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Abstract. The theory of small cancellation groups is well known. In
this paper we study the notion of the Group-like Small Cancellation
Ring. We define this ring axiomatically, by generators and defining re-
lations. The relations must satisfy three types of axioms. The major
one among them is called the Small Cancellation Axiom. We show that
the obtained ring is non-trivial and enjoys a global filtration that agrees
with relations, find a basis of the ring as a vector space and establish the
corresponding structure theorems. It turns out that the defined ring
possesses a kind of Gröbner basis and a greedy algorithm. Finally, this
ring can be used as a first step towards the iterated small cancellation
theory, which hopefully plays a similar role in constructing examples
of rings with exotic properties as small cancellation groups do in group
theory.

1. Introduction

The Small Cancellation Theory for groups is well known (see [13]). The similar theory
exists also for semigroups and monoids (see [10, 9, 22]). However, the construction of
such a theory for systems with two operations faces severe difficulties.

In the present paper we develop a small cancellation theory for associative algebras
with a basis of invertible elements. In fact, in the course of studying the question:

“What is a small cancellation associative ring?"

we axiomatically define a ring that can reasonably be called a ring with small cancella-
tion properties and conditions. We also determine the structure and properties of this
ring.

1.1. Motivation, objectives, results. The motivation for developing a ring-theoretical
analogue of small cancellation comes from the fact that small cancellation for groups
and, especially, its more far-reaching versions, provide a very powerful technique for
constructing groups with unusual, and even exotic, properties, like for example, infinite
Burnside groups [15, 16, 17, 1, 19, 11, 14], Tarski monster [18], finitely generated infinite
divisible groups [8], and many others, see, e.g., [20].

On the other hand, there is a conceptual desire to understand what negative curva-
ture could mean for ring theory.

For any group with fixed system of generators, its Cayley graph can be considered
as a metric space. This leads to Gromov’s program “Groups as geometric objects" [6],
see also [7]. In particular, a finitely generated group is word-hyperbolic when its Cayley
graph is δ-hyperbolic for δ> 0 (see [4, 5] for modern exposition and references).
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So far, we do not know a way to associate a geometric object to a ring. Thus, having in
mind the negative curvature as a heuristic and indirect hint for our considerations, we,
nevertheless, follow a more accessible combinatorial line of studying rings. Therefore,
small cancellation groups appear naturally at the stage.

Finitely generated small cancellation groups turned out to be word hyperbolic (when
every relation needs at least 7 pieces). So, if we could generalize small cancellation to
the ring-theoretic situation, it would provide examples to the yet undefined concept of a
ring with a negative curvature. Another source of potential examples are group algebras
of hyperbolic groups.

Following this reasoning, we introduce the three types of axioms for rings called Com-
patibility Axiom, Small Cancellation Axiom, and Isolation Axiom. We study rings A with
the basis of invertible elements that satisfy these axioms with respect to a fixed natural
constant τ> 10. We show the following:

• Such rings A are non-trivial;
• Such rings A enjoy a global filtration that agrees with the relations;
• An explicit basis of A as a linear space is constructed and the corresponding

structure theorems are proved;
• These rings possess algorithmic properties similar to the ones valid for groups

with small cancellation. In particular they have solvable equality problem and
enjoy a greedy algorithm;

• These rings also possess a Gröbner basis with respect to some sophisticated lin-
ear order on monomials.

The list of facts above can be viewed as a major result of the paper. In what follows
we describe and illuminate all these items. The detailed exposition of these results is
contained in the paper [3]. Note that the axiomatic theory presented in this paper is
modeled after a particular case we have treated in [2].

1.2. Small cancellation groups, background. Consider a group presentation G = 〈X |
R〉 where we assume that the set of relations R is closed under cyclic permutations and
inverses and that all elements of R are cyclically reduced. The interaction between the
defining relations is described in terms of small pieces. A word s is called a small piece
with respect to R (in generalized group sense, see [21, 13]) if there are relations of the
form sr1 and sr2 in R such that r1r−1

2 6= 1 and r1r−1
2 is not conjugate to a relator from R

in the corresponding free group, even after possible cancellations.

Remark 1.1. The geometric way to think about small pieces is seeing them as words that
may appear on the common boundary between two cells in the van Kampen diagram [20,
13]. In particular, if r1r−1

2 ∈ R, then we can substitute these cells by a simple cell, so we
are entitled to assume from the beginning that r1r−1

2 ∉R.

The small cancellation condition says that any relation in R cannot be written as a
product of too few small pieces. For most purposes seven small pieces suffice since the
discrete Euler characteristic per cell becomes negative [13, 12].

To ensure this, we can assume that the length of any small piece is less than one sixth
of the length of the relation in which it appears. The Main Theorem of Small Cancella-
tion Theory can be stated as follows.

Let w1, w2 be two words that do not contain occurrences of more than a half of a rela-
tion from R. They represent the same element of G if and only if they can be connected
by a one-layer diagram ([13], especially see Greendlinger’s Lemma). The transition from
w1 to w2 can be divided into a sequence of elementary steps called turns [15, 16, 17].
Each turn reverses just one cell.
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2. Small cancellation axioms for the ring case

First of all, given a field k and the free group F , denote by kF the corresponding
group algebra. Elements of F and kF are called monomials or words and polynomials,
respectively. Let a set of polynomials R from kF be fixed. Define I to be the ideal
generated by the elements of R.

Let the free group F be freely generated by an alphabet S. Assume

R =
{

pi =
n(i )∑
j=1

αi j mi j

∣∣∣∣∣αi j ∈ k,mi j ∈F , i ∈ I

}
is a (finite or infinite) set of polynomials that generates the ideal I (as an ideal). We
denote this way of generating by 〈 | 〉i . So,

I = 〈R〉i =
〈

pi =
n(i )∑
j=1

αi j mi j

∣∣∣∣∣αi j ∈ k,mi j ∈F , i ∈ I

〉
i

.

We assume that the monomials mi j are reduced, the polynomials pi are additively re-
duced, I is some index set. In particular, we assume that all coefficientsαi j are non-zero.
Denote the set of all monomials mi j of R by M . Throughout the paper we reserve small
Greek letters for non-zero elements of the field k.

Condition 1 (Compatibility Axiom). The axiom consists of the following two conditions.

(1) If p =
n∑

j=1
α j m j ∈R, then βp =

n∑
j=1

βα j m j ∈R for every β ∈ k,β 6= 0.

(2) Let x ∈ S∪S−1 where S is an alphabet which freely generates F , p =
n∑

j=1
α j m j ∈R.

Suppose there exists j0 ∈ {1, . . . ,n} such that x−1 is the initial symbol of m j0 . Then

xp =
n∑

j=1
α j xm j ∈R

(after the cancellations in the monomials xm j ).

We require the same condition from the right side as well.

From the second condition of Compatibility Axiom it immediately follows that the set
M is closed under taking subwords. In particular, the empty word always belongs to M .

Now we state a definition of a small piece with respect to R in the algebra kF . The
definition of a small piece given in (see [13]) can be viewed as follows. A word is called
a small piece if it occurs in two different relations which are not a cyclic shift of each
other or in one relation in two essentially different places. The later means that the
occurrences of this subword are not obtained by a shift of a period of the corresponding
relation. A straightforward way to generalize this for the ring case is to say that if c ∈ F

and we have two different polynomials p =∑n1
j=1α j a j +αc and q =∑n2

j=1βa j +βc, then c

is a small piece. However, it turns out that the this way does not work for our needs (see
Section 5 with examples). So, we need a special intuition in order to see what “essentially
different places in relations” means for rings. This is reflected in our Definition 2.1 of a
small piece. This definition plays a central role in the further argument.

Definition 2.1. Let c ∈M . Assume there exist two polynomials

p =
n1∑
j=1

α j a j +αa ∈R, q =
n2∑
j=1

β j b j +βb ∈R,
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such that c is a subword of a and a subword of b. Namely,

a = â1câ2, b = b̂1cb̂2,

where â1, â2, b̂1, b̂2 are allowed to be empty. Assume that

b̂1â−1
1 p = b̂1â−1

1

(
n1∑
j=1

α j a j +αâ1câ2

)
=

n1∑
j=1

α j b̂1â−1
1 a j +αb̂1câ2 ∉R

(even after the cancellations), or

pâ−1
2 b̂2 =

(
n1∑
j=1

α j a j +αâ1câ2

)
â−1

2 b̂2 =
n1∑
j=1

α j a j â−1
2 b̂2 +αâ1cb̂2 ∉R

(even after the cancellations). Then the monomial c is called a small piece.

We denote the set of all small pieces by S . Clearly, S ⊆ M . From the definition it
follows that the set S is closed under taking subwords. In particular, if the set S is non-
empty, the empty word is always a small piece. If the set S is turned out to be empty,
then we still assume that the empty word is a small piece.

Let u ∈M . Then either u = p1 · · ·pk , where p1, . . . , pk are small pieces, or u cannot be
represented as a product of small pieces. We introduce a measure on monomials of M

(akaΛ-measure). We say thatΛ(u) = k if u can be represented as a product of small pieces
and minimal possible number of small pieces in such representation is equal to k. We say
thatΛ(u) =∞ if u can not be represented as a product of small pieces.

We fix a constant τ ∈N, τ> 10.

Condition 2 (Small Cancellation Axiom). Assume p1, . . . , pn ∈ R and a linear combina-
tion

∑n
s=1γs ps is non-zero after additive cancellations. Then there exists a monomial a in∑n

s=1γs ps with a non-zero coefficient after additive cancellations such that either a can
not be represented as a product of small pieces or every representation of a as a product of
small pieces contains at least τ+1 small pieces. That is,Λ(a)> τ+1, includingΛ(a) =∞.

Definition 2.2. Let p = ∑n
j=1α j a j ∈ R. Then we call the monomials a j1 , a j2 , 1 6 j1,

j26 n, incident monomials (including the case a j1 = a j2 ). Recall that α j 6= 0, j = 1, . . . ,n.

Now we introduce the last condition; we call it Isolation Axiom. Unlike the two previ-
ous axioms this is entirely a ring-theoretic condition. Here we use the notions of maxi-
mal occurrence of a monomial of M and of overlap.

Let U be a word and Û be its subword. We call the triple that consists of U , Û and the
position of Û in U an occurrence of Û in U . In fact, we consider occurrences of the form
a ∈M in U , that is, U = LaR, where L, R can be empty. Since a ∈M , there exists a poly-
nomial p ∈ R such that a is a monomial of p. An overlap is defined as a common part
of two occurrences. Under maximal occurrence we mean an occurrence of a monomial
of M which is not contained in a bigger such occurrence. We shall underline that the a
common part of two maximal occurrences is a small piece.

The complexity of formulation of Isolation Axiom may perflex the reader. This ax-
iom works in the transition from monomials to tensor products and, thus, to structure
theory of rings with small cancellation. It imposes essential constraints on rings under
consideration. That is why we have chosen its weakest form to make the corresponding
class of rings wider. This resulted in a somewhat cumbersome definition.

Condition 3 (Isolation Axiom, left-sided). Let m1,m2, . . . ,mk be a sequence of monomials
of M such that m1 6= mk and mi ,mi+1 are incident monomials for all i = 1, . . . ,k − 1,
and Λ(mi )> τ−2 for all i = 1, . . . ,k. Let us take a monomial a ∈ M with the following
properties.
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1. Λ(a)> τ−2;
2. am1, amk ∉M , am1 has no cancellations, amk has no cancellations;
3. m1 is a maximal occurrence in am1, mk is a maximal occurrence in amk .
4. Let ap1(a) be a maximal occurrence in am1 that contains a, let apk (a) be a max-

imal occurrence in amk that contains a (that is, p1(a) is the overlap of ap1(a)
and m1, p1(a) may be empty, and pk (a) is the overlap of apk (a) and mk , pk (a)
may be empty). Assume that there exist monomials l , l ′ ∈M such that

• l , l ′ are small pieces;
• l a, l ′a ∈M , l a has no cancellations, l ′a has no cancellations;
• there exists a sequence of monomials b1, . . . ,bn from M such that b1 = l ap1(a),

bn = l ′apk (a), bi ,bi+1 are incident monomials for all i = 1, . . . ,n − 1, and
Λ(bi )> τ−2 for all i = 1, . . . ,n.

m1

p1(a)

l
a

mk

pk (a)

l ′
a

Notice that since a is not a small piece, then we get that l ap1(a), l ′apk (a) ∈ M , and
l ap1(a) is a maximal occurrence in l ap1(a)m1, l ′apk (a) is a maximal occurrence in
l ′apk (a)mk .

Then we require that p1(a)−1 ·m1 6= pk (a)−1 ·mk for every such a ∈M .

The right-sided Isolation Axiom is formulated symmetrically.
Let us notice that in the examples that we consider (see Section 5 and [2]) we have

special properties of the list of defining relations R that help us to check Isolation Ax-
iom. In particular, in these cases it is enough to check Isolation Axiom for sequences of
monomials m1, . . . ,mk of length k = 2 and this yields Isolation Axiom for sequences of
monomials of arbitrary length.

Definition 2.3. We say that A = kF/I (R) is C (τ)-small cancellation ring if it satisfies
Compatibility Axiom, Small Cancellation Axiom (with respect to τ+1 small pieces) and
at least one of Isolation Axioms.

In the further argument we assume that τ > 10 (recall that in a small cancellation
group we require that every relator is a product of not less than 7 small pieces, see [13]).

3. How we study the structure of small cancellation rings

3.1. Towards a filtration on kF : multi-turns, replacements, virtual members of the
chart and numerical characteristics of monomials. For the remainder we will study
the ring A = kF/I , with R subject to three small cancellation conditions.

Now we indicate a ring-theoretic counterpart of the notion of turn.

Definition 3.1. Let U be a monomial. We define the chart of U as the set of all maximal
occurrences of monomials of M in U and call them elements of the chart. The elements
of the chart mi ∈M such thatΛ(mi )> τ are called members of the chart.

So, we distinguish between elements and members of the chart. Namely, we count
as members of the chart only big enough occurrences of monomials from M . Now we
define a multi-turn that is a ring-theoretic analogue of a group turn.
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In the case of groups we have the following situation. Let G be a small cancellation
group, Ri = M1M−1

2 be a relator of its small cancellation presentation. Assume LM1R
and LM2R are two words, then the transition from LM1R to LM2R

L

M2

M1

R

is called a turn of an occurrence of the subrelation M1 (to its complement M2). Analo-
gously, in our case we define a multi-turn.

Definition 3.2. Let p =∑n
j=1α j a j ∈R. For every h = 1, . . . ,n we call the transition

ah 7−→
n∑

j=1, j 6=h
(−α−1

h α j a j ),

an elementary multi-turn of ah with respect to p.
Let p =∑n

j=1α j a j ∈R. Let ah be a maximal occurrence in U , U = LahR. The transfor-
mation

U = LahR 7−→
n∑

j=0, j 6=h
(−α−1

h α j La j R)

with the further cancellations if there are any, is called a multi-turn of the occurrence ah

in U that comes from an elementary multi-turn ah 7→∑n
j=1, j 6=h(−α−1

h α j a j ). Obviously,

U −
n∑

j=0, j 6=h
(−α−1

h α j La j R) =α−1
h LpR ∈I .

In this case the polynomial LpR =∑n
j=1α j La j R (after the cancellations) is called a layout

of the multi-turn.

In what follows we undertake a very detailed study of the influence of multi-turns on
charts of the monomials. We will trace transformation of a chart under the given multi-
turn or set of multi-turns. We also take care of transformations of individual monomials
Uh = LahR 7→U j = La j R called replacements.

Applying the multi-turns of ah in Uh = LahR we arrive at monomials U j = La j R. We
describe precisely how the corresponding maximal occurrences in U j look compared to
maximal occurrences in Uh .

We consider three variants for the resulting monomial U j = La j R: a j is not a small
piece; a j is a small piece; a j is 1. We show that in the first case the structure of the
chart remains almost stable after a multi-turn, in the second case the replacement ah

by a j can cause merging and restructuring of the chart, and in the third case strong
cancellations resulting in complete modification of the chart are possible.

We produce the full list of all appearing arrangements of maximal occurrences. The
calculations are based on thorough analysis of all combinatorial possibilities. This list
is in fact a theorem that provides ground to further considerations towards a filtration
on kF .

Our goal is constructing a special ordering on monomials. This ordering is far from be-
ing usual Deg Lex-order. In more precise terms our objective is to build numerical char-
acteristic of a chart that allows to define a filtration on monomials which behaves well
with respect to replacements of the monomials caused by multi-turns.

On the way we have to treat several caveats. When we define members of a chart in
the terms of their Λ-measure, such definition is not stable enough under multi-turns.
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So, we define a quite delicate notion of a virtual member of a chart. Virtual members
of the chart of a monomial U are those maximal occurrences b which originally are not
necessarily members of the chart but they are rather big withΛ(b)> τ−2, and after a se-
ries of admissible replacements of maximal occurrences by incident monomials become
members of the chart (for precise definitions see [3], Definition 6.2 of an admissible re-
placement and Definition 6.5 of a virtual member of the chart).

Definitions of admissible replacements and virtual members of the chart takes much
of preparatory work. So, in order to give the reader a conceptual understanding of these
notions we prefer to give here a number of illustrative examples instead of precise defi-
nitions.

First of all we give an example which illuminates the notion of an admissible replace-
ment. Let Uh be a monomial, ah be a maximal occurrence in Uh , Uh = LahR, and ah

and a j be incident monomials. We consider the replacement of ah to a j in Uh . Then
the resulting monomial is La j R. The important particular case of an admissible re-
placement in Uh that illustrates the whole idea is the replacement of ah by a j such that
Λ(ah)> τ−2 and Λ(a j )> 3 (that is, ah and a j are big enough, and a j can be either of
bigger, or smaller, or of the same Λ-measure as ah). Roughly speaking, all admissible
replacements are of such form.

Now we are in a position to illustrate the notion of a virtual member of the chart.
Let a monomial U = LbR be given, where b is a maximal occurrence in U . Assume
Λ(b) = τ− 1, so b is not a member of the chart of U . Let U = LbahR ′ where ah is a
maximal occurrence in U . Assume ah and a j are incident monomials, Λ(ah) > τ− 2,
Λ(a j )> 3. That is, the replacement of ah by a j in U is an admissible replacement. Let
b′ be a maximal occurrence that contains b in the resulting monomial Lba j R ′. It can
happen that b′ prolongs b to the right. Because of our definition of a small piece, b′ can
prolong b to the right only by a small piece. So, it is possible that Λ(b′) = Λ(b)+1 = τ.
Then b′ is a member of the chart of Lba j R ′. In this case b is a virtual member of the
chart of U . Graphically this example looks as follows.

L R ′b ah

L R ′b

b′

a j

The same effect can take place not only locally. Namely, let U = Lba(1)
h a(2)

h . . . a(t )
h R ′,

whereΛ(b) = τ−1,Λ(a(i )
h ) = τ−3 for 16 i 6 t −1 andΛ(a(t )

h )> τ−2. Let a(t )
h and a(t )

j be

incident monomials, andΛ(a(t )
j )> 3. We make the replacement of a(t )

h to a(t )
j in U , let U ′

be the resulting monomial. Assume the maximal occurrence ã(t−1)
h that prolongs a(t−1)

h

in the resulting monomial U ′ = Lba(1)
h a(2)

h . . . a(t )
j R ′ from the right becomes ofΛ-measure

equal to τ−2.

U

L R ′b a(1)
h a(t−1)

h a(t )
h. . .

U ′ L R ′b a(1)
h a(t−1)

h a(t )
j

ã(t−1)
h

â(t )
j

. . .

Assume it is possible to find an admissible replacement of ã(t−1)
h to ã(t−1)

j in U ′ such

that Λ(ã(t−2)
h ) = τ−2, where ã(t−2)

h is the maximal occurrence that prolongs a(t−2)
h in the

resulting monomial of this replacement. Move from right to left closer and closer to b
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keeping doing admissible replacements of such kind. Suppose that as a result of the last
admissible replacement of ã(1)

h to ã(1)
j the maximal occurrence b′ that contains b in the

last resulting monomial is of Λ-measure equal to τ. That is, b′ is a member of the chart
of the last resulting monomial in the sequence. Then b is also a virtual member of the
chart of U .

U

L R ′b a(1)
h a(t )

h. . .

L R ′b

b′

ã(1)
j â(t )

j

. . .

Roughly speaking, all virtual members of the chart of U are defined with the use of
a process similar to the above done either from the right side of b, or from the left side
of b, or both from the left and the right of b.

Let U be a monomial. Consider subsets of M (U ) that cover the same letters in U as
the whole M (U ). A covering of such type consisting of the smallest number of elements
is called a minimal covering. Of course, such covering is not, necessarily, unique.

Given a monomial U , we define MinCov(U ) to be the number of elements in a mini-
mal covering of U . Denote the number of virtual members of the chart of U by NVirt(U ).
It is clear that NVirt(U )6MinCov(U ).

The next proposition aggregates all calculations beforehand.

Proposition 3.3. Assume Uh is a monomial, ah is a virtual member of the chart of Uh .
Let ah and a j be incident monomials. Consider the replacement ah 7→ a j in Uh . Let U j be
the resulting monomial. If a j is a virtual member of the chart of U j , then MinCov(Uh) =
MinCov(U j ) and NVirt(Uh) = NVirt(U j ). If a j is not a virtual member of the chart of U j ,
then either MinCov(U j ) < MinCov(Uh), or MinCov(U j ) = MinCov(Uh) but NVirt(U j ) <
NVirt(Uh).

Definition 3.4. Let U be a monomial. We introduce f -characteristic U by the rule:

f (U ) = (MinCov(U ),NVirt(U ))).

If U1 and U2 are monomials, we say that f (U1) < f (U2) if and only if either MinCov(U1) <
MinCov(U2), or MinCov(U1) =MinCov(U2) but NVirt(U1) <NVirt(U2).

We define derived monomials of U as the result of applying of a sequence of replace-
ments of virtual members of the chart by incident monomials, starting from U .

Lemma 3.5. Assume U and Z are monomials, Z is a derived monomial of U . Then
f (Z )6 f (U ). Moreover, f (Z ) < f (U ) if and only if in the corresponding sequence of re-
placements there exists at least one replacement of the form LahR 7→ La j R such that ah

is a virtual member of the chart of LahR and a j is not a virtual member of the chart of
La j R.

The introduced f -characteristic gives rise to a certain function t on natural numbers
defined as follows. We put t (0) = (0,0). Assume t (n) = (r, s), then we put

t (n +1) =
{

(r, s +1) if r > s,
(r +1, 0) if r = s.

Definition 3.6. We define an increasing filtration on kF by the rule

Fn(kF ) = 〈Z | Z ∈F , f (Z )6 t (n)〉.
That is, the space Fn(kF ) is generated by all monomials with f -characteristics not

greater than t (n).
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3.2. Derived monomials and dependencies. We need a set of new notions. Let U be
a monomial. By 〈U 〉d we denote a linear subspace of Fn(kF ) generated by all derived
monomials of U . By L〈U 〉d we denote the subspace generated by all derived monomi-
als of U with f -characteristic smaller than f (U ). The next principal object is the set of
dependencies, defined as follows. Suppose Y is a subspace of kF linearly generated by
a set of monomials and closed under taking derived monomials. We take the set of all
layouts of multi-turns of virtual members of the chart of monomials of Y and look at
its linear envelope Dp(Y ), which is our set of dependencies related to Y . We prove that
Dp(kF ) =I .

The key statement is the following proposition which describes nice interaction be-
tween dependencies and filtration:

Proposition 3.7. Dp(Fn(kF ))∩Fn−1(kF ) = Dp(Fn−1(kF )).

This proposition yields

Proposition 3.8. Suppose X ,Y are subspaces of kF generated by monomials and closed
under taking derived monomials, Y ⊆ X . Then Dp(X )∩Y = Dp(Y ).

The proof of Proposition 3.7 is based on the following lemma:

Lemma 3.9 (Main Lemma). Let U be an arbitrary monomial, U ∈ Fn(kF ) \ Fn−1(kF ).
Then

Dp〈U 〉d ∩L〈U 〉d ⊆ Dp(Fn−1(kF )).

Here is the place to make some comments. Main Lemma says that there is a natural
interaction between dependencies and reduction of f -characteristic, and this interac-
tion causes descending in the filtration. This yields, in essence, that in the quotient
algebra kF/I there are no unexpected linear dependencies. But, first, one has to explain
what are the expected linear dependencies.

Consider the filtration Fn(kF ), n > 0, on kF defined as above. Let U ∈ Fn(kF ) be a
monomial such that its chart has m virtual members u(i ), U = L(i )u(i )R(i ), i = 1,2, . . . ,m.
For any p ∈ R of the form p = αu(i ) +∑k

j=1α j a j , α 6= 0, we consider the polynomial

L(i )pR(i ) ∈ kF . All such polynomials obviously belong to Fn(kF )∩I and regarded as
expected dependencies. We shall emphasize that in case the relations R do not satisfy
special conditions, the term Fn(kF )∩I may contain also arbitrary unexpected depen-
dencies.

In fact, Proposition 3.8 claims that the opposite is also true. In more detail, Proposi-
tion 3.8 implies that Fn(kF )∩I = Fn(kF )∩Dp(kF ) = Dp(Fn(kF )). That is, Fn(kF )∩I

is linearly generated by expected linear dependencies related to Fn(kF ). This can be re-
stated as follows.

Theorem 3.10. Fn(kF )∩I is linearly spanned by all polynomials of the form L(i )pR(i ),
i = 1, . . . ,m, for all monomials U ∈ Fn(kF ) and polynomials p ∈R as above, n> 0.

3.3. Grading on small cancellation ring. First of all, it can be seen that Dp(kF ) = I .
The quotient space kF/I naturally inherits the filtration from kF , namely,

Fn(kF/I ) = (Fn(kF )+Dp(kF ))/Dp(kF ) = (Fn(kF )+I )/I .

We define a grading on kF/I by the rule:

Gr(kF/I ) =
∞⊕

n=0
Grn(kF/I ) =

∞⊕
n=0

Fn(kF/I )/Fn−1(kF/I ).

The next theorem establishes the compatibility of the filtration and the corresponding
grading on kF with the space of dependencies Dp(kF ).

Theorem 3.11. Grn(kF/I ) ∼= Fn(kF )/(Dp(Fn(kF ))+Fn−1(kF )).
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3.4. Non-triviality of kF /I . Construction of a basis of kF /I .

Lemma 3.12. Let {Vi }i∈I be all different spaces {〈Z 〉d | Z ∈ F }. Then not all spaces
Vi /(Dp(Vi )+L(Vi )), i ∈ I , are trivial. Namely, the space 〈X 〉d /(Dp〈X 〉d +L〈X 〉d ), where X
is a monomial with no virtual members of the chart, is always non-trivial, and of dimen-
sion 1. In particular, 〈1〉d /(Dp〈1〉d +L〈1〉d ) 6= 0, where 1 is the empty word.

Proof. Let X be a monomial with no virtual members of the chart. Then there are no
derived monomials of X except X itself, and there are no multi-turns of virtual members
of the chart of X . So, by definition, 〈X 〉d is linearly generated by X and, therefore, is of
dimension 1; Dp〈X 〉d = 0; L〈X 〉d = 0. Therefore,

〈X 〉d /(Dp〈X 〉d +L〈X 〉d ) = 〈X 〉d = 〈X 〉 6= 0,

and 〈X 〉d /(Dp〈X 〉d +L〈X 〉d ) is of dimension 1.
By definition, the empty word 1 is a small piece. Therefore, 1 has no virtual members

of the chart. So, it follows from the above that 〈1〉d /(Dp〈1〉d +L〈1〉d ) 6= 0. �

Now we can prove that the quotient ring kF/I is non-trivial.

Corollary 3.13. The quotient ring kF/I is non-trivial.

Proof. Let U be a monomial. Consider the space 〈U 〉d and the corresponding subspace
in kF/I , namely, (〈U 〉d +I )/I . From the isomorphism theorem it follows that

(〈U 〉d +I )/I ∼= 〈U 〉d /(〈U 〉d ∩I ).

Recall that I = Dp(kF ). From Proposition 3.8 it follows that 〈U 〉d ∩Dp(kF ) = Dp〈U 〉d .
Hence,

(〈U 〉d +I )/I ∼= 〈U 〉d /Dp〈U 〉d .

By Lemma 3.12, there exists a space 〈U0〉d , U0 ∈ F , such that 〈U0〉d /(Dp〈U0〉d +
L〈U0〉d ) 6= 0. Hence, we see that 〈U0〉d /Dp〈U0〉d 6= 0 and (〈U0〉d +I )/I 6= 0. So, there
exists a non-trivial subspace of kF/I . Thus, kF/I itself is non-trivial. �

Now we are able, at last, to describe a basis of kF/I . This is done in two steps. First,
we construct a basis for non-trivial graded components of our filtration on kF/I :

Grn(kF/I ) = Fn(kF/I )/Fn−1(kF/I ).

Given n we consider the set of spaces {〈Z 〉d | Z ∈ F , Z ∈ Fn(kF ) \ Fn−1(kF )}, such that
〈Z 〉d /(Dp〈Z 〉d +L〈Z 〉d ) 6= 0. Let {V (n)

i }i∈I (n) be all different spaces from this set. Then,

Grn(kF/I ) ∼=
⊕

i∈I (n)

V (n)
i /(Dp(V (n)

i )+L(V (n)
i )).

Assume
{
W

(i ,n)
j

}
j is a basis of V (n)

i /(Dp(V (n)
i )+L(V (n)

i )), i ∈ I (n). Let W (i ,n)
j ∈ V (n)

i be an

arbitrary representative of the coset W
(i ,n)
j . Then⋃

i∈I (n)

{
W (i ,n)

j +I +Fn−1(kF/I )
}

j

is a basis of Grn(kF/I ).
Finally, the next theorem describes a basis of kF/I . We have

Theorem 3.14. Let {Vi }i∈I be all different spaces {〈Z 〉d | Z ∈F }. Then

kF/I ∼=
⊕
i∈I

Vi /(Dp(Vi )+L(Vi )),

as vector spaces, and the right-hand side is explicitly described via a tensor product of
subspaces.
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Assume
{
W

(i )
j

}
j is a basis of Vi /(Dp(Vi )+L(Vi )), i ∈ I . Let W (i )

j ∈ Vi be an arbitrary

representative of the coset W
(i )
j . Then⋃

i∈I

{
W (i )

j +I
}

j

is a basis of kF/I .

Remark 3.15. We shall informally explain the essence of Isolation axioms. Given a mono-
mial U , consider the set of its non-degenerate derived monomials (see Subsection 1.5).
Every derived monomial can be imagined as a result of a sequence of replacements of vir-
tual members of a chart by incident monomials. If two essentially different sequences of
replacements result in one and the same derived monomial, the exotic dependencies ap-
pear in the ideal I . Isolation Axiom guarantees that essentially different sequences of
replacements result in different monomials. Hence, exotic dependencies are not present
in I .

4. Algorithmic properties

We study algorithmic properties of the constructed small cancellation ring. We show
that they are as expected to be for small cancellation objects and similar in a sense to
the ones valid for small cancellation groups. However, in the ring case the essential
peculiarities arise in many places. Recall that small cancellation groups enjoy Dehn’s
algorithm [13]. In this section we define and study a corresponding greedy algorithm for
rings.

Let a ring A = kF/I with small cancellation condition be given. We extend our set
of relations R to a certain additive closure Add(R). It is important that R = Add(R)
for natural examples of the ring A considered below. We define a linear order on all
monomials, based on f -characteristic and other considerations, and denote it by < f .
Then, given the order < f and the set Add(R), we define a special greedy algorithm (with
external source of knowledge) for small cancellation rings. This algorithm has a similar
meaning as Dehn’s algorithm does for the case of groups. Denote it by GreedyAlg(< f ,
Add(R)).

This algorithm works as follows. Let
∑k

i=1γi Wi ∈ kF , γi 6= 0, and let Wi0 be its highest
monomial with respect to the order < f . Then we try to make the highest monomial
smaller using a multi-turn of a virtual member of the chart of Wi0 . Namely, we take a
polynomial p = ∑n

j=1α j La j R such that
∑n

j=1α j a j ∈ Add(R), Wi0 = LahR is its highest
monomial and ah is a virtual member of the chart of Wi0 , and make a transformation

k∑
i=1

γi Wi 7−→
k∑

i=1
γi Wi −γα−1

h p.

Then the highest monomial of
∑k

i=1γi Wi −γα−1
h p is strictly smaller than Wi0 because

Wi0 is cancelled out. If there is no suitable polynomial in Add(R), then the algorithm
terminates. The external source of knowledge answers if there exist appropriate polyno-
mials in Add(R) and in case they exist it gives such a polynomial.

Recall that given a small cancellation group G = 〈X |RG 〉, a word W from a free group
is equal to 1 in G if and only if Dehn’s algorithm, starting from W , terminates at 1, [13].
Our Theorem 4.1 establishes the similar properties in much more complicated situation
of rings.

Namely, assume W1, . . . ,Wk are different monomials. We take an element
∑k

i=1γi Wi ∈
kF , γi 6= 0.
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Theorem 4.1. The following statements are equivalent:

• some branch of the algorithm GreedyAlg(< f ,Add(R)), starting from
∑k

i=1γi Wi ,
terminates at 0;

• ∑k
i=1γi Wi ∈I ;

• every branch of the algorithm GreedyAlg(< f ,Add(R)), starting from
∑k

i=1γi Wi ,
terminates at 0.

Corollary 4.2. We have

• GreedyAlg(< f ,Add(R)) solves the Ideal Membership Problem for I ,
• Add(R) is a Gröbner basis of the ideal I with respect to monomial ordering < f .

5. Examples

Example A. First of all, let us notice that the group algebra of a small cancellation group
satisfying a small cancellation condition with C (m) for m > 22 (see [13]) is a small can-
cellation ring (see [3], Section 11.1, for details).

Example B. Let us consider another example of a small cancellation ring, which is stud-
ied in detail in [2] and in [3], Section 11.2. See also [2] regarding the motivation for
studying such rings.

Let w be a primitive (not a proper power) cyclically reduced word. Let x and y be
letters from the set of free generators of F such that the initial and the final letter of
w and w−1 differ from x±1 and y±1. So, we need a free group F with at least 4 free
generators. Take the word

v = xn1 y xn1+1 y · · ·xn2 y, n1,n2 ∈N,

such that n1−|w | > 0 and n2−n1> 21. We consider kF/I such that I = 〈v−1−1−w〉i .
The word v exhibits small cancellation properties, because a subword of vm , m ∈ Z,

containing at least two letters y±1, appears in vm uniquely modulo a shift by multiple of
|v |. So, it seems natural to have the same non-small pieces in a sense of Definition 2.1.

Notice that R = {v−1 −1−w} itself does not satisfy Axioms 1—3. However, it is pos-
sible to extend the set R to R1 such that R1 generates the same ideal and satisfies Ax-
ioms 1—3. Namely, we consider non-commutative Laurent polynomials P (x1, x2) such
that P ((1+t )−1, t ) = 0. One can show that P (v, w) ∈I . Then R1 = {γA ·P (v, w)·B | γ ∈ k},
where P runs through Laurent polynomials with the above property, a monomial A runs
through the set{

v f , v−1
i , w f , w−1

i

∣∣∣∣ vi is a prefix of v , v f is a suffix of v ,
wi is a prefix of w , w f is a suffix of w

}
,

and a monomial B runs through the similar set {vi , v−1
f , wi , w−1

f }. Then one can prove

that every subword of vm , m ∈Z, containing at least two letters y±1, is a non-small piece
with respect to R1 (see [3], Section 11.2). Notice that v can appear in two different poly-
nomials from R1 but naturally v is not a small piece. So, straightforward intuition, which
we mention in Section 2, does not work for our needs.

In groups we represent defining relations as a cyclic words and they correspond to
closed paths in a Cayley graph. We do not have Cayley graphs for rings, however, we can
produce a similar illustration for our case. Namely, we consider a graph of the form
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v

O

w

and call it v-figure. Then every relation from R1 corresponds to a collection of paths in
this graph with a fixed initial point and a fixed final point. We show that a monomial
is not a small piece with respect to R1 if and only if it corresponds to a unique path
in the above graph (see [3], Section 11.2, Proposition 11.7). This is similar to the group
case, where a non small piece appears uniquely in the cyclic path that corresponds to a
relation (modulo a period of the relation).

Now we give some comment regarding Isolation Axiom. Roughly speaking, Isolation
Axiom says that incident monomials and monomials that are connected by a sequence
of incident monomials have a significant difference. Namely, they can not differ only by
small pieces at their ends. Notice that for groups such a property is rather trivial (see [3],
Section 11.1, Part 3). In the current case monomials that are considered in Isolation
Axiom correspond to paths in v-figure with the same initial points and the same final
points. So, we check it only for such pairs of monomials. It could be verified via direct
calculation that uses the explicit form of our relations (see [3], Section 11.2, Part 3). Let
us also note that for more complicated defining relations such a verification can cause
significant difficulties.
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