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Abstract

Two similar Laplacian-based models for swarms with informed agents are proposed and analyzed analyti-
cally and numerically. In these models, each individual adjusts its velocity to match that of its neighbors and
some individuals are given a preferred heading direction towards which they accelerate if there is no local ve-
locity consensus. The convergence to a collective group swarming state with constant velocity is analytically
proven for a range of parameters and initial conditions. Using numerical computations, the ability of a small
group of informed individuals to accurately guide a swarm of uninformed agents is investigated. The results
obtained in one of our two models are analogous to those found for more realistic and complex algorithms for
describing biological swarms, namely, that the fraction of informed individuals required to guide the whole
group is small, and that it becomes smaller for swarms with more individuals. This observation in our simple
system provides insight into the possibly robust dynamics that contribute to biologically effective collective
leadership and decision-making processes. In contrast with the more sophisticated models mentioned above,
we can describe conditions under which convergence to consensus is ensured.

1. Introduction

Swarming models describe the dynamics of groups of interacting self-propelled agents, and pro-
vide a new set of systems to study complex non-equilibrium dynamics. They are developed
to mimic the collective motion of groups of living individuals such as such as bird flocks, fish
schools, herds of quadrupeds or bacteria colonies [1, 12, 14, 21, 27]. More recently, these mod-
els have been the focus of renewed interest as basic coordination and consensus algorithms for
systems of mobile autonomous agents, such as groups of robotic vehicles, mobile sensors, or
even satellites [2, 11, 13, 17, 18, 20, 22, 24]. In simple agent-based swarming models, point-
particles are set to move in space at non-zero speeds while matching the headings of neighboring
particles [8, 9, 26]. Different models consider different specific dynamics (e.g. with or without in-
ertia [25], discrete or continuous [10, 19], with imposed or emerging non-zero agent speed [12, 26],
etc.), but all of them follow some variation of these same basic rules. As models are made more
realistic, the effect of attraction and repulsion forces (to form cohesive groups while avoiding
agent collisions) are often included [4]. Noise can also be added either to the agent dynamics
or to their communication. In spite of these variations, a similar behavior is observed in most
simple swarming models. Namely, agents self-organize for certain parameter values into coherent
collective states where they group in space and/or move together by converging, respectively,
in the position and/or velocity spaces. The conditions required for such convergence, however,
have not been rigorously established even for simple models, with the notable exception of the
work in [17]. This is partly due to the fact that model interaction rules have been designed for
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their numerical implementation rather than for their mathematical analysis. It is also a con-
sequence of the nontrivial nature of biological interactions, which often include nonlinearities
even in the simplest cases. Very few solid mathematical results exist for swarming dynamics.
As a consequence, a number the basic properties of swarming systems remain unknown, such
as the conditions required to ensure group cohesion, the mechanisms of group size selection, or
the fraction of biased agents needed to guide the rest in a given direction. While many of these
questions could depend on the specificities of the model, the robust generic behavior often found
in other statistical systems lead us to expect that some model-independent mechanisms may also
appear in swarms. In this paper we address this issue by studying a family of simple Laplacian-
based swarming models that are well suited for mathematical analysis. We use analytical and
numerical tools to characterize the group cohesion and its collective decision making capabilities
when few informed individuals are present. Our results mimic qualitatively what is obtained for
more complicated and biologically realistic models. They could therefore help unveil the generic
mechanisms behind such behaviors.

Laplacian-based models (such as those in [6, 26]) postulate the following behavior: every agent
adjusts its velocity by adding to it a weighted average of the differences of its velocity with those
of the other agents. That is, at time ¢, and for agent 4,

N
vit+h) = vi(t) + h ) ai(v;(t) — vi(t)) (1.1)
j=1
where the weights {a;;} quantify the way the agents influence each other, and h > 0 is the time
step. It is commonly assumed that these weights are a non-increasing function of the distance
between agents. This is the case in [6, 26] and the major difference between these models is in
the choice of the a;;. In this paper we will follow [6] and take the adjacency matriz A, to have
entries

H
aj; = (1.2)
(@ [l — x]2)°

for some fixed H > 0 and 3 > 0. The equations in (1.1) describe a model with discrete time. A
corresponding model for continuous time is obtained by letting A tend to zero. We then obtain

N
vi(t) = > ag(vi(t) — vi(t)). (1.3)
Jj=1

The role played by the agents in the model given by (1.1) (or (1.3)) is the same for all
of them. Differentiated roles due to a hierarchy among the agents is studied in [23]. Another
role differentiation, which will be the focus of this paper, is that arising by a possible preferred
direction for some of the agents. Such a possibility is studied in [3] for a model which, in addition
to the Laplacian-based averaging, features attracting and repelling forces between agents. In this
paper we will do so for a simple extension of (1.3) which, together with its natural equation for
position changes, has the form

xi(t) = v;(t)

)

N (1.4)
vi(t) = ) aij(v;(t) — vit)) + Ci(t)di(t)

j=1
where C;j(t) > 0 is some local measure of the alignment consensus at time ¢ (with absolute
consensus for Cj(t) = 0) and d;(t) € E is the preferred direction of agent i. Here E denotes
Euclidean space (either 2-dimensional or 3-dimensional). Individuals with a non-trivial preferred
direction d;(t) are called informed.

The first two terms in the right-hand side of (1.4) (which are the right-hand side of (1.3))

capture the “social forces” that stir the individuals towards alignment. The last term, in contrast,
stirs individuals towards their preferred direction. A balance must be achieved between these
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two terms: if informed individuals are stubborn (i.e., their last term is always significant) there is
no hope to reach consensus as long as we have two informed individuals with different preferred
directions. The role of the terms C;(¢) is to allow for such balance. Informed individuals may
start with a determined steering towards their preferred direction but as a consensus is built this
determination gives place to an acceptance of the socially preferred direction. They attempt to
drive the flock to their own direction but prefer to give up the latter than to get disentangled
from the flock.

In this paper we consider two possibilities for C;(¢) (Models A and B described in §2.1 below).
In addition we take ||d;(t)|| = v for some v > 0 and all ¢ < k. Under these assumptions the ratio
% determines a fixed (independent of time and of the actual consensus) balance between the
roles of social cohesion and information.

The numerical experiments described in [3] show that, for the model considered in that paper,
the existence of a small group of informed agents is enough, under certain conditions, to guide
the whole group towards a preferred direction.

The goal of this paper is twofold. Firstly, we extend the model in [6] to include informed
agents as described above. This extension allows us to generalize the proofs of convergence
in [6] to flocks with informed agents. This is in contrast with the prevalent character of papers
in flocking whose conclusions rely only on simulations, and puts our paper within the stream
of mathematical papers [15, 16, 23] dealing with various aspects and extensions of the model
proposed in [6]. Secondly, we perform some simulations as well. These simulations are useful for
measuring how sharp the worst-case bounds in our formal result are. They are also useful, as
usual, to observe different features of the flock’s behavior.

The rest of the paper is structured as follows. In Section 2 we provide the mathematical
preliminaries necessary to describe both our consensus measures C;(t) and our main formal
result. The latter is formally stated and proved in Section 4. Before doing so, however, in
Section 3, we describe the results of the numerical simulations (which are performed, needless
to say, with discrete time for a small enough h).

2. A Convergence Result

2.1. Measuring consensus

The inner product on E naturally induces an inner product on EV. Let A be the diagonal of
EVN, ie.,
A ={(u,u,...,u)|uecE}

and AL be the orthogonal complement of A in EV. Then, every point v € EVN decomposes in
a unique way as v = va + v| with va € A and v; € A+, This decomposition has a simple
explicit form. Denote by

1
m = N;'vl
the mean of the v;. Then vao = (m,...,m) and v; = (v1 — m,...,vy — m). This follows

immediately from the equality

N N
(va,v1) = Z(m, (vi—m)) = <m,2'vi - m>
i=1

=1

N
= <m, (vaz> - Nm> = (m,0) =0.

We can look at the evolution of the velocities v;(t) decomposing into the evolution of their mean
m(t) and that of the distances to that mean v; = (vi—m,..., vy —m) and a key observation at
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this stage is the fact that convergence to a common velocity is a feature of the second evolution
only. More precisely, the condition “the velocities v;(t) tend to alignment is equivalent to the
condition “v, (t) — 0”.

It is natural now to take the norm ||z || of the projection @, as the dissimilarity of x and
similarly for ||v ||. In the case of & we may call this measure the dispersion of the flock. It relates
with its “diameter” as shown in the next lemma.

Lemma 2.1. For all z € EN, max;4; ||z, — z;|? < 2|z, ||*.

Proof. Write € = o+, = (4,...,u) + ((1)1,...,(x1)n). Then, for all i # j, x; —x; =
(QZJ_)Z' - (ZUJ_)]‘ and

Iz — z5lle = [[(z1)i — ()il < [[(zD)ille + [(z1);]le < V2|21 |z~ O

In the case of velocities, the dissimilarity ||v || relates to the consensus in a straight-forward
manner: the smaller is ||v || the larger this consensus (with complete consensus when, and only
when, ||[v,| = 0). Note that we are using an absolute measure of consensus (as oposed to a
measure that would take into account the magnitude ||val|| as well). This is enough for our
purposes. We will actually use v to describe the consensus measure C;(t). We propose two
ways of doing so.

Model A The simplest measure of consensus is |[v(¢)| itself. It is this quantity what is
actually shown to approach zero in proofs of convergence to consensus (cf. [6]). Therefore, in
our first model we take C;(t) = ||lv  (¢)|| for i =1,...,N.

Model B This is a more local (and slightly easier to compute) version of Model A. It is
simply the mean of the velocities of other agents relative to agent ¢ velocity. That is,

Cilt) = s - 03(0) — ()]
J#

2.2. Statement of the Main Result

In Section 4 we provide detailed proofs of convergence, under certain conditions, towards states
where all agents move with the same velocity and in one group. We consider a general setting
that includes various cases (Model A, Model B, and different configurations of informed agents).
We next describe this convergence result.

Consider the system described by (1.4) with an adjacency matrix A = (a;;) as given in (1.2),
we can define a Main Convergence Condition as:

1
UlD < JNH. (MCC)
Here, Uy is a constant that depends mainly on initial conditions of the swarm given by ||z (0)||?
and ||v 1 (0)||?. It can also depend on the system parameters 3, H, and N. Its specific definition
changes for different values of 3 and will be detailed below in each case. The parameter D only
depends on the characteristics of the informed individuals. In cases with ¢ arbitrarily informed

individuals with the same bias strength, which corresponds to having ¢ non-zero vectors d;
in (1.4) with any direction but the same magnitude v, we find that D is given by:

_ [ vy/q for Model A
| vv/2q for Model B.

We can sharpen inequality (MCC) in some special cases. As shown in Proposition 4.6, in case
of Model A and if there are only two groups of informed individuals, one with ¢; and the other
with go members, where both groups have the same bias strength v and all agents in each group
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have the same preferred direction, then (MCC) will be satisfied for:

1
D =if(@ + ) — 6 + B+ 2ma)

Here w denotes the cosine of the angle between the two group’s directions. It follows that if d;
in (1.4) contains ¢ non-zero entries and all are identical vectors with magnitude v, a stronger

MCC inequality is obtained where:
q
D= 1——=.
o\ ( N)

Using these quantities together with the following ones (depending on the system parameters
and the initial state of the flock only),

a= gl OF

and
b=1+2|z,(0)|>
we can state our main result.

Main Theorem. Assume that one of the following three conditions hold:
Case i:: < 1/2 and (MCQC) is satisfied with
Uy = max {(Qa)ﬁ ,Qb}

Case ii:: 8 =1/2 and (MCC) is satisfied with

b

U:
0 1—a

and a < 1,

Case iii:: § > 1/2 and (MCC) is satisfied with

26

Uo=951

and

(2ﬁ1a>ﬂ ~ 2;€ e

Then, v (t) converges exponentially fast to zero,

loL ()] < [[v1(0)] exp (—QNHt>,

3up
and the maximum size reached by the group is bounded by the relation
Up—1
L)1 < 22—,

for all t > 0.
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3. Numerical Simulations

In this section we will study numerically the dynamics of the model. The equations in (1.4)
were directly implemented as the time-step algorithm for numerical integration, with all new
positions and velocities computed and updated synchronously. A typical run consisted of from a
few hundred to several thousand time-steps between the initial condition and the end of the run.
The runs were terminated when the system reached one of the following two conditions. Either
lvg (t)|| < 0.001, which almost certainly implies that the system converged to its final swarming
configuration, or ||v (¢)|| > 1000, which is a near sure indication that the agents are diverging
and will never reach consensus to swarm together. As detailed below, several realizations were
carried out for each set of parameters.We are interested in the case with small h, since it is closer
to the continuous-time dynamics studied analytically in Sections 2 and 4. In all the computations
below, we used a time-step of h = 0.001 which was validated by verifying that a smaller time-step
h = 0.0001 produced no significant difference. To reduce the parameter space, we concentrate
in the most physically interesting case of 3 =1 and H = 1.

3.1. Analysis of Convergence Theorems

We first study numerically the conditions under which the system converges to a flocking dy-
namics and analyze the resulting states. We compare here this numerical convergence to the
theoretical bounds derived above. We begin by noting that our theoretical convergence results
only depend on the initial variance of the agents’ positions and velocities, but not on their spe-
cific values. Because of this, we will consider two different distributions for the initial conditions,
which we detail as follows. The first initial condition (IC1) is chosen as a random uniform dis-
tribution of positions and velocities within a disc of radius R}c(o) and Ri(o) in the z1—x2 and
v1—ve planes, respectively. The second initial condition (IC2) is chosen to maximize the chances
of a group to break for a given x, (0) and v, (0), and corresponds to having all agents placed on
a circle of radius Ri(o)v heading outwards with speed Ri(o)' Figures 1 and 2 show convergence
results for the simulations of Models A and B (respectively), using N = 10 agents of which one
is informed (¢ = 1), and with v = 1.

Simulations were carried out using initial conditions given by IC1 (left panels) or IC2 (right
panels), with Ri(o), R})(O), Rg(o), and R%(o) spanning from 0.05 to 2.5. Each point indicates the
initial ||z (0)|| and ||v1(0)| values at which the numerical simulation did not converge to a
single swarm moving as a group, but instead split into two or more groups heading in different
directions with different speeds. Two hundred and fifty thousand runs spanning values of |2 (0)]|
and |lv, (0)] ranging from approximately 0.05 to 7 where tested for convergence, so regions with
no points imply that all simulations converged there.

The dashed line displays the ||z (0)|| bound for convergence given by the MCC and the solid
curve shows the bound imposed by the additional convergence condition in Case (iii). Both
conditions must be satisfied for the convergence to be assured, so the region that contains the
origin where ||z (0)|| and ||v (0)| are smaller than these curves is where we have proven that
the system converges.
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FIGURE 1. Values of the initial position and velocity dispersions ||z, (0)| and
llv1 (0)| (red points) for which a group of N = 10 agents with one leader (¢ =1
and v = 1) do not converge under the dynamics of Model A to a collective swarm
where all have the same velocity. The dashed line and the solid curve correspond
to the analytical bounds specified by the Main Convergence Condition and by
the additional condition in Case (iii) (see text). The Main Theorem that we
prove in the text guarantees that no dynamics will diverge in the region next
to the origin and bounded by both curves, as confirmed here numerically. The
left panel corresponds to an initial condition (IC1) where agents’ positions and
velocities are randomly distributed within a region. In the right panel, agents’
initial positions are randomly distributed on a circle pointing outwards (IC2).

v (Ol
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FIGURE 2. Values of the initial position and velocity dispersions ||z (0)| and
lv1(0)]| (red points) for which a group of N = 10 agents with one leader (¢ =1
and v = 1) do not converge under the dynamics of Model B to a collective
swarm. As on Figure 1, the solid and dashed lines bound a region next to the
origin, within which no dynamics can diverge. The left panel corresponds to an
IC1 initial condition and the right one to an IC2 (see text and Figure 1).
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The figures confirm that for a set of parameters within Case (iii) of the Main Theorem,
convergence is indeed observed numerically.

3.2. Swarming Dynamics with Informed Individuals

We next focus not only on whether the system will converge, or whether instead the flock will
break, but also on how effective it is in heading as a group towards the preferred direction of the
informed individuals. In [3] it was pointed out that a biologically relevant feature of a swarming
algorithm is to help a small fraction of informed individuals guide the whole group reliably in
their preferred direction. Using a detailed model that included various specific biological features,
they showed that a great degree of accuracy could be achieved with a small fraction of informed
individuals and that the fraction required to reach a certain accuracy became smaller for larger
groups.

The main conclusion resulting from our analysis is that, under certain conditions, both
Model A and Model B display an ability to guide the group accurately in the preferred di-
rection of a small fraction of informed individuals similar to the one observed in [3], but with a
much simpler and mathematically manageable algorithm.

In the following figures we display the Accuracy that the group achieves in heading towards
the preferred direction of the informed individuals, which we impose to be the same for all of
them and denote by the unit vector I. This quantity is defined as the variance of the final
direction angle with respect to the angle of I , and is given by:

1 X ~12
Accuracy = N Z [Angle(v;fnd, I)} ,

¢ =1

where N, corresponds to the total number of realizations in which v, converges to zero and
therefore the group does not split. This implies that the Accuracy cannot be computed in cases
where the groups split in all realizations. The figures also display the fraction of realizations
where v eventually diverges and the group splits. The results are presented as a function of
the fraction of informed agents /N for groups of various sizes ranging from N = 10 to N = 200
agents. Each point represents the mean Accuracy obtained after averaging over 400 realizations.

In Figures 3 to 9, the positions of all agents are picked at random with equal probability
from anywhere within a disc of radius \/N/(27wp) (which is equal to Ri(o) and R};(o) radii in the
IC1 initial condition detailed in §3.1) and centered at the origin on the x1—x9 and v;—vy planes,
respectively. This makes the initial density equal to p = 1 regardless of the number of agents N
in the group.

Model A is generally much better in achieving high accuracy for a small fraction of informed in-
dividuals in larger groups. Two different mechanisms contribute to this effect in our simulations.
The first corresponds to simply orienting all informed individuals in their preferred direction as
initial conditions. We implemented this mechanism in some of the simulations, which we will
refer to as having Oriented Initial Conditions (OIC). The second is achieved by increasing the
acceleration v of informed agents in their preferred direction. The accuracy plots for Model A
with v = 0 and OIC (Figure 3) and those with v > 0 and non-OIC (e.g. Figure 4) show that
either mechanism can achieve independently high accuracy for small fractions of informed agents
in large groups.
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Accuracy

Split Frac.

0.0 0.2 04 0.6 0.8 1.0
Fraction of Informed Agents

FIGURE 3. Model A, Oriented, v = 0

Accuracy

05r

Split Frac.

0.0 0.2 04 0.6 0.8 1.0
Fraction of Informed Agents

FIGURE 4. Model A, Non Oriented, v = 2

As v is increased, the OIC and non-OIC cases become more similar (cf. Figures 5 and 6)
since the initial non-OIC transient dynamics will be faster and informed individuals will rapidly
assume their preferred oriented direction as in the OIC case.
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Accuracy

Split Frac.

0‘.4 0‘.6
Fraction of Informed Agents

FIGURE 5. Model A, Oriented, v =5

Accuracy

Split Frac.

0‘.4 0‘.6 0‘.8 1'.0
Fraction of Informed Agents

FIGURE 6. Model A, Non Oriented, v = 5

Our results also show that as v increases, there is a greater chance that the group will split,
thus failing to achieve a consensus in their final velocity. In both the OIC and non-OIC cases,
if v is large enough the groups will split for intermediate fractions of informed agents. This is
because the group cohesion is harder to maintain if it contains a similar fraction of informed
and non-informed individuals. In this case the lack of a strong majority will produce a slower

10
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convergence to consensus, thus increasing the chances that the group splits before all of its agents
are “convinced” to move in the same way. Groups must therefore achieve a compromise between
higher values of v that will increase accuracy (for a given fraction of informed individuals) and
lower ones that will avoid group splitting.

Model B behaves quite differently than Model A. The only conditions under which Model B
also displays higher accuracy for lower fractions of informed individuals as the group size N
grows, is for the OIC case with v = 0 or small. This is because both models will become
identical for v = 0, since the term containing C;(t) in equation (3) will then be equal to zero.
For larger values of v, however, the behavior is quite different in Model B, where the accuracy
values vs. fraction of informed agents seem to collapse to a unique curve for different group sizes
as, for example, on Figure 7.

Accuracy

Split Frac.

Fraction of Informed Agents

FIGURE 7. Model B, Oriented, v = 10

As v is increased in Model B, the fraction of groups that split also increases but in a different
way than in Model A. Here, the probability of splitting grows almost homogeneously for all
fractions of informed agents, in contrast to Model A where situations with similar fractions of
informed and non-informed individuals have a much higher chance of splitting. When non-OIC
are used in Model B, however, the situation is different. In this case, the system displays for
small v values (but not for v = 0, which is a trivial case where no preferred direction is imposed
and therefore the accuracy is zero) accuracy curves that do not depend on the group sizes as in
Figure 8.
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10

Accuracy

Split Frac

0.0 0.2 04 0.6 0.8 1.0
Fraction of Informed Agents

Fi1GURE 8. Model B, Non Oriented, v = 5

As v is increased, the accuracy decreases for larger group sizes as shown on Figure 9, which
is opposite to the typical behavior observed in Model A.

Accuracy

0.0 0.2 0.4 0.6 0.8 10

. 1r e o o e o e e e e o
(&)
(U /_f*—ﬁ%
o
Lo 05+ M
=
= W
» ot i i i i

0.0 0.2 04 0.6 0.8 1.0

Fraction of Informed Agents

FIGURE 9. Model B, Non Oriented, v = 10
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Note that the higher average accuracy measured for smaller groups in this case may be an
effect of having more small groups that split, leaving only the ones with better convergence (and
perhaps better accuracy) to be considered in this average calculations.

The similarities and differences between Models A and B may help us understand the basic
underlying mechanism that produces an accuracy that increases for larger groups at fixed fraction
of informed agents, as first observed in [3]. The behavior of both models can be partially explained
as follows. Two factors contribute to the group final direction of motion: The initial orientation
of the informed agents and their acceleration v. The former is a robust way to achieve greater
accuracy in larger systems with the same fraction of informed agents that does not depend
on the term containing C;(¢) in equation (3). In contrast, the latter depends on the specific
model interactions, generating higher accuracies for larger groups in Model A but lower or equal
accuracies in Model B. This scenario is supported by computations carried out at different initial
density values, which also achieve higher accuracies for both models at low v values and in a
way that does not seem to depend strongly on this initial density (see, e.g., Figures 10 or 11
carried out for initial constant volume and therefore with increasing initial density as N grows).

Accuracy

Split Frac.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Informed Agents

FiGURE 10. Model A, Constant Initial Volume, Oriented, v = 0
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0.8

o
=N

Accuracy

0.4

02 #

05+

Split Frac.

0‘.0 0j2 0'.4 0i6 0'.8 ltO
Fraction of Informed Agents

FIGURE 11. Model B, Constant Initial Volume, Oriented, v = 10

The accuracy curves behave very differently when the initial density is changed for non-OIC.
In this case, the acceleration mechanism is seen to depend strongly on this density and on the
specific model (as shown on the results for non-OIC and constant initial volume; Figures 12
and 13).

Accuracy

05r

Split Frac.

0:0 OT.2 0t4 0'.6 0i8 17.0
Fraction of Informed Agents

FiGURE 12. Model A, Constant Initial Volume, Non Oriented, v = 10
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Accuracy

05

Split Frac.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Informed Agents

F1GURE 13. Model B, Constant Initial Volume, Non Oriented, v = 10

In spite of the similarities between the accuracy results obtained with our models and the
ones in [3], other aspects of the dynamics are very different. If we defined the group elongation
as the ratio of the span of the group in the direction of motion to that perpendicular to the
direction of motion, the results in [3] displayed significant group elongations that increased
with the group size. In contrast, in all computations carried with our models the elongation
value achieved when the velocities converged was approximately equal to one, which implies no
significant deformation. Furthermore, for larger groups the final elongation becomes even closer
to one. The only consistent increase in the group elongation is observed in Model A as a small
increase above one in regions close to the transition to group splitting.

Another significant difference in the dynamics of our models is found in the final positions of
the informed agents within the group. While it was stated in [3] that the informed agents tend
to move towards the front of the group in their simulations, in all the regimes tested with our
algorithms the informed individuals tend to be homogeneously distributed about the center of
the group with respect to the direction of motion. This difference may be due to the lack of
noise in our system or because the long-range nature of the aligning interactions of our model
are too stringent to allow for a significant redistribution of the agents positions in the transient
dynamics towards convergence.

3.3. Accuracy and splitting fraction against information strength v

There is an interesting contrast between Figures 5 and 6 (or Figures 7 and 9 for Model B) and
similar runs with v = 1. In the first two there is not much difference between Oriented and
non-Oriented initial conditions. But it is clear that as soon as v is small enough this can make a
big difference. This motivates looking at the way the accuracy and splitting fraction vary with
respect to the information strength v.

We do so in the next four plots (Figures 14, 15, 16, and 17). We take N = 50 in all runs. As
in §3.2, each point is obtained by averaging over 400 realizations.
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Split Frac.
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Information Strength v

FIGURE 14. Model A, Non Oriented

We observe that when v increases so does the accuracy. At a certain value of v, however, the
splitting fraction surges and quickly reaches 1. We see again the trade-off between accuracy and
convergence observed in §3.2. For every number of informed agents ¢ we reach a certain level of
accuracy by increasing v but at some moment we can not further increase the accuracy without
(rapidly) increasing the frequency of dispersion. Also, curiously, the role of ¢ is monotonous for
the accuracy (the larger ¢ the larger the accuracy) but it is not so for the splitting fraction.

Accuracy

Split Frac.

0 10 20 36 4‘0 50
Information Strength v

FIGURE 15. Model A, Oriented
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FiGurE 17. Model B, Oriented

4. Proof of the Main Results
We can write the set of equalities (1.3) in a more concise form. Let D, be the N x N diagonal
matrix whose ith diagonal entry is }°; v a;; and Ly = D — A;. Then (cf. [6])

v(t+h) —v(t) = —hLyv(t).

Note that the matrix notation L,v(¢) does not have the usual meaning of a N x N matrix acting
on RY. Instead, the matrix L, is acting on EV by mapping (v1,...,vn) to ((Lz)avr + ... +
(Lz)iNnvN)i<N-

17
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We may therefore rewrite (1.4) as
= (C)
v\ = —Lyv+ Cd(t).

4.1. Laplacians

Given a nonnegative, symmetric, N x N matrix A the Laplacian L of A is defined to be
L=D-A
where D = diag(dy,...,dy) and dy = Z;Vﬂ agj. Some features of L are immediate. It is sym-
metric and it does not depend on the diagonal entries of A.
The matrix L, in (C) is thus the Laplacian of A,. It satisfies that for allu € E, Ly (u,...,u) =
0. In addition, it is positive semidefinite.

The smallest eigenvalue of L, is zero. Its second eigenvalue is called the Fiedler number of
A,. We will denote it by ¢, .

Proposition 4.1. ([7, Proposition 1]) Let A be a N x N nonnegative, symmetric matriz, L =
D — A its Laplacian, ¢ its Fiedler number, and p = min;»; a;;. Then ¢ > Np. O

4.2. Projecting the solutions

Consider the projection (z, (t), v (t)) over ALt x AL of the solutions (x(t),v(t)) of the system
(C). It is easy to show (see [6]) that these projections are the solutions of the restriction of (C)
to AL x AL
More precisely, they are the solutions of
x(t+h), = x(t), +hvo(t),
v(t+h), = (Id—hLg )v(t)L +hCd(t).
Hence, in what follows, we will consider positions in
X =ENV/A~ AL
and velocities in
Vi =EN/A~ At
For ,v € EY we will denote = ¢, and v = v,. Finally, we will denote Cd = (Cd) . With
these notations, our focus is now on the system

P = (C)
v = —Lyv+Cd(t).
Note that we still refer to this system as (C).

4.3. The proofs

In what follows we fix a solution (x,v) of (C). At time ¢, z(¢) and v(t) are elements in X and V/,
respectively. In particular, z(t) determines an adjacency matrix A, ). For notational simplicity
we will denote this matrix by A; and its Laplacian and Fiedler number by L; and ¢;, respectively.

Proposition 4.2. Fort > 0 we have ||Cd(t)|| < D|v(t)].
Proof. In case of Model A we have

[Cd@) < [Cd@)|l = [lo@lIld@)] = lv@] [> ld;i® = [o®)]»/a.
jES

18
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For Model B,
ICd®)| < llcd@®ll= [>IC;Od;m))12 = [ Ci(1)?]d;(t)]
Jj€S JjES
2
= v [> Gt = Z( T2 i) = wit I)
JjES Jj€S J#Z
2
- Nod g;(gyw —wzu)
14 2
< v jé((N—l)ﬂ]\v(t)H) (by Lemma 2.1)
= vy/2q||v(t)

For z € X we denote I'(x) =

|z||? and for v € V we denote A(v) = |jv

I

g

. Again, we will write

A(t) and T'(t) for the values of A and T, respectively, at (v(t),z(t)). Finally, we will write I'g for

I'(0) and similarly for Ag.

Denote &; = min ¢
T7€[0,¢]

Proposition 4.3. For all0 <t < T,

Proof. Let 7 € [0,t]. Then

A(7)

lo(@)ll < flo(0)fle="* =),

d
= g-{(r)u(r)
= 2(v(7),0(7))
—2(Lyv(7) + Cd(7), v(7))
= —2(Lrv(7),v(1)) — 2(Cd(T),v(7))
< =20, A(T) + 2[Cd(7)l[o(7)]]
< =20,(;)A(7) +2D|lv(7)|?
= —2M(7)(¢u(r) — D).

Here we used that L. is symmetric positive semidefinite on V. Using this inequality,

t

In(A(7))

i.e.,

EA(7)
o A7)

D)

In(A(t)) — In(Ag) < —2t(®; —

from which the statement follows.

Proposition 4.4. Assume that & > D for all 0 <t <T. Then, for all0 <t < T,

Proof. For 7 < t we have |I"(7

lo(7)]”

[v(0)]”

lz()]* < 2]|z(0)[* + 2@, ~ D)

)| = 12(v(7),

I'(7) < [1'(7)] < 2 (Rge 2@ =P)) 7 pry 112

19

dr S /Ot —2(¢7’ - D)dT < —2t(q)t - D)

2] < 2. Bus ()]l = ()2 and
= A(1) < Ape=2(®=D) by Proposition 4.3. Therefore,

(4.1)
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and, using that 7 — @, is non-increasing and that ®, — D > 0 for all 7 < ¢,

b T(7) t —2r(®,-D)\/?
/OF(T)l/Qd 2/0 (Aoe ) dr

t
2 / AY2eT®=D)gy
0

IN

IN

‘' 2AL/*
.= % -D

) o~ 7(®-D)

— 1/2

the last inequality because ®; > D. This implies

" Al /2
/ INGs - <I>t D
AP

o, — D’
The result now follows from the elementary inequality (p 4 q)? < 2p? + 2¢>. U

1/2

from which it follows that

T2 <1l +

A proof of the following lemma is in [5, Lemma 7].
Lemma 4.5. Let c1,co >0 and s > q > 0. Then the equation
Fz)=2"—c129—c2=0
has a unique positive zero z,. In addition
2w < max {(2c1)$, (202)%}
and F(z) <0 for0 <z <z*.

PROOF OF MAIN THEOREM. Let

t={tzo0 @2l < 55

Note that in all three cases ((i), (ii), and (iii)), we have b < Uy. This implies that 0 € T since
NH _NH
3D 2D
]P\I&Ince, T # (. Assume that T # [0, +00) and let £ = inf{[0, 4-00)\ T}. Clearly, (142 z(?)||?)? =
2DBy Proposition 4.1 and Lemma 2.1, for all x € X,
by > NH S NH
T (U maxig [l — a2) T (14 2|z ]2)F
Let t <t and t* € [0,t] be the point maximizing ||z| in [0,#]. Then
®; = min ¢, > min NH > NH .
T red T = reon) (T+ 2[e(m)P)P = (L + 2]z (#)]P)?

Moreover, since t* < t < ¢, t* € T and we have

NH}

(1+2|2(0)[*)? =% < UJ <

NH NH
& — D > - D> 0. 4.2
' (L 2)z@)|?)? = o1+ 2fe(e)2)? 42)

Hence, we may apply Proposition 4.4 to obtain
1
HlizZ < 2 2,9 2
=@ < 20O + 2O G
81v(0)]12(1 + 2||=(t*)]?)%8
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Since t* maximizes I in [0, ¢] it also does so in [0,¢*]. Thus, for ¢ = t*, (4.3) takes the form
(L +2[|=()]1*)*
(NH)?

Let z = 1+ 2|lz(t*)||?. Then (4.4) can be rewritten as F(z) < 0 with F(z) = z — az?® — b.

We next reason by cases.
(i)  Assume that 3 < 1/2. By Lemma 4.5, F(z) < 0 implies (1 + 2||z(t*)||?) < Up. Since Uy is
independent of ¢ we deduce that, for all ¢ < ¢,

(1+22@)]?) - 16]v(0)]? — (1+2[=(0)]?) <o. (4.4)

Up—1
()] < 20
Therefore, for all ¢ < ,
. NH
(1+2e@)?)? < (1+2)a@)?)? < U < £V}
It follows that NH
14 2)z(®)]?)° < ==
A +2[z@®I)" < 35

which contradicts the main property of . This shows that no such # exists, i.e., that T = [0, +-00).
Hence, for all ¢ > 0, 1+ 2||x(t)||> < Up. This implies that

NH

u

for all ¢ > 0 and therefore, the same bound holds for ®;. It follows that
NH NH 2NH

vl suf o s

o >

®—D >

and by Proposition 4.3 we conclude that
_2NH

[o@)] < (0l 0. (4.5)

(ii)  Assume that § = 1/2. Then (4.4) takes the form
(1 +2)z())*) (1 -a)-b<0
and our hypothesis ensure that 1 — a > 0. This implies that
b
1+ 2)z(t)]? € —— = Up.
Folla(t)? < o = Uy

We now proceed as in case (i).
(iii)  Assume finally § > 1/2 and let a = 20 so that F(z) = z — az® — b. The derivative

1

F'(z) =1 — aaz®"! has a unique zero at z, = (ﬁ)ﬁ and

1 _a
F(z,) = <1a> T a <1a> R
« «
1 1 @ 1
I\o=1 /1\a1 I1\a=1 /1\a=—1
O ORNORIO
« a @ a
1\ o=t
a

<
SONORORE

the last by our hypothesis. Since F(0) = —b < 0, F"(z) = a(a — 1)az®*"2 > 0 for all z > 0, and
F(z) — —oo when z — oo we deduce that the shape of F is as follows:

v
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Figure 18: General shape of F

For t > 0 let 2(t) = 1+ 2||z(¢*)||*>. Even though t* is not continuous as a function of ¢, the
mapping ¢ — z(t) is continuous and therefore, so is the mapping ¢t — F'(z(t)). This fact, together
with (4.4), shows that, for all ¢ > 0, F'(2(t)) < 0. In addition, when ¢ = 0 we have t* = 0 as well
and

1\a7 (1\aT
2(0) = 14 2z(0)|2 = b < (a) () _—

a

This implies that z(0) < z¢ and hence, that for all t < t, 2(t) < z.
Let zo be the intersection of the z axis with the line segment joining (0, —b) and (2, F(24))
(see Figure 18). The line where this segment lies has equation

_ «
b= Zz* az
Zx
from which it follows that
b b «
20 = = .
0T a8 ! a—1
It follows that for all ¢ <

2(t) = 1+ 2/|z(t)? < b—"— =T,

a—1

We now proceed as in case (i).

4.4. On shared information

A case deserving particular attention is when some of the ¢ informed agents share the same
preferred direction. Assume, for instance, that the set of informed agents is partitioned in two
subsets with all agents in each subset sharing the same information. In this case we can sharpen
our results. Indeed, let

— 1
D= V\/(Ql +q2) — N(Q% + ¢3 + 2q1qow).

Then Proposition 4.2 can be sharpened as follows.

Proposition 4.6. Assume that, in Model A, the set & is partitioned into & = %1 U S5 and
let g = #7;, i = 1,2. Assume further that the vectors d;(t) are the same for the q1 agents
in 1 and that the same happens for S5. Denote by di and dj these common vectors and let
w = cos(dj,d}), w € [0,1]. Then, for t >0, we have ||Cd(t)| = D|v(t)].
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Proof. Assume, without loss of generality, that di = (v,0) and d3; = (vw,vw) where @ =
sin(dj, ds). Then, at all time ¢, the mean m for the information is given by
v _
m = (a1 + @w, ¢2w)

and we have ~
—(m —dj) = (q1 + @aw — N, 200)

v
as well as N
;(m —d3) = (1 + ow — Nw, @ow — Nw).
Therefore,
N? 2 2 2
?HmH =qi + ¢ + 20w,
N? 2 2 2 2
—[(m —=d})|” = ¢i + ¢ +2q1qow + N* —2Nq1 — 2N qpw
2
as well as
N2

—5lm —d5)|* = af + 43 + 201000 + N* — 2Ny — 2Ny,

It follows that
2 2 2 2
Sla? = R - - a)ml + gl - ml? 4 gl - m)?
= (N—q—@)(q + ¢ +2q1qw)
+ q1(¢} + 63 + 212w + N? — 2Nq; — 2N gow)
+ ¢2(¢} + 63 + 212w + N? —2Nqrw — 2Ngp)
= N(¢f + & +2q1qw) + q1(N? = 2Ng1 — 2N qow) + g2(N? — 2Nqw — 2N gy)
= N*(q1 + @) — N(gi + & + 2q1q2w)
from where the statement follows. O

In case all the ¢ informed agents share the same direction we obtain the following sharpenning
of Proposition 4.2.

Proposition 4.7. Assume that, in Model A, the vectors di(t) are the same for the q informed
agents. Then, fort >0, we have ||Cd(t)| = D|lv(t)|| with

- q
D = 1-——=).
v q( N>

Proof. Take ¢ = ¢1 + q2 and dj = d5 (which implies w = 1) in Proposition 4.6. O

5. Conclusions

We have studied two simple Laplacian-based models for swarms with informed agents. Using the
linear properties of their time-steps, we were able to prove analytically that there is a range of
parameters and initial conditions for which the convergence to a swarming state is guaranteed.
Despite their apparent simplicity, we showed numerically that both models can display complex
consensus dynamics similar to those observed in more realistic algorithms. In particular, we
found that for a wide range of initial configurations of Model A, a few informed individuals can
accurately guide a large swarm in a target direction, which is a biologically desirable feature. This
suggests that the underlying mechanism of such behavior could be found in simple dynamical
interactions that are being captured by this model.
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