Q-algebra embed-
ding κ : E ,→ End0(X ) that sends 1 to 1X , and an isogeny of abelian varieties ψ : X m → Z
that enjoy the following properties.

Let Matm(κ) : Matm(E) ,→ Matm(End0(X )) = End0(X m) be the natural Q-algebra em-
bedding that sends a matrix

(
ai j

)m
i , j=1 ∈ Matm(E) to(

κ(ai j )
)m

i , j=1 ∈ Matm(End0(X )) = End0(X m).

Then

(2.1) κ̃(u) =ψ◦Matm(κ)(u)◦ψ−1 for every u ∈ Matm(E).

Remark 2.3. Notice that in the notation of Theorem 2.2, ψ induces (by functoriality of
Tate modules) the isomorphism

ψ` : V`(X m) ∼=V`(Z )

of Q`-vector spaces. Thus ψ`

(
B (m)

E ,`,X

)
is a basis of the Q`-vector space V`(Z ). It follows

from (2.1) combined with Example 1.3(ii) that for each u ∈ Matm(E) there exists a square
matrix M(u) of size 2dim(Z ) with rational entries that enjoys the following property. For

each prime ` 6= char(K ) the matrix of κ̃(u)` with respect to ψ`

(
B (m)

E ,`,X

)
coincides with

M(u).

In light of Theorem 2.1, Theorem 2.2, and Remark 2.3, Theorem 1.1 is an immediate
corollary of the following assertion applied to the semisimpleQ-algebra End0(X ).

Theorem 2.4. Let D be a finite-dimensional semisimple algebra over Q. Then every el-
ement of D is contained in a subalgebra of D with the same identity element that is iso-
morphic to a direct sum of matrix algebras over number fields.

We prove Theorem 2.4 in Section 4. Theorems 2.1 and 2.2 will be proven in Section 3.

3. Endomorphism subalgebras of abelian varieties: proofs

Results of this section (Lemma 3.1 and Theorem 3.2) and their proofs are rather straight-
forward (and boring). However, we need them in order to prove Theorem 2.1.

Throughout this section, let D be a finite-dimensional Q-algebra with the identity
element 1D and W a positive-dimensional abelian variety over K endowed with a Q-
algebra embedding

τ : D ,→ End0(W )

that sends 1D to 1W .

Lemma 3.1. Let u1,u2 be two conjugate elements of D, i.e., there exists s ∈ D∗ such that

u2 = su1s−1.

Let N be a positive integer such that all three elements

Nτ(u1) = τ(Nu1), Nτ(u2) = τ(Nu2), Nτ(s) = τ(N s) ∈ End0(W )

actually lie in End(W ). Let us consider abelian subvarieties

W1 := τ(Nu1)(W ) ⊂W, W2 := τ(Nu2)(W ) ⊂W

of W . Then
τ(N s)(W1) =W2.

In addition, the restriction
τ(N s)

∣∣
W1

: W1 →W2

is an isogeny of abelian varieties.



Matrices of endomorphisms 59

Proof. Renaming Nu1, Nu2, N s by u1,u2, s respectively, we may and will assume that

τ(u1),τ(u2),τ(s) ∈ End(W ), N = 1.

Since s in invertible in D , the endomorphism

τ(s) : W →W

is invertible in End0(W ) and therefore is an isogeny. This means that

(3.1) τ(s)(W ) =W,

and there is a positive integer r such that multiplication by r annihilates ker(τ(s)). Fur-
thermore, the equality u2 = su1s−1 means that u2s = su1 and therefore

τ(u2)τ(s) = τ(s)τ(u1).

Combining it with (3.1) and the definition of W1 and W2, we obtain that

W2 = τ(u2)(W ) = τ(u2)τ(s)(W ) = τ(s)τ(u1)(W ) = τ(s)W1,

i.e.,

W2 = τ(s)W1.

This means that the restriction

τ(s)
∣∣
W1

: W1 →W2, w1 7→ s(w1)

is a surjective morphism of abelian varieties. Since its kernel ker(τ(s)
∣∣
W1

is a group
subscheme of ker(τ(s)), it is also annihilated by multiplication by r . This implies that
τ(s)

∣∣
W1

is an isogeny. �

The following assertion contains Theorem 2.1.

Theorem 3.2. Suppose that r ≥ 2 is an integer and D splits into a direct sum

D =
r⊕

i=1
Di

of r nonzero finite-dimensionalQ-algebras Di . We will identify Di ’s with the correspond-
ing two-sided ideals in D. Let us consider the subrings

Oi := {ui ∈ Di ⊂ D | τ(ui ) ∈ End(W )}

of Di (1 ≤ i ≤ r ).
Let ei := 1Di be the identity element of Di viewed as a nonzero central idempotent

in D. Let N be a positive integer such that Nei ∈ Oi for all i , i.e., all τ(Nei ) = Nτ(e1)
lie in End(W ). (Such an N always exists.) Let us consider abelian subvarieties Wi :=
τ(Nei )(W ) ⊂W of W .

Then:

(i) (a) The naturalQ-algebra homomorphisms

Oi ⊗Q→ Di , ui ⊗ c 7→ c ·ui

are isomorphisms for i = 1, . . . ,r .
(b) For each

i , j ∈ {1, . . . ,r }, i 6= j

and wi ∈Wi , w j ∈W j

(3.2) τ(Nei )(wi ) = N wi ,τ(Ne j )(wi ) = 0.
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(ii) The natural morphisms of abelian varieties

(3.3) S :
r∏

i=1
Wi →W, {wi }r

i=1 7→
r∑

i=1
wi , P : W →

r∏
i=1

Wi , w 7→ {τ(Nei )(wi )}r
i=1

are isogenies such that

(3.4) P ◦S = NW , S ◦P = NW̃ where W̃ :=
r∏

i=1
Wi .

In particular,
∑r

i=1 Wi =
{∑r

i=1 wi | wi ∈Wi for all i
}

coincides with W .
(iii) For each ui ∈Oi and u j ∈O j with i 6= j

(3.5) τ(ui )(Wi ) ⊂Wi ,τ(u j )(Wi ) = {0}, τ(ui )(W j ) = {0},τ(u j )(W j ) ⊂W j .

(iv) There existQ-algebra embeddings

τi : Di → End0(Wi )

that enjoy the following properties.
(c) τi (ei ) = 1Wi .
(d) If ui ∈Oi ⊂ Di , then τi (ui ) ∈ End(Wi ) and

τi (ui )(wi ) = τ(ui )(wi ) ∈Wi for any wi ∈Wi .

(e) For each

u =
r∑

i=1
ui ∈ D with ui ∈ Di for any i

we have

{τi (ui )}r
i=1 ∈

r⊕
i=1

End0(Wi ) ⊂ End0

(
r∏

i=1
Wi

)
= End0(W̃ )

and
S ◦ (

{τi (ui )}r
i=1

)◦S−1 = τ(u) ∈ End0(W ).

Remark 3.3. (i) The rings Oi do not have to have the identity elements.
(ii) The abelian subvarieties Wi do not depend on the choice of N .

Proof of Theorem 3.2. Proof of (i). Since End(W ) is a free Z-module of finite rank and τ
is a ring embedding, Oi is also a free Z-module of finite rank that generates the finite-
dimensionalQ-vector space Di . This implies that Oi ⊗Q→ Di is an isomorphism, which
proves (a).

Clearly,
r∑

i=1
ei = 1D , e2

i = ei for every i , and ei e j = 0 if i 6= j .

This implies that

(3.6) τ(Nei )2 = N ·τ(Nei ),
r∑

i=1
τ(Nei ) = N ·1W = NW ,

τ(Nei )τ(Ne j ) = 0W if i 6= j .

Let
i , j ∈ {1, . . . ,r }, wi ∈Wi , w j ∈W j .

Then there exist

w̃i , w̃ j ∈W such that wi = τ(Nei )(w̃i ), w j = τ(Ne j )(w̃ j ).

This implies that

τ(Nei )(wi ) = τ(Nei )2(w̃i ) = Nτ(Nei )(w̃i ) = N wi .
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Furthermore, if i 6= j , then

τ(Nei )(w j ) = τ(Nei )τ(Ne j )(w̃ j ) = 0 ∈W

in light of (3.6). This proves (b).
Proof of (ii). Recall that for each w ∈W

τ(Nei )(w) ∈Wi where i ∈ {1, . . . ,r }.

This implies that

S ◦P (w) = S(τ(Ne1)(w),τ(Ne2)(w), . . . ,τ(Ner )(w)) =
r∑

i=1
τ(Nei )(w) =

τ(N ·1D )(w) = τ(N (
r∑

i=1
ei ))w = N w.

This proves that

(3.7) S ◦P = NW .

Furthermore, let wi ∈Wi for every i ∈ {1, . . . ,r }. Thanks to (3.6),

P ◦S(w1, w2, . . . , wr ) = P

(
r∑

i=1
wi

)
=(

r∑
i=1

τ(Ne1)(wi ),
r∑

i=1
τ(Ne2)(wi ), . . . ,

r∑
i=1

τ(Ner )(wi )

)
=

(τ(Nu1)(w1),τ(Nu2)(w2), . . . ,τ(Nur )(wr )) =
(N w1, N w2, . . . , N wr ) = N · (w1, w2, . . . , wr ).

This proves that

(3.8) P ◦S = NW̃ .

Combining (3.7) and (3.8), we obtain that both S and P are isogenies. This proves (ii).
Proof of (iii). Let ui ∈Oi ⊂ Di . Then

ui = ei ui = ei ui ei .

This implies that
τ(Nui ) = Nτ(ui ) = τ(Nei )τ(ui ) ∈ End(W )

and therefore
τ(Nui )(W ) = τ(Nei )τ(ui )(W ) ⊂ τ(Nei )(W ) =Wi ,

i.e.,
Nτ(ui )(W ) ⊂Wi .

Clearly, τ(ui )(W ) is an abelian subvariety of W and therefore coincides with Nτ(ui )(W ).
This implies that

τ(ui )(W ) = Nτ(ui )(W ) ⊂Wi .

In particular,
τ(ui )(W ) ⊂Wi for every i .

Furthermore, if i 6= j , then

0 = ui e j ,0W = τ(Nui e j ) = τ(ui )τ(Ne j )

and therefore
τ(Nui )(W j ) = {0}.

Again, τ(ui )(W j ) is an abelian subvariety of W and therefore coincides with

Nτ(ui )(W j ) = τ(Nui )(W j ) = {0}.
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Hence, τ(ui )(W j ) = {0}. This ends the proof of (3.5) and (iii).
Proof of (iv). Now (3.5) allows us to define the ring homomorphisms

τi : Oi → End(Wi ), ui 7→ {wi 7→ τ(ui )(wi ) ∈Wi for any wi ∈Wi } for any ui ∈Oi .

It follows from the previously proved property (i) that τi extend toQ-algebra homomor-
phisms

Di =Oi ⊗Q→ End(Wi )⊗Q= End0(Wi ),

which we continue to denote by τi . Also, it follows from (i) that τi (Nei ) = NWi and
therefore

τi (ei ) = 1

N
τi (Nei ) = 1

N
NWi = 1Wi .

This proves (c). Property (d) follows from the very definition of τi . Let us prove that

τi : Di → End0(Wi )

is an embedding. Suppose that ui ∈ Di satisfies τi (ui ) = 0. Replacing ui by mui for
sufficiently divisible positive integer m, we may and will assume that ui ∈Oi . Then

{0} = τi (ui )(Wi ) = τ(ui )(Wi ).

Furthermore, if i 6= j , then τ(ui )(W j ) = 0. It follows that τ(ui ) annihilates

Wi +
∑
j 6=i

W j =
r∑

j=1
W j =W,

because the isogeny S is surjective. This implies that τ(ui ) = 0W . Since τ is injective,
ui = 0, i.e., τi is an embedding.

Let us prove (e). Replacing

u = (u1, . . . ,ui , . . . ,ur ) =
r∑

i=1
ui ∈

r⊕
i=1

Di = D

by mu = (mu1, . . .mui , . . . ,mur ) for sufficiently divisible positive integer m, we may and
will assume that all ui ∈ Oi . Let us check that in Hom(

∏r
i=1 Wi ,W ) = Hom(W̃ ,W ) we

have

(3.9) S ◦ (τ1(u1), . . .τi (ui ), . . .τr (ur )) = τ(u)◦S.

So, let (w1, . . . wi , . . . , wr ) ∈∏r
i=1 Wi . Then

(τ1(u1), . . .τi (ui ), . . . ,τr (ur ))(w1, . . . wi , . . . , wr ) =

(τ1(u1)(w1), . . .τi (ui )(wi ), . . . ,τr (ur )(wr )) ∈
r∏

i=1
Wi ,

S ◦ ((τ1(u1), . . . ,τi (ui ), . . . ,τr (ur ))(w1, . . . wi , . . . wr )) =

S (τ(u1)(w1), . . . ,τ(ui )(wi ), . . . ,τ(ur )(wr )) =
r∑

i=1
τ(ui )(wi ).

Furthermore, S(w1, . . . , wi , . . . , wr ) =∑r
i=1 wi ; in addition, thanks to (iii),

τ(ui )(w j ) = 0 if i 6= j .

This implies that

τ(u)◦S(w1, . . . , wi , . . . , wr ) = τ(u)

(
r∑

i=1
wi

)
=

(
r∑

i=1
τ(ui )

)(
r∑

j=1
w j

)
=

r∑
i=1

τ(ui )(wi ) = S ◦ (τ1(u1)(w1), . . . ,τi (ui )(wi ), . . . ,τr (ur )(wr )) .
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This proves (3.9). Multiplying both sides of (3.9) by S−1 from the right, we get the desired
equality

S ◦ (τ1(u1), . . .τi (ui ), . . . ,τr (ur ))◦S−1 = τ(u)

in End0(W ). �

Proof of Theorem 2.2. We write ei j ∈ Matm(E) for the matrix, whose only nonzero entry
is 1 at the intersection of i th row and j th column, i , j ∈ {1, . . . ,m}. We have

e2
i i = ei i ,

m∑
i=1

ei i = Idm , ei i e j j = 0 if i 6= j .

In addition, if i 6= j , then the monomial matrix

si j = s j i ∈ GL(m,Q) ⊂ Matm(E)

attached to the transposition (i j ) satisfies

si j = Idm − (ei i +e j j )+ (ei j +e j i ) ∈ GL(m,Q), s2
i j = Idm ,

(3.10) si j ei i s−1
i j = e j j .

There is a positive integer N such that

N κ̃(ei j ) ∈ End(Z ) for all i , j = 1, . . .m.

Let us consider the nonzero abelian subvarieties

Zi := κ̃(Nei i )(Z ) ⊂ Z .

It follows from (3.10) combined with Lemma 3.1 that there are isogenies of abelian vari-
eties

Pi j := κ̃(N si j )
∣∣

Zi
: Zi → Z j , zi 7→ κ̃(N si j )(zi ),

Since
s2

i j = Idm , κ̃(si j )2 = 1Z ,

we get
P j i ◦Pi j = N 2

Zi
.

They give rise to the product-isogenies

P :=
m∏

i=1
P1i : Z m

1 →
m∏

i=1
Zi , µ :=

m∏
i=1

Pi 1 :
m∏

i=1
Zi → Z m

1

such that

µ◦P = N 2
Z m

1
, P◦µ= N 2

Z̃
where Z̃ :=

m∏
i=1

Zi .

Applying Theorem 3.2 to the subalgebra of diagonal matrices

D =
m⊕

i=1
E ·ei i ⊂ Matm(E),

r = m, Di = E ·ei i , ei := ei i

and
W := Z , τ : D ,→ End0(Z ), u 7→ κ̃(u),

we obtain that the morphism of abelian varieties

(3.11) S : Z̃ =
m∏

i=1
Zi → Z , {zi }m

i=1 7→
r∑

i=1
zi

is an isogeny. In addition, we get theQ-algebra embeddings

τi : E ·ei i = Di ,→ End0(Zi )
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that send ei i to 1Zi and such that for every collection ui ∈ Di (1 ≤ i ≤ m)

m∑
i=1

τi (ui ) ∈
m⊕

i=1
End0(Zi ) ⊂ End0

(
m∏

i=1
Zi

)
= End0(Z̃ ),

S ◦
(

m∑
i=1

τi (ui )

)
◦S−1 = κ̃

(
m∑

i=1
ui

)
∈ End0(Z ).

This implies that

S−1 ◦ κ̃
(

m∑
i=1

ui

)
◦S =

m∑
i=1

τi (ui ) ∈
m⊕

i=1
End0(Zi ) ⊂ End0

(
m∏

i=1
Zi

)
.

In particular, for each j ∈ {1, . . . ,m}

S−1 ◦ κ̃(e j j )◦S = τ j (e j j ) = 1Z j ∈ End0(Z j ) ⊂
m⊕

i=1
End0(Zi ) ⊂ End0

(
m∏

i=1
Zi

)
.

Let us write

X := Z1, ψ := P◦S : X m = Z m
1 →

m∏
i=1

Zi → Z .

In order to define κ, let us consider

O := {u ∈ E | κ̃(u) ∈ End(Z )}.

Clearly, O is an order in E and the naturalQ-algebra homomorphism

O ⊗Q→ E , u ⊗a 7→ au

is an isomorphism. In addition, for each nonzero u ∈O the selfmap of Z

κ̃(u) : Z → Z

is an isogeny. Since E is the center of Matm(E), every u ∈ O commutes with all ei j and
si j . In particular, for all u ∈O

κ̃(u)(Zi ) = κ̃(u)κ̃(Nei i )(Z ) = κ̃(uNei i )(Z ) = κ̃(Nei i u)(Z ) ⊂ κ̃(Nei i )(Z ) = Zi

and the diagrams

(3.12)

Z1
τ1(u)−−−−−→ Z1

P1i

y P1i

y
Zi

τi (u)−−−−−→ Zi

,

Zi
τi (u)−−−−−→ Zi

Pi 1

y Pi 1

y
Z1

τ1(u)−−−−−→ Z1

are commutative. This gives rise to the ring homomorphisms

τi : O → End(Zi ), u 7→ {zi 7→ κ̃(u)(zi ) for all zi ∈ Zi } for all u ∈O,

which are obviously injective, and extend them by Q-linearity to the injective Q-algebra
homomorphisms E → End0(Zi ), which we continue to denote by τi . Let us write

κ := τ1 : E ,→ End0(X = Z1).

�
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4. Linear Algebra

Definition 4.1. Let k be a field and C be a finite-dimensional k-algebra with identity
element 1C . We say that C is splittable over k if it is isomorphic to a direct sum of matrix
algebras over fields that are finite algebraic separable extensions of k.

Examples 4.2. (i) If C is a field that is a finite algebraic separable extension of k,
then it is splittable over k.

(ii) If C1 and C2 are splittable over k, then their direct sum C1
⊕

C2 is also splittable
over k.

(iii) If C is splittable over k, then for all positive integers d the matrix algebra Matd (C )
is also splittable over k.

(iv) Let L/k be a finite algebraic separable field extension of k. If C is splittable over
k then

CL =C ⊗k L

is splittable over k and over L.
(v) Suppose that E is an overfield of k and C is a finite-dimensional splittable E-

algebra. If E/k is a finite separable field extension, then C is splittable over k as
well.

Clearly, Theorem 2.4 is a special case of the following assertion.

Theorem 4.3. Let k be a field of characteristic zero, A a nonzero semisimple finite-dimensional
k-algebra with identity element 1A , and f an element of A . Then there exists a k-subalgebra
C of A that contains 1A and f , and is splittable over k.

We will need the following lemma that will be proven at the end of this section.

Lemma 4.4. Let A be a nonzero finite-dimensional algebra over a field k with iden-
tity element 1A . Let V be a nonzero finite-dimensional k-vector space that is a faithful
semisimple A -module. Assume additionally that every simple A -submodule M of V is
absolutely simple, i.e., the centralizer EndA (M) of A in Endk (M) coincides with k · 1M

where 1M : M → M is the identity map.
Then A is isomorphic to a direct sum of matrix algebras over k.

Proof of Theorem 4.3. Induction by dimk (A ).
Step 0. If dimk (A ) = 1, then A = k ·1A

∼= k is obviously splittable over k.
Now assume that d := dimk (A ) > 1 and the assertion of Theorem 4.3 holds true for

all semisimple algebras of dimension < d over any field of characteristic 0.
Step 1. Suppose that the k-algebra A is not simple, i.e., it splits into a direct sum

A =A1
⊕

A2

of two nonzero semisimple k-algebras A1 and A2. Clearly, both dimk (A1) and dimk (A2)
are strictly less than d . There are elements

f1 ∈A1, f2 ∈A2

such that f = f1 + f2. Applying the induction assumption to both (A1, f1) and (A2, f2),
we obtain that there are splittable over k subalgebras

C1 ⊂A1, C2 ⊂A2

such that
1A1 , f1 ∈C1, 1A2 , f2 ∈C2.

Now the direct sum
C =C1

⊕
C2 ⊂A1

⊕
A2 =A
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is splittable over k and contains 1A1 +1A2 = 1A and f1 + f2 = f .
So, in the course of the proof, we may and will assume that A is a simple k-algebra.
Step 2. Let E be the center of the simple k-algebra A . Then E is a field that is a

finite algebraic extension of k. Clearly, A carries the natural structure of central simple
E-algebra. If E 6= k, then

dimE (A ) < dimk (A )

and the induction assumption implies that there is a splittable over E subalgebra C ⊂A

that contains both 1A and f . Since E/k is finite algebraic, C is splittable over k as well.
So, in the course of the proof, we may and will assume that E = k, i.e., A is a central

simple k-algebra.
Step 3. So, A is a central simple k-algebra of finite k-dimension d > 1. Recall that

d = m2 where m > 1 is an integer. Then A carries the natural structure of an m2-
dimensional k-Lie algebra with brackets

[u, v] := uv − vu for u, v ∈A .

The center of the k-Lie algebra A coincides with k · 1A . Let us consider the k-linear
reduced trace map (see [7])

trA : A → k.

Recall (see [7]) that

trA (uv) = trA (vu) for u, v ∈A ; trA (α) = mα for α ∈ k = k ·1A .

This implies that
trA ([u, v]) = trA (uv)− trA (vu) = 0,

and therefore one may view trA as a homomorphism of k-Lie algebras (here k is viewed
as the Lie algebra with zero brackets operation). It follows that the k-Lie algebra A splits
into a direct sum

A = k ·1A

⊕
sl(A )

of its center k ·1A and the nonzero (m2−1)-dimensional k-Lie algebra sl(A ) := ker(trA );
in addition, sl(A ) contains the derived k-Lie subalgebra [A ,A ] of A . It is known that
[A ,A ] is an absolutely simple k-Lie algebra of type Am−1 over k, (see [4, Ch. X, Sect. 3]).
This implies that

dimk ([A ,A ]) = m2 −1 = dimk (sl(A )).

Since [A ,A ] ⊂ sl(A ), we have [A ,A ] = sl(A ), and therefore

A = k ·1A

⊕
sl(A ) = k ·1A

⊕
[A ,A ]

is a reductive k-Lie algebra, whose center is k ·1A and the semisimple part is sl(A ).
Since char(k) = 0,

trA (1) = m 6= 0 in k.

Replacing f by f − trA ( f )
m 1A , we may and will assume that f lies in the (semi)simple Lie

algebra sl(A ).
Step 4. Since f is an element of the semisimple k-Lie algebra sl(A ), it can be pre-

sented as the sum
f = fs + fn

of commuting semisimple fs and nilpotent fn , (see [1, Sect. 6, n 3, Th. 3]). Let us
consider the natural faithful representation of sl(A ) in the finite-dimensional k-vector
space A

sl(A ) → Endk (A ), u 7→ {z 7→ uz} for all z ∈A and for all u ∈ sl(A ).

Then fs ∈ sl(A ) acts on A as a semisimple operator with zero trace and fn ∈ sl(A ) acts
on A as a nilpotent operator.
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Step 5. Suppose that fs 6= 0. Then the subalgebra k[ fs ] of A generated by fs and 1A is
a semisimple commutative k-subalgebra that contains k ·1A as a proper k-subalgebra.
The centralizer Z fs of semisimple k[ fs ] in semisimple A is a semisimple k-subalgebra
([3, Th. 4.3.2], [10, Th. 4.1]) that contains both fs and fn and therefore contains fs + fn =
f . Clearly, Z fs does not coincide with the whole A , since fs does not belong to the
center k ·1A . This implies that

dimk (Z fs ) < dimk (A ) = d .

The induction assumption applied to Z fs proves the desired assertion. So, we may and
will assume that fs = 0, i.e., f = fn is a nonzero nilpotent element.

Step 6. So, f is a nonzero nilpotent element. By Jacobson-Morozov theorem [2, Ch.
8, Sect. 11, Prop. 2], there is a Lie k-subalgebra g of sl(A ) that contains f and is isomor-
phic to sl(2,k). Let C ⊂A be the associative k-subalgebra of A generated by g and 1A .
Clearly,

f ∈ g⊂C ⊂A .

Let us consider the natural faithful action of C on the k-vector space V := A induced
by multiplication in A . Clearly, a k-vector subspace W of V is a C -submodule (resp. a
simple C -submodule) if and only if it is a g-submodule (resp. a simple g-submodule).
In addition, if W is a C -submodule, then the centralizer

EndC (W ) = Endg(W ).

Recall [2, Ch. VII, Sect. 1, Prop. 3 and Th. 1] that every sl(2,k)-module of finite k-
dimension is semisimple; in addition, if W is a simple sl(2,k)-module of finite k-dimen-
sion, then it is absolutely simple, ibid. This implies that V is a semisimple C -module and
all of its simple submodules are absolutely simple. It follows from Lemma 4.4 that C is
a direct sum of matrix algebras over k and therefore is splittable. This ends the proof of
Theorem 4.3. �

Proof of Lemma 4.4. We may and will identify A with its isomorphic image in Endk (V ).
The semisimplicity and faithfullness of V combined with [5, Ch. XVII, Sect. 4, Prop. 4.7]
imply that A is a finite-dimensional semisimple k-algebra. Let us consider the central-
izer

B := EndA (V ) ⊂ Endk (V )

of A in Endk (V ). The semisimplicity of V and absolute simplicity of all its simple A -
submodules combined with [5, Ch. XVII, Sect. 1, Prop. 1.2] imply that there are a positive
integer s and s positive integers d1, . . . ,ds such that the k-algebra

B ∼=
s⊕

i=1
Matdi (k).

In particular, B is semisimple and therefore the faithful B-module V is semisimple. Let

pi :
s⊕

i=1
Matdi (k)�Matdi (k)

be the (surjective) projection map to the i th summand. Recall that the coordinate k-
vector space kdi endowed with the natural action of Matdi (k) is the only (up to an iso-
morphism) simple Matdi (k)-module and this module is absolutely simple. Using pi ,
one may endow kdi with the natural structure of

⊕s
i=1 Matdi (k)-module and this mod-

ule, which we denote by Mi , is an absolutely simple
⊕s

i=1 Matdi (k)-module. Clearly,
every simple

⊕s
i=1 Matdi (k)-module is isomorphic to one of Mi ; in particular, each sim-

ple
⊕s

i=1 Matdi (k)-module is absolutely simple. This means that each simple B-module
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is absolutely simple. Recall that the B-module V is semisimple and therefore is isomor-
phic to a direct sum of simple B-modules, each of which is absolutely simple. It follows
from [5, Ch. XVII, Sect. 1, Prop. 1.2] that the centralizer EndB(V ) of B in Endk (V ) is
isomorphic to a direct sum of matrix algebras over k. By Jacobson’s density theorem [5,
Ch. XVII, Sect. 3, Th. 3.2], our A coincides with EndB(V ) and therefore is isomorphic to
a direct sum of matrix algebras over k. This ends the proof.

�
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