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Abstract
We address the problems of computing operator norms of matrices induced by given norms on the argument and the
image space. It is known that aside of a fistful of “solvable cases”, most notably, the case when both given norms are
Euclidean, computing operator norm of a matrix is NP-hard. We specify rather general families of norms on the
argument and the images space (“ellitopic” and “co-ellitopic”, respectively) allowing for reasonably tight computationally
efficient upper-bounding of the associated operator norms. We extend these results to bounding “robust operator norm of
uncertain matrix with box uncertainty”, that is, the maximum of operator norms of matrices representable as a linear
combination, with coefficients of magnitude ≤ 1, of a collection of given matrices. Finally, we consider some applications
of norm bounding, in particular, (1) computationally efficient synthesis of affine non-anticipative finite-horizon control of
discrete time linear dynamical systems under bounds on the peak-to-peak gains, (2) signal recovery with uncertainties in
sensing matrix, and (3) identification of parameters of time invariant discrete time linear dynamical systems via noisy
observations of states and inputs on a given time horizon, in the case of “uncertain-but-bounded” noise varying in a box.
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1 Introduction

In this paper, our theoretical focus is on two problems as follows:

I Problem A (Approximating operator norms). Given norms ‖ · ‖X and ‖ · ‖B with unit balls X ⊂ Rn and
B ⊂ Rm, estimate the induced norm ‖A‖B,X := maxx:‖x‖X≤1 ‖Ax‖B of an m× n matrix A

I Problem B (Approximating robust norm of uncertain matrix with box uncertainty). With ‖ · ‖X , ‖ · ‖B as in A,
given an “uncertain m× n matrix with box uncertainty”, set of the form

A =
{
Anom +

S∑
s=1

εsAs : ‖ε‖∞ ≤ 1
}

(Anom, A1, . . . , AS ∈ Rm×n),

estimate the robust norm

‖A‖B,X = max
A∈A
‖A‖B,X .

of the uncertain matrix A.
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2 Approximation of matrix norms

Applications motivating our interest in these problems will be discussed later; we start with outlining the
research status of these problems as “academic entities” and our related results.

Aside of few special cases, e.g., the case of the spectral norm (X and B are unit Euclidean balls in the
respective spaces), A is NP-hard; this is so, e.g., when ‖ · ‖X = ‖ · ‖p, ‖ · ‖B = ‖ · ‖r, and p ≥ 2 ≥ r ≥ 1 with
p 6= r [41]. (12) is NP-hard already when B, X are unit Euclidean balls, Anom = 0, and As are restricted to be
symmetric matrices of rank 2 [7]. Hardness of A, B makes it natural to look for efficiently computable reasonably
tight upper bounds on the norms in question. Below we build these bounds for the case where X and the polar
B∗ of B are ellitopes (see Section 2.1 for the corresponding definitions).

Sufficient for our current purposes example of an ellitope in Rk is a bounded set Z cut of Rk by a convex
constraint on the vector [zTP1z; . . . ; zTPJz] of values of convex homogeneous quadratic forms of z:

Z = {z ∈ Rk : ∃ t ∈ T : zTPjz ≤ tj , j ≤ J}

where Pj � 0,
∑
j Pj � 0, and T is a convex compact subset of RJ

+ with a nonempty interior which is
monotone, i.e., 0 ≤ t′ ≤ t ∈ T implies that t′ ∈ T . A simple example of the ellitope is the intersection of
finitely many ellipsoids/elliptic cylinders centered at the origin.

We demonstrate that in the ellitopic case one can build efficiently computable upper bounds Φ(A) on ‖A‖B,X
and Ψ(A1, . . . , AN ) on ‖A‖B,X which are convex in A, resp., in (A1, . . . , AN ), such that

‖A‖B,X ≤ Φ(A) ≤ O(1)
√

ln(2K) ln(2L)‖A‖B,X , (1a)

‖A‖B,X ≤ Ψ(A1, . . . , AN ) ≤ O(1)
√

ln(2K) ln(2L)ϑ(κ)‖A‖B,X (1b)

where K and L are ellitopic sizes (numbers of quadratic forms in the description) of X and B∗, κ is the maximum
of ranks of Ai, and ϑ( · ) is a certain universal function of κ.

Relation to existing literature, Problem A

A is the problem of maximizing a quadratic (specifically, bilinear) form on B∗ ×X , and there exists significant
literature on tractable relaxations, semidefinite and alike, of these problems. To the best of our knowledge,
the most advanced existing results are those in the seminal papers [34, 35] of Yu. Nesterov. As applied to
A, those results, in our present language, state that when the positive semidefinite matrices participating in
description of X and B∗ are diagonal, the appropriate efficiently computable relaxation bound on ‖A‖B,X (which
in fact is nothing but the bound Φ participating in (1a)) is tight within absolute constant factor (for details, see
Remark 4). It should be stressed that “tightness within an absolute constant” heavily exploits diagonality of the
matrices describing X and B∗; in the case of general ellitopes, logarithmic tightness factors in (1a) seem to be
unavoidable.1

The results on tight computationally tractable upper-bounding of maxima of quadratic forms over general-type
ellitopes (same as the notion of an ellitope itself) originate from [20] and are further developed in [21]. As
compared to those results, dealing with bilinear rather than with general quadratic forms allows us below to
refine the analysis, and, as a result, to reduce the tightness factor in (1a) to O(1)

√
ln(2K) ln(2L) instead of

O(1) ln(K + L) guaranteed by [21].

Relation to existing literature, Problem B

The only known to us preceding results on bounding robust norms of uncertain matrices deal with the spectral
norm (X and B are unit Euclidean balls), in which case the tightness factor in (1b) boils down to ϑ(2κ); these
results can be easily derived from the “Matrix Cube Theorem” in [7].

Applications
While A and B look as legitimate academic problems, and the outlined results—legitimate academic results,
the actual motivation for what follows stems from specific applications of problems A and B we are about to
consider.

1 For instance, it was shown in [33] that when ‖ · ‖B = ‖ · ‖2 and X is the intersection of K “stripes” centered at the origin (i.e.,
the corresponding positive semidefinite matrices are of rank 1), the relaxation bounds in question can indeed be larger than
the true quantity by factor O

(√
lnK

)
.
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Our principal motivation for Problem A comes from control and is the necessity to handle peak-to-peak design
specifications in synthesis of linear controllers. Specifically, given a linear dynamical system

xt+1 = Atxt +Btut +Dtdt, x0 = z, yt = Ctxt + Etdt

with states xt, controls ut, observed outputs yt, and external disturbances dt, we want to build an affine non-
anticipating controller ut = gt +

∑t
τ=0G

t
τyτ in such a way that the trajectory wN = {xt, 1 ≤ t ≤ N ; yt, ut, 0 ≤

t < N} of the closed loop system on a given time horizon satisfies a given set of design specifications. With smart
nonlinear reparameterization of affine non-anticipating controllers (passing from affine output-based control to
the control which is affine in purified outputs, see [22] and references therein), the system trajectory becomes
affine function of the initial state z and the sequence dN = [d0; . . . ; dN−1] of external disturbances, with the
matrices and constant terms in these functions being affine in the vector χ of controller’s parameters varying in
certain Rν . Bi-affinity of wN in (dN , z) and in χ is the key to computationally efficient processing of design
specifications of appropriate structure. In this paper, we address an important (and considered as difficult in
control) specification, namely, peak-to-peak gain defined as follows.2 Let us fix some a norm ‖ · ‖(d) on the space
where the disturbances dt live, and norm ‖ · ‖(x) on the space where the states xt live. We equip the space DN of
disturbance sequences dN = [d0; . . . ; dN−1] with the norm ‖dN‖d,∞ = maxt ‖dt‖(d), and the space XN

d of state
trajectories xN = [x1; . . . ;xN ] with the norm ‖xN‖x,∞ = maxt ‖xt‖(x). With affine in purified outputs controller
χ, xN is an affine function of dN and z; let X[χ] be the matrix of coefficients at dN in this affine dependence.
Peak-to-peak disturbance-to-state gain stemming from ‖ · ‖(d) and ‖ · ‖(x) is, by definition, the norm of X[χ]
induced by the norms ‖dN‖d,∞ and ‖xN‖x,∞, and the corresponding design specification is just an upper bound
on this gain. Since X[χ], as was already mentioned, is affine in χ, this specification is a convex constraint on χ.
However, this constraint can be difficult to handle because the operator norm in question is typically difficult to
compute (this is so already when ‖ · ‖(d) and ‖ · ‖(x) are ‖ · ‖2-norms). In such case, we can utilize our results on
Problem A to safely approximate the design specification in question by replacing difficult-to-compute induced
norm of X = X[χ] by its efficiently computable convex in X and reasonably tight upper bound, as explained in
details in Section 3.3.3.

Our main motivating application for Problem B is identification of parameters A of discrete time linear time
invariant dynamical system

xt+1 = A[xt; rt],

from corrupted by noise observations of states x0, . . . , xN and inputs r0, . . . , rN−1 on a given time horizon. We
focus on the case of uncertain-but-bounded noise, in which deviations of entries in observations from the actual
values of the corresponding entries in xt and rt are bounded in magnitude. We discuss an approach (to the best
of our knowledge, new), heavily utilizing our results on Problem B, for computationally efficient identification of
A and for generating on-line upper bounds on recovery errors.

Note that there is some literature on the first, and huge literature on the second of the just outlined
applications. Instead of positioning our results with respect to this literature in the introduction, we find it more
productive to postpone this positioning till appropriate parts of the main body of the paper.

Structure of the paper is as follows. Section 2 presents background on ellitopes. Section 3 is devoted to
Problem A, and Section 4—to Problem B. Technical proofs are relegated to the appendix, where we present
additional results on system identification, same as describe how our results can be extended from ellitopes to an
essentially wider family of sets—spectratopes.

2 Preliminaries: ellitopes and spectratopes

Ellitopes and their extensions, spectratopes, introduced in [21], are convex compact sets well-suited for tight
upper-bounding maxima of quadratic forms over the sets. To make the paper more readable, in its main body
we focus on ellitopes; (always straightforward) extensions to spectratopes are relegated to Appendix.

2.1 Ellitopes: definition and basic examples
A basic ellitope is a set W represented as

W = {w ∈ Rp : ∃ t ∈ T : wTTkw ≤ tk, 1 ≤ k ≤ K} (2)

2 For the sake of definiteness, we focus on “disturbance-to-state” peak-to-peak gain; peak-to-peak gains from disturbance to
controls, or to outputs, or from initial state to states, etc., are defined similarly and can be processed in the same way.
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where Tk � 0, k ≤ K,
∑
k Tk � 0, and T is a convex computationally tractable compact monotone subset of

RK
+ with int T 6= ∅, monotonicity meaning that when 0 ≤ t ≤ t′ and t′ ∈ T , we have t ∈ T as well.
An ellitope X is a linear image of a basic ellitope:

X = PW = {x ∈ Rn : ∃ w ∈ W : x = Pw} with W given by (2) (3)

We call K ellitopic size of ellitopes (2) and (3).
Clearly, every ellitope is a convex compact set symmetric w.r.t. the origin; a basic ellitope, in addition, has a

nonempty interior.
I Example 1.
A. Bounded intersection X of K centered at the origin ellipsoids/elliptic cylinders {x ∈ Rn : xTTkx ≤ 1}

[Tk � 0] is a basic ellitope:

X = {x ∈ Rn : ∃ t ∈ T := [0, 1]K : xTTkx ≤ tk, k ≤ K}

In particular, the unit box {x ∈ Rn : ‖x‖∞ ≤ 1} is a basic ellitope.
B. A ‖ · ‖p-ball in Rn with p ∈ [2,∞] is a basic ellitope:

{x ∈ Rn : ‖x‖p ≤ 1} =
{
x : ∃ t ∈ T = {t ∈ Rn

+, ‖t‖p/2 ≤ 1} : x2
k︸︷︷︸

xTTkx

≤ tk, k ≤ K
}
.

Ellitopes admit fully algorithmic “calculus”: this family is closed with respect to basic operations preserving
convexity and symmetry w.r.t. the origin, e.g., taking finite intersections, linear images, inverse images under
linear embedding, direct products, arithmetic summation (for details, see [21, Section 4.6]); what is missing,
is taking convex hulls of finite unions.

2.2 Bounding maximum of quadratic form over an ellitope
The starting point of what follows is the problem

Opt∗(C) = max
x∈X

xTCx, C ∈ Sn (4)

of maximizing a homogeneous quadratic form over a convex compact set X ⊂ Rn. It is well known that basically
the only generic case when the problem is easy is the one where X is an ellipsoid. It is shown in [21] that when
X is an ellitope, (4) admits reasonably tight efficiently computable upper bound. Specifically, when X is given
by (3), λ ∈ Rk

+ is such that PTCP �
∑
k λkTk and x ∈ X , one has for some t ∈ T

xTCx = wTPTCPw ≤ wT
[∑

k

λkTk

]
w ≤

∑
k

λktk,

implying the validity of the implication

λ ≥ 0, PTCP �
∑
k

λkTk ⇒ Opt∗(C) ≤ φT (λ) := max
t∈T

λT t,

and thus—the first claim of the following
I Theorem 2 ([21, Proposition 4.6]). Given ellitope (3) and a matrix C ∈ Sn, consider the quadratic maximization
problem (4) along with its relaxation

Opt(C) = min
λ

{
φT (λ) : λ ≥ 0, PTCP �

∑
k

λkTk

}
(5)

The problem is computationally tractable and solvable, and Opt(C) is an efficiently computable upper bound on
Opt∗(C). This upper bound is reasonably tight:

Opt∗(C) ≤ Opt(C) ≤ 3 ln(
√

3K) Opt∗(C).

To the best of our knowledge, the first result of this type was established in [33] for X which is an intersection
of K concentric elliptic cylinders/ellipsoids; in this case, (4) becomes a special case of quadratically constrained
quadratic optimization problem, and (5) is the standard Shor’s semidefinite relaxation (see, e.g., [6, Section 4.3])
of this problem. In [33] it is shown that the ratio Opt(C)/Opt∗(C) indeed can be as large as O(ln(K)), even
when all Tk = aka

T
k are of rank 1 and X is the polytope {x : |aTk x| ≤ 1, k ≤ K}.
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3 Bounding operator norms

As stated in Introduction, one of the subjects of this paper is tight efficiently computable upper-bounding of the
operator norm

‖A‖B,X = max
x
{‖Ax‖B : ‖x‖X ≤ 1}

of a linear mapping x→Ax : Rn → Rm induced by norms ‖ · ‖X and ‖ · ‖B on the argument and the destination
spaces, with ‖ · ‖U standing for the norm with unit ball U . Our approach works for the case when X and the
polar B∗ of B are ellitopes with nonempty interiors:

X = PW = {x ∈ Rn : ∃ w ∈ W : x = Pw}, intX 6= ∅,
W = {w ∈ Rp : ∃ t ∈ T : wTTkw ≤ tk, k ≤ K};

B∗ := {v ∈ Rm : vT y ≤ 1 ∀ y ∈ B} = QZ = {y ∈ Rm : ∃ z ∈ Z : y = Qz}, intB∗ 6= ∅, (6)
Z = {z ∈ Rq : ∃ r ∈ R : zTR`z ≤ r`, ` ≤ L}

with Tk, T , R`, R as required in the definition of a basic ellitope.
Under the assumptions just introduced, ‖A‖B,X is the maximum of a quadratic form over a basic ellitope

Z ×W:

‖A‖B,X = max
x∈X
‖Ax‖B = max

y∈B∗,x∈X
yTAx = max

w∈W,z∈Z
zTQTAPw

= 1
2 max

[z;w]∈Z×W
[z;w]T

[
QTAP

PTATQ

]
[z;w].

In this case relaxation (5) provides efficiently computable upper bound on ‖A‖B,X . Immediate computation
taking into account the direct product structure of the ellitope Z ×W and bilinearity of the quadratic form we
are maximizing over this ellitope shows that this bound is

Opt(A) = min
λ,υ

{
φT (λ) + φR(υ) : λ ≥ 0, υ ≥ 0,

[ ∑
` υ`R`

1
2Q

TAP
1
2P

TATQ
∑
k λkTk

]
� 0
}
. (7)

Note that Opt(A) clearly is a convex function of A, and Theorem 2 implies that

‖A‖B,X ≤ Opt(A) ≤ 3 ln(
√

3[K + L])‖A‖B,X .

Our main goal is to demonstrate that the latter bound can be refined.

I Theorem 3. In the case of (6) one has

‖A‖B,X ≤ Opt(A) ≤ ς(K,L)‖A‖B,X , ς(K,L) =
{

3
√

ln(4K) ln(4L), max[K,L] > 1
1, K = L = 1.

(8)

I Remark 4. Results of [34, 35] imply that in some cases the tightness factor ς in (8) can be improved to an
absolute constant. Specifically,
1. In the case of (6) with diagonal matrices Tk and R`, it follows from [35, Theorem 13.2.1] that one can take

ς = π
4−π ≈ 3.660

2. When ‖ · ‖X = ‖ · ‖p, ‖ · ‖B = ‖ · ‖r with ∞ ≥ p ≥ 2, 1 ≤ r ≤ 2 (this is a special case of 1)), Nesterov [34, 35]
proved that the upper bound

1
2 min
λ,µ

{
‖λ‖ p

p−2
+ ‖µ‖ r

2−r
:
[

Diag{µ} A

AT Diag{λ}

]
� 0
}

(9)

on ‖A‖p→r := max‖x‖p≤1 ‖Ax‖r (this bound coincides with Opt(A) when X is the ellitope {x : ‖x‖p ≤ 1},
and B∗ is the ellitope {v : ‖v‖ r

r−1
≤ 1}) is tight within (even better than in 1))

factor π
2
√

3−2π/3 ≈ 2.2936 in the entire range p ∈ [2,∞], r ∈ [1, 2],
factor

√
π/2 ≈ 1.2533 when p = 2 and r ∈ [1, 2].3

3 Using the identity ‖A‖B,X = ‖AT ‖X∗,B∗ , where X∗ is the polar of X (as is immediately seen, this identity is respected by our
bounding scheme), we see that Opt(A) is within

√
π/2 from ‖A‖p→r when p ≥ 2 and r = 2.
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Needless to say, when p = r = 2, the tightness factor is 1. In addition, it is shown in [41] that in the range
∞ ≥ p ≥ 2, 1 ≤ r ≤ 2 bound (9) is exactly equal to the corresponding norm of A for entrywise nonnegative
matrices.
Note that there is a simple case when Opt(A) = ‖A‖B,X—the one where A is a row vector, B = [−1, 1] ⊂ R,

and, therefore,

‖A‖B,X = max
x∈X

Ax.

Our bounding is intelligent enough to recognize this situation. Indeed, in the case in question (7) reads

Opt(A) = min
λ,υ

{
φT (λ) + υ : λ ≥ 0,

[
υ 1

2AP
1
2P

TAT
∑
k λkTk

]
� 0
}

while, by Lagrange duality,

max
x∈X

Ax = max
w,t

{
APw : wTTkw ≤ tk, k ≤ K, t ∈ T

}
= min

λ≥0
max
t∈T ,w

{
APw +

∑
k

λktk − wT
[∑

k

λkTk

]
w

}

= min
λ≥0

max
w

{
φT (λ) +APw − wT

[∑
k

λkTk

]
w

}

= min
λ≥0,υ

{
φT (λ) + υ : υ −APw + wT

[∑
k

λkTk

]
w ≥ 0 ∀ w

}

= min
λ,υ

{
φT (λ) + υ : λ ≥ 0,

[
υ 1

2AP
1
2P

TAT
∑
k λkTk

]
� 0
}

= Opt(A).

To put this immediate observation into a proper perspective, see Section 3.2.
The just outlined results are stronger than what in the case in question is stated by Theorem 3. This being

said, it can be proved that in the full scope of the latter theorem, logarithmic growth of the tightness factor with
K,L is unavoidable.

3.1 On the scope of Theorem 3
The scope of Theorem 3—the set of the matrix norms to which the theorem applies—is restricted to the case
when the norm in the argument space is simple ellitopic norm, meaning that its unit ball is an ellitope, and the
norm on the image space is a simple co-ellitopic norm, meaning that the polar of its unit ball is an ellitope.
Clearly, simple co-ellitopic norms (s.co-e.n’s) are exactly the conjugates of simple ellitopic norms (s.e.n.’s). These
classes of norms allow for certain “calculus” stating that some standard operations with norms preserve their
ellitopic/co-ellitopic type.

Basic calculus of simple ellitopic norms is as follows.
E.1. (raw materials) When p ∈ [2,∞], ‖ · ‖p is a s.e.n. on Rn,
E.2. (taking finite maxima) When ‖ · ‖(k), k ≤ K, are s.e.n.’s on Rn, so is their maximum.
E.3. (restriction to a linear subspace) When ‖ · ‖ is a s.e.n. on Rn and y → Ay : Rn′ → Rn is a linear embedding,

‖y‖′ := ‖Ay‖ is a s.e.n. on Rn′

E.4. (passing to factor-norm) When ‖ · ‖ is a s.e.n. on Rn and x 7→ Ax : Rn → Rn′ is an onto mapping, the
factor-norm ‖y‖′ = minx{‖x‖ : Ax = y} is s.e.n. on Rn′

E.5. (“aggregation”) Let ‖ · ‖(k) be s.e.n. on Rnk , k ≤ K, and let A be a monotone convex compact set with a
nonempty interior in RK

+ . Then the norm on Rn1 × · · · ×RnK with the unit ball

X =
{

[x1; . . . ;xK ] ∈ Rn1 × · · · ×RnK : ∃ α ∈ A,‖xk‖(k) ≤
√
αk, k ≤ K

}
is s.e.n. For instance, when pk ∈ [2,∞] and p ∈ [2,∞], the norm on Rn1×· · ·×RnK given by ‖[x1; . . . ;xK ]‖ =
‖[‖xi‖p1 ; . . . ; ‖xK‖pK ]‖p is s.e.n.

All these rules are immediate consequences of “calculus of ellitopes” [21, Section 4.6].
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Basic calculus of simple co-ellitopic norms is as follows.
cE.1. [raw materials] When r ∈ [1, 2], ‖ · ‖r is a s.co-e.n. on Rn (cf. E.1)
cE.2. [taking sums] When ‖ · ‖(k), k ≤ K, are s.co-e.n.’s on Rn, so is their sum.

Indeed, the unit ball B of the sum of norms with polars B∗i of the unit balls is

B =
{
x :
∑
i

max
yi∈B∗i

yTi x ≤ 1
}

=
{
x : max

y=[y1;...;yK ]∈B∗1×···×B∗K
xT [y1 + · · ·+ yK ] ≤ 1

}
,

that is, the polar B∗ of B is the image of B∗1 × . . . B∗K under a linear mapping. When all B∗k are ellitopes,
so is their direct product, and therefore—its linear image B∗. Thus, the polar of B is an ellitope, as
claimed.

cE.3. [restriction to a linear subspace] When ‖ · ‖ is a s.co-e.n. on Rn and y → Ay : Rn′ → Rn is a linear
embedding, ‖y‖′ := ‖Ay‖ is a s.co-e.n. on Rn′

Indeed, assuming that the polar B∗ of the unit ball of ‖ · ‖ is an ellitope, we have ‖y‖′ = maxz∈B∗ zTAy.
That is, the polar of the unit ball of ‖ · ‖′ is the linear image ATB∗ of B∗, which is an ellitope along with
B∗.

cE.4. [passing to factor-norm] When ‖ · ‖ is a s.co-e.n. on Rn and x 7→ Ax : Rn → Rn′ is an onto mapping, the
factor-norm ‖y‖′ = minx{‖x‖ : Ax = y} is s.co-e.n. on Rn′ .

Indeed, when the polar B∗ of the unit ball of ‖ · ‖ is an ellitope, when denoting by A† the pseudoinverse
of the onto mapping A, one has

‖y‖′ = minδ∈KerA‖A†y + δ‖ = minδ∈KerA max
z∈B∗

zT [A†y + δ] = max
z∈B∗∩ImAT

[[A†]T z]T y.

Thus, the polar of the unit ball of ‖ · ‖′ is a linear image of the intersection of ellitope B∗ with a linear
subspace, and as such is an ellitope.

cE.5. [“aggregation”] Let ‖ · ‖(k) be s.co-e.n. on Rnk , k ≤ K, and let A be a monotone convex compact set with
a nonempty interior in RK

+ . Then the norm on Rn1 × · · · ×RnK given by

‖[x1; . . . ;xK ]‖ = max
β∈A

∑
k

√
βk‖xk‖(k)

is s.co-e.n. For instance, when rk ∈ [1, 2] and r ∈ [1, 2], the norm on Rn1 × · · · × RnK given by
‖[x1; . . . ;xK ]‖ = ‖[‖x1‖r1 ; . . . ; ‖xK‖rK ]‖r is s.co-e.n.

Indeed, let ‖·‖∗(k) be the s.e.n.’s conjugate to ‖·‖(k). SettingA1/2 = {[α1; . . . ;αK ] ≥ 0 : [α2
1;α2

2; . . . ;α2
K ] ∈

A}, we get a convex compact monotone subset of RK
+ such that the unit ball B of ‖ · ‖ is B = {[x1; . . . ;xK ] :

φA1/2([‖x1‖(1); . . . ; ‖xK‖(K)]) ≤ 1}. Hence, as is immediately seen, the polar B∗ of B is

B∗ =
{

[y1; . . . ; yK ] :
∑
k

ζk‖yk‖∗(k) ≤ 1 ∀ (ζ ≥ 0 :
∑
k

αkζk ≤ 1 ∀ α ∈ A1/2)
}

=
{

[y1; . . . ; yK ] : ∃ α ∈ A1/2 : ‖yk‖∗(k) ≤ αk, k ≤ K
}
,

that is, ‖ · ‖∗ is s.e.n. by E.5.

3.2 An extension
The above results can be straightforwardly extended from the case when B∗ and X are ellitopes onto a more
general case. Specifically, assume that
A. X ⊂ Rn is a set with nonempty interior represented as the convex hull of a finite union of ellitopes, or, which

is the same,

X = Conv
{

I⋃
i=1

PiXi

}
=
{
x =

I∑
i=1

λiPixi : xi ∈ Xi, λi ≥ 0,
∑
i

λi = 1
}

=
{
x =

∑
i

Pixi :
∑
i

‖xi‖Xi ≤ 1
}
, (10)

where Xi ⊂ Rni are basic ellitopes and ‖ · ‖Xi are s.e.n. on Rni with unit balls Xi.
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Under Assumption A, X is a convex compact symmetric w.r.t. the origin subset of Rn with 0 ∈ intX ; as such,
X is the unit ball of a norm ‖ · ‖X . In the sequel we refer to the norms of this structure as to ellitopic norms.
Clearly, every simple ellitopic norm is ellitopic, e.g., the block `∞ norm

‖[x1; . . . ;xI ]‖ = max
i≤I
‖xI‖pi [pi ∈ [2,∞] ∀ i]

on the space Rn1 × · · · ×RnI is s.e.n. (by E.1 and E.5). In fact, the family of ellitopic norms is much wider that
the family of s.e.n.’s. For example,
E.1. When ‖xi‖(i) are ellitopic norms on Rni , i ≤ I, the associated block `1/‖ · ‖( · ) norm

‖[x1; . . . ;xI ]‖ =
I∑
i=1
‖xi‖(i) (11)

on Rn1 × · · · ×RnI is ellitopic.
Indeed, the unit ball Xi of ‖ · ‖(i) is a convex subset of Rni of the form

Conv
{

Ii⋃
ν=1

PiνXiν

}

with basic ellitopes Xiν . Specifying linear mappings Pi from Rni to Rn1 × · · · × RnI as the natural
embeddings

[Pixi]s =
{

0 ∈ Rns , s 6= i

xi, s = i,

the unit ball X of norm (11) clearly is Conv
{⋃

i≤I,νi≤Ii PiPiνiXiνi
}
. Because, in addition, this set has a

nonempty interior, (11) is an ellitopic norm.
Note that the property to be ellitopic is inherited when passing to factor-norms (cf. E.4):

E.2. When ‖ · ‖ is an ellitopic norm and y 7→ Ay : Rn → Rn′ is an onto mapping, the factor-norm ‖x‖′ =
miny{‖y‖ : Ay = x} on Rn′ induced by ‖ · ‖ and A is ellitopic.

Indeed, if the unit ball X of ‖ · ‖ is given by (10) then the unit ball X ′ of ‖ · ‖′ is the convex compact set
with a nonempty interior given by

X ′ = AX = Conv
{

I⋃
i=1

[APi]Xi

}
.

E.3. Let ‖ · ‖(χ) be an ellitopic norm on Rnχ , χ = 1, 2. Then the norm ‖[x1;x2]‖ = max[‖x1‖(1), ‖x2‖(2)] on
Rn1 ×Rn2 is ellitopic.

Indeed, if the unit ball of ‖ · ‖(χ) is Conv
{⋃Iχ

i=1 Pi,χXi,χ
}
, then the unit ball of ‖ · ‖ is

Conv

 ⋃
i1≤I1,i2≤I2

Diag{Pi1,1, Pi2,2}[Xi1,1 ×Xi2,2]

 ,

and Xi,1 ×Xi,2 are basic ellitopes along with Xi,1, Xi,2.
By E.3, if ‖ · ‖(i) are ellitopic norms on Rni , i ≤ I, then the norm ‖[x1; . . . ;xI ]‖ = maxi≤I ‖xi‖(i) on

Rn1+···+nI is ellitopic as well. Note, however, that the number of ellitopes involved in the description of
this norm is the product, over i ≤ I, of the numbers of ellitopes in the description of norms ‖ · ‖(i) and thus
may explode exponentially fast as I grows.

Assume, next, that
B. B ⊂ Rm is a set with nonempty interior which is the polar of a set of the structure described in A:

B =
{
v ∈ Rm : max

y∈B∗
vT y ≤ 1

}
, B∗ =

y =
J∑
j=1

µjQjzj , zj ∈ Zj , µj ≥ 0,
∑
j

µj = 1

 (12)

where Zj ⊂ Rmj are basic ellitopes and Qj , Zj are such that B∗ has a nonempty interior.
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Under Assumption B, B is a convex compact symmetric w.r.t. the origin subset of Rn with 0 ∈ intB; as such, B
is the unit ball of a norm ‖ · ‖B. In the sequel, we refer to norms of this structure as co-ellitopic. Clearly, the
conjugate of an ellitopic norm is co-ellitopic, and vice versa.

Note that in the case of (12) we have

‖u‖B = max
y∈B∗

uT y = max
{zj ,µj}

∑
j

µju
TQjzj : zj ∈ Zj , µj ≥ 0 ∀ j,

∑
j

µj = 1


= max

j
max
zj∈Zj

uTQjzj = max
j≤J
‖QTj u‖Z∗j (13)

where Z∗j is the polar of Zj .
Of course, every simple co-ellitopic norm is co-ellitopic. In fact, the family of co-ellitopic norms is much wider

than the family of simple co-ellitopic norms due to the following observations:
cE.1. Maximum of finitely many co-ellitopic norms is co-ellitopic.

Indeed, if ‖ · ‖(k), k ≤ K, are co-ellitopic norms on Rn, their conjugates ‖ · ‖∗(k) are ellitopic, implying
by E.1 that the norm ‖[y1; . . . ; yK ]‖ =

∑
k ‖yk‖∗(k) on RKn is ellitopic, which by E.2 implies that the

factor-norm

‖z‖∗ = min
{yk}

{∑
k

‖yk‖∗(k) :
∑
k

yk = z

}

is ellitopic. The unit ball of the latter norm is the convex compact set

B∗ =
{
z =

∑
k

yk :
∑
k

‖yk‖∗(k) ≤ 1
}
,

and the polar of this set is

B =

x : max
y


[∑

k

yk

]T
x :
∑
k

‖yk‖∗(k) ≤ 1

 ≤ 1


=

x : max
λ,y


[∑

k

yk

]T
x : ‖yk‖∗(k) ≤ λk,

∑
k

λk ≤ 1

 ≤ 1


=
{
x : max

λ

{∑
k

[
max
yk
{xT yk : ‖yk‖∗(k) ≤ λk}

]
,
∑
k

λk ≤ 1
}
≤ 1
}

=
{
x : max

λ≥0

{∑
k

λk‖x‖(k) :
∑
k

λk ≤ 1
}
≤ 1
}

=
{
x : max

k
‖x‖(k) ≤ 1

}
.

Thus, the norm maxk ‖x‖k is conjugate to the ellitopic norm ‖ · ‖∗ and as such is co-ellitopic.
A closely related statement is

cE.2. `∞-aggregation

‖[x1; . . . ;xK ]‖ = max
k≤K
‖xk‖(k) (14)

of co-ellitopic norms ‖ · ‖(k) on Rnk is co-ellitopic.
Indeed, as we have seen when justifying cE.1, if ‖ · ‖∗(k) are ellitopic norms conjugate to ‖ · ‖(k), the

norm

‖[y1; . . . ; yK ]‖∗ =
∑
k

‖yk‖∗(k)

is ellitopic; clearly, norm (14) is conjugate to this ellitopic norm.
The second observation is as follows.

cE.3. The restriction of a co-ellitopic norm onto a linear subspace is co-ellitopic.
Indeed, we should verify that if x 7→ Ax is an embedding of Rn′ into Rn and ‖ · ‖ is a co-ellitopic norm

on Rn then the norm ‖x‖′ = ‖Ax‖ is co-ellitopic. This is immediate—by the standard properties of norms,
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under the circumstances, the norm conjugate to ‖x‖′ is the factor-norm miny
{
‖y‖∗ : AT y = x

}
induced

by the conjugate to ‖ · ‖ norm ‖ · ‖∗ on Rn. This conjugate is an ellitopic norm on Rn, and it remains to
use E.2.

cE.4. The sum of two co-ellitopic norms on Rn is co-ellitopic.
Indeed, if ‖ · ‖(χ), χ = 1, 2, are co-ellitopic norms on Rn, and ‖ · ‖∗(χ) are their conjugates, then the

norm ‖[x1;x2]‖∗ = max[‖x1‖∗(1), ‖x2‖∗(2)] is ellitopic norm on R2n by E.3, so that its conjugate, which
is ‖[x1;x2]‖+ = ‖x1‖(1) + ‖x2‖(2), is co-ellitopic. By cE.3, the restriction of the latter norm on the
subspace {[x1;x2] : x1 = x2} = [In; In]Rn also is co-ellitopic, and this restriction is nothing but the norm
‖x‖ = ‖x‖(1) + ‖x‖(2).

Simple observation

Let ‖ · ‖X and ‖ · ‖B be norms with X given by (10) and B given by (12). Then the operator norm of A∈ Rm×n

induced by the norms ‖ · ‖X and ‖ · ‖B on the argument and image spaces can be computed as follows, see (13):

‖A‖B,X = max
x
{‖Ax‖B : ‖x‖X ≤ 1} = max

x

{
max
j
‖QTj Ax‖Z∗j : ‖x‖X ≤ 1

}
= max

x

{
max
j

max
zj
{zTj QTj Ax : zj ∈ Zj} : ‖x‖X ≤ 1

}
= max

j

{
max
x,zj

zTj Q
T
j Ax : zj ∈ Zj , x ∈ X

}
= max

j

{
max
x,zj

zTj Q
T
j Ax : zj ∈ Zj , x ∈ Conv{∪iPiXi}

}
= max

j

{
max
i

[
max

zj∈Zj ,xi∈Xi
zTj Q

T
j APixi

]}
= max

i,j
‖QTj APi‖ij (15)

where

‖QTj APi‖ij = max
zj∈Zj ,xi∈Xi

zTj [QTj APi]xi = ‖QTj APi‖Z∗j ,Xi . (16)

Note that by the same token maxi ‖QTj APi‖ij = ‖QTj A‖Z∗j ,X and maxj ‖QTj APi‖ij = ‖APi‖B,Xi , so that in the
case of (10), (12) it holds

‖A‖B,X = max
j
‖QTj A‖Z∗j ,X = max

i
‖APi‖B,Xi .

As we know from Theorem 3, we can upper-bound ‖QTj APi‖ij by Φij(QTj APi) with convex and efficiently
computable function Φij( · ), the bound being tight within the factor ς(Ki, Lj) ≤ 3

√
ln(4Ki) ln(4Lj), where Ki

and Lj are the ellitopic sizes of Xi and Zj . As a result, the efficiently computable convex function

Φ(A) = max
i,j

Φij(QTj APi)

is an upper bound on ‖A‖B,X tight within the factor 3
√

ln(4 maxiKi) ln(4 maxj Lj).
In some simple situations the above tightness factor can be improved. For example, when

Xi = {xi : ‖xi‖pi ≤ 1}, Zj = {zj : ‖zj‖qi ≤ 1}, pi ≥ 2, qi ≥ 2,

by Nesterov’s results (cf. Remark 4), the tightness factor is an absolute constant (e.g., 1 in the trivial case where
pi = qj = 2 for all i, j).

3.3 Applications
3.3.1 Least norm projector synthesis
Consider the projection problem as follows: we are given a linear subspace F of linear space E = Rn and a norm
θ( · ) on E ; our goal is to find a linear projector H of E onto F—a linear map x 7→ Hx : E → F with Hx = x for
all x ∈ F—which deviates the least from the identity mapping Id in the norm

‖ · ‖θ→θ : ‖A‖θ→θ = max
x∈E
{θ(Ax) : θ(x) ≤ 1}.
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Consider the case when the norm in question is the block `∞/`2 norm

θ(x) = max
k≤K
‖Gkx‖2

[
x 7→ Gkx : E → Rνk ,

⋂
k

KerGk = {0}
]
.

What makes the projection problem potentially difficult is the block `∞ structure of θ; were νk = 1 for all k,
‖ · ‖θ→θ would have polyhedral epigraph, and minimization of ‖Id−H‖θ→θ would be a Linear Programming
problem (note that property of H to project onto F reduces to a system of linear equalities on H).4 In contrast,
in the general `∞/`2 case as described above, the problem is NP hard. At the same time, the problem is within
the scope of our machinery: the unit ball of θ is the ellitope

X = {x ∈ Rn : xTGTkGkx ≤ 1, k ≤ K},

and therefore θ is a simple ellitopic norm. At the same time, we have

θ(x) = ‖Gx‖∞/2, Gx = [G1x;G2x; . . . ;GKx], ‖[y1; . . . ; yk]‖∞/2 = max
k
‖yk‖2

As we know, ‖ · ‖∞/2 is co-ellitopic (see cE.2 in Section 3.2) and this property is preserved under restriction of a
norm on a linear subspace (cE.3), and it remains to recall that G is an embedding. The bottom line is that we
can process the projection problem as explained in Section 3.2. It is immediately seen that the corresponding
recipe, under the circumstances, boils down to the following:

We select a linear basis {gi : i ≤ n} in E in such a way that the first m = dimF of these vectors form a
basis of F ; in the sequel, we identify vectors from E with collections of their coordinates in this basis, and
linear mappings from E to E with their matrices in this basis. Note that the (matrices of) projectors of
E onto F are exactly block-matrices

[
Im P

]
with m× (n−m) blocks P . Applying Theorem 3, we

arrive at the efficiently solvable convex optimization problem

Opt = min
P,{µk,λk:k≤K}

{
max
k

µk +
K∑
j=1

λkj

 : P ∈ Rm×(n−m), λk ≥ 0,

 µkIνk
1
2Gk

[
P

−In−m

]
1
2

[
PT −In−m

]
GTk

∑
j
λkjG

T
j Gj

 � 0, k ≤ K

 (17)

which is a safe tractable approximation of the problem of interest—the P -component of a feasible solution
to the problem specifies projector of E onto F with the value of ‖ · ‖θ→θ not exceeding the value of the
objective at this solution. This approximation is tight within the factor O(1)

√
ln(4K), meaning that Opt

is at most by this factor greater than the actual optimal value in the projection problem. In addition,
when νk = 1 ∀ k, the tightness factor is exactly 1.

3.3.2 Illustration: projecting splines
Consider a partition of [0, 1] into M “large” segments, which are further partitioned into total of N “small”
segments. Let also Γ be equidistant grid on [0, 1] with L points. Given nonnegative integers µL ≥ νL, µS ≥ µL,
and νS ≤ νL, let us define F as the linear space of restrictions on Γ of splines which are polynomials of degree at
most µL in every large segment, with all derivatives of order ≤ νL continuous on the entire [0, 1]. We define E
as the linear space of restrictions on Γ of splines which are polynomials of degree of order ≤ µS in every small
segment and have continuous on [0, 1] derivatives of order ≤ νS. With the above inequalities between µ’s and ν’s,
F is a subspace in E . Now let ∆1, . . . ,∆K be partitioning of Γ into K consecutive segments, and let θ be the
`∞/`2 norm on E given by

θ(x) = max
k≤K

√∑
i∈∆k

x2
i ,

xi being the value of spline x ∈ E at the i-th point of Γ.
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Figure 1 Spline x from E (left plot) and its projection Hx on F (right plot).

In Figure 1 we present a sample pair of a spline from E and its projection onto F .
In this experiment, |Γ| = 128, there are eight identical large and small segments (separated by red/blue

vertical lines on the plots), and K = 16 (on the plots, 16 segments ∆k are separated from each other by green
vertical lines). Splines from E are continuous on [0, 1] and are polynomials of degree 3 on large/small segments,
and F is cut off E by additional requirement for the spline to be continuously differentiable on [0, 1]. Solving (17)
yields H with ‖Id−H‖θ→θ ≤ Opt ≈ 1.255 and H is “essentially different” from the ‖ · ‖2-orthogonal projection5

H of E onto F—the spectral norm of H −H is ≈ 0.69, and the upper bound on ‖Id−H‖θ→θ, as given by our
machinery, is ≈ 1.527. In fact both upper bounds ≈ 1.255 on ‖Id−H‖θ→θ and ≈ 1.527 on ‖Id−H‖θ→θ happen
to coincide within four significant digits with the quantities themselves.6

3.3.3 Synthesis of linear controller with peak-to-peak design specifications
The situation we are about to address is as follows. We control a discrete time linear system

xt+1 = Atxt +Btut +Dtdt, x0 = z,

yt = Ctxt + Etdt, 0 ≤ t < N,

where xt ∈ Rnx , ut ∈ Rnu , dt ∈ Rnd , and yt ∈ Rny are, respectively, states, controls, external disturbances, and
observable outputs. When augmented with non-anticipating affine controller

ut = gt +
t∑

τ=0
Gtτyt−τ

the closed loop system specifies affine mappings

(dN := [d0; d1; . . . ; dN−1], z) 7→ xN := [x1; . . . ;xN ] = XN
d d

N +XN
z z +XN

(dN , z) 7→ uN := [u0; . . . ;uN−1] = UNd d
N + UNz z + UN ,

(dN , z) 7→ yN := [y0; . . . ; yN−1] = Y Nd dN + Y Nz z + Y N .

With “smart parameterizations” of the controller— passing from {gt, Gtτ , 0 ≤ t < N, 0 ≤ τ ≤ t} to the parameters
of the affine purified-output-based controller, matrices XN

d ,. . . ,Y N become affine functions of the vector χ of
controller’s parameters; this vector runs through certain finite-dimensional linear space C equipped with filtration
C0 ⊂ C1 ⊂ · · · ⊂ CN−1 = C by linear subspaces, with Cd comprised of “controllers with memory d”. We refer the
reader to [22] for details of the controller construction.

4 Allowing for a slight abuse of notation, we denote with H the matrix of the linear mapping H.
5 Recall that vectors from E are restrictions of functions on [0, 1] onto equidistant grid in this segment and as such E is equipped
with “canonical” Euclidean structure.

6 One can easily build a numerical lower bound on ‖A‖B,X by alternating maximization of the bilinear function uTAx over
u ∈ B∗ and x ∈ X ; in the reported experiment, these lower bounds were within the indicated accuracy with the upper bounds
yielded by our machinery.
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When designing a controller, one of natural design specifications (traditionally considered as not so easy to
handle, cf., e.g.,[1, 4, 5, 10, 15] and reference therein) are bounds on “peak-to-peak” gains. The disturbance-to-state
gain is nothing but the norm of the matrix XN induced by the norm

‖dN‖∞/p = max
0≤t<N

‖dt‖p

on the space of sequences dN of disturbances and the norm

‖xN‖∞/r = max
1≤t≤N

‖xt‖r

on the space of sequences of states; disturbance-to-control and disturbance-to-output peak-to-peak gains are
defined similarly. When ∞ ≥ p ≥ 2 and 1 ≤ r ≤ 2, we can enforce the desired bound on the peak-to-peak gain
(which can be difficult to handle, since the corresponding norm of XN

d is, in general, difficult to compute) by
bounding from above the efficiently computable upper bound, yielded by our machinery, on the gain. As a result,
we get an efficiently tractable convex constraint on the parameters of the controller which safely (and tightly
within the factor

√
π/2, see the concluding comments in Section 3.2) approximates the design specification in

question.
Note that our machinery remains applicable when ‖ · ‖p and ‖ · ‖r are replaced with, respectively, an s.e.n.

‖ · ‖(d) and a s.co-e.n. ‖ · ‖(x), and also when the design specifications impose bound on the “restricted” peak-to-
peak gains, e.g., on the peak-to-peak disturbance-to-state gain when the disturbances dN are restricted to reside
in a given linear subspace of the “complete disturbance space” RndN .

The first numerical experiment we are about to present7 deals with minimizing disturbance-to-state ∞/2
peak-to-peak gain (i.e., p = r = 2) when controlling linearized and discretized in time motion of Boeing
747; the model we use originates from [9], see also Section 4.3.2 below. We omit irrelevant for our purposes
details (which can be found in [22]), here it suffices to mention that the model is time-invariant (matrices
At ≡ A,. . . ,Et ≡ E) with nx = 4 and nu = nd = ny = 2. Applying our machinery on time horizon N = 256
to build a purified-output-based linear controller with memory depth (whatever it means) 16, we end up with
controller with disturbance-to-state peak-to-peak gain ≈ 1.02. To put this result into proper perspective, note
that the matrix A of the model in question is only marginally stable (the corresponding spectral radius is 0.9995).
As a result, although trivial—identically zero—control results in uniformly bounded in N peak-to-peak gain,
this gain (≈ 12) is more than 10 times larger than the gain of the computed controller. Sample trajectories of
the system with and without control are presented in Figure 2.

In the reported experiments, ‖dt‖2 ≡ 1 for all t. “Bad” disturbance is selected to result in large peak-to-peak
gain with vanishing control; in this case maxt ‖xt‖2 turns to be ≈ 12, while with the control yielded by our
synthesis, the same disturbances result in maxt ‖xt‖2 ≈ 0.9, which is close to the upper bound on the gain
(≈ 1.02) guaranteed by our synthesis.

Our second experiment deals with toy dynamical system (3-dimensional states, scalar controls, disturbances,
and outputs) considered for illustrative purposes in [11]; what we are interested in, are two scalar “performance
outputs” z(1)

t , z(2)
t , t = 0, 1, . . . , given by

z
(χ)
t = axχxt + ayχyt + auχut + adt dt, t = 0, 1, . . . , χ = 1, 2

where axχ, . . . , adχ are given, and xt, yt, ut, dt are, respectively, states, outputs, controls, and disturbances at time t
(for detailed description, see [11, Section 5]). Following [11], we consider two infinite-horizon gains: γ(1)—the norm
of the induced by the linear controller in question mapping Z(1) from the space of bounded sequences {dt, t ≥ 0}
equipped with `∞ norm to the space of sequences {z(1)

t , t ≥ 0} equipped with the same norm, and γ(2)—the
norm of mapping Z(2) from the space of square-summable sequences {dt, t ≥ 0} to the space of sequences
{z(2)
t , t ≥ 0}, both spaces equipped with `2 norm. The goal is to build linear controller resulting in as small as

possible value of γ(1) given an upper bound on γ(2). To process the problem, we select the “training horizon”
T <∞ (we used T = 120) and memory parameter m (m = 40 in our experiments), and then optimize over the
parameters of purified-output-based (POB) controller of memory depth m the “finite-horizon” approximations
γ

(χ)
T of γ(χ), χ = 1, 2, defined as the respective operator norms of T × T angular blocks in Z(χ). After the control

is synthesized, we estimate the “actual” values of γ(χ)’s by computing the respective norms γ(χ)
T ′ of T ′ × T ′

7 MATLAB code for this experiment utilizing CVX [17] and MOSEK solver [2] is available at https://github.com/ai1-fr/
approximation-of-matrix-norms/tree/main/boeing.

https://github.com/ai1-fr/approximation-of-matrix-norms/tree/main/boeing
https://github.com/ai1-fr/approximation-of-matrix-norms/tree/main/boeing
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Figure 2 In blue, from top to bottom: state (nx = 4), output (ny = 2) and control (nu = 2, on
the synthesized control plots) trajectories of the controlled plant. In the left pane: random harmonic
oscillation disturbance, in the right pane: “bad disturbance”. In green: ‖ · ‖2-norms of states, outputs
and controls, respectively.

angular submatrices of the resulting matrices Zχ for T ′ � T .8 Authors of [11] report on performance of 4 linear
controllers obtained by 4 different synthesis methods. In order to make the comparison more informative, we
used our machinery to design 4 POB controllers with upper bounds on γ(2) close to the corresponding values
given by designs in [11]. The benchmark results from [11] and our results are summarized in Table 1.

Table 1 Value i in the first column corresponds to the row number in Table 1 of [11]; for each
experiment we report the estimate of the gain obtained by our synthesis and (in “[ · ]”) the corresponding
value from [11, Table 1].

i γ(1) γ(2)

1 24.29 [23.07] 21.35 [32.60]
2 73.93 [83.86] 10.52 [9.862]
3 33.22 [32.03] 14.97 [15.00]
4 33.22 [33.49] 14.97 [14.95]

Our tentative conclusion is that, as far as the reported data are concerned, our synthesis compares reasonably
well to those discussed in [11].

8 Indeed, there is clear numerical evidence of rapid stabilization of γ(χ)
T ′ ’s as T

′ grows, and we have absolutely no doubt that the
approximations γ(χ)

4096 of γ(χ) we present below are accurate up to 4 significant digits.
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4 Bounding robust norms of uncertain matrices

4.1 Motivation
Consider the following problem which arises, e.g., in Robust Control:

Given box-type uncertainty set

A[ρ] =
{
A =

S∑
s=1

zsAs : ‖z‖∞ ≤ ρ
}

in the space of m× n matrices, upper-bound the quantity

Opt∗(ρ) = max
A∈A[ρ]

|A|,

where | · | stands for the spectral norm of a matrix.
This problem can be immediately reduced to the Matrix Cube problem (cf. [7], see also [6, Section 3.4.3.1]):
associating with m× n matrix A symmetric (m+ n)× (m+ n) matrix

L[A] =
[ 1

2A
1
2A

T

]
,

we have |A| ≤ R if and only if RIm+n − 2L[A] � 0. Therefore, the inequality

Opt∗(ρ) ≤ R (18)

is equivalent to

RIm+n + 2
S∑
s=1

zsL[As] � 0 ∀ (z : ‖z‖∞ ≤ ρ).

According to the results of [7], reproduced in [6, Theorem 3.4.7], an efficiently verifiable sufficient condition for
the validity of the latter semi-infinite Linear Matrix Inequality (LMI) is the solvability of the parametric system
of LMIs

RIm+n − ρ
S∑
s=1

Us� 0, Us � ±2L[As], 1 ≤ s ≤ S, R[R, ρ]

in matrix variables Us, and this sufficient condition is tight within factor ϑ( · ) depending solely of the maximum
of ranks 2 rank(As) of the “edge matrices” L[As]. Specifically, when setting µ = max1≤s≤S rank(As), we obtain:

(18) does take place when R[R, ρ] is feasible, and
when R[R, ρ] is infeasible, one has Opt(ϑ(2µ)ρ) > R, where ϑ( · ) is a universal function specified in [7] (cf. [6,
display (3.4.39)] and (21) below) such that

ϑ(1) = 1, ϑ(2) = π/2, ϑ(3) = 1.7348 . . . , ϑ(4) = 2 & ϑ(k) ≤ 1
2π
√
k, k ≥ 1. (19)

The goal of this section is to extend this result onto more general matrix norms considered in Section 3.

4.2 Problem setting and main result
Let ellitopes X ⊂ Rn, B∗ ⊂ Rm with nonempty interior and basic ellitopes W, Z be given by (6), let B be the
polar of B∗, and let As ∈ Rm×n, 1 ≤ s ≤ S. These data define the uncertain matrix with box uncertainty

A =
{
A =

∑
s

εsAs : ‖ε‖∞ ≤ 1
}
⊂ Rm×n

and the quantity

‖A‖B,X = max
A∈A
‖A‖B,X
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which we refer to as robust ‖ · ‖B,X -norm of uncertain matrix A. Note that this norm is difficult to compute already
in the case of “general position” symmetric matrices As of rank 2. Our goal is to conceive a computationally
efficient upper-bounding of the robust norm.

Let us consider the quantity

κ(J) =
{

1, J = 1,
5
2
√

ln(2J), J > 1,
(20)

and function ϑ of the positive integer argument

ϑ(k) =
[
min
α

{
(2π)−k/2

∫
|α1u

2
1 + · · ·+ αku

2
k| e−u

Tu/2 du, α ∈ Rk, ‖α‖1 = 1
}]−1

; (21)

note that ϑ(k) satisfies (19) [7]. Let also

Opt = min
λ≥0,υ≥0,
{Gs,Hs}

φT (λ) + φR(υ) :

[
Gs

1
2Q

TAsP
1
2P

TATs Q Hs

]
� 0, s ≤ S∑

sGs �
∑
` υ`R`,

∑
sHs �

∑
k λkTk.

 . (22)

I Proposition 5. In the situation of this section, assuming that ranks of all As are ≤ κ, the efficiently computable
quantity Opt as given by (22) is a reasonably tight upper bound on the robust norm ‖A‖B,X of uncertain matrix
A, specifically,

‖A‖B,X ≤ Opt ≤ κ(K)κ(L)ϑ(2κ)‖A‖B,X (23)

where K and L are given by (6).

I Remark 6. Assume that matrices As = As[χ] are affine in some vector χ of control parameters. In this case,
the quantity ‖A‖B,X and its efficiently computable upper bound Opt become functions Opt∗(χ) = ‖A‖B,X and
Opt(χ) of χ, and it is immediately seen that both functions are convex. As a result, we can handle, to some
extent, the problem of minimizing over χ the robust ‖ · ‖-norm of uncertain matrix

A[χ] =
{
A =

∑
s

εsAs[χ] : ‖ε‖∞ ≤ 1
}
.

More precisely, we can minimize over χ efficiently computable convex upper bound Opt(χ) on the robust norm
Opt∗(χ) of A[χ], the bound being reasonably tight provided that the ranks of matrices As[χ] are small for all χ
in question.
I Remark 7. Note that the quantity

Opt = min
λ≥0,υ≥0,
{Gs,Hs}

φT (λ) + φR(υ) :

∑
sGs �

∑
` υ`R`,

∑
sHs �

∑
k λkTk[

Gs
1
2Q

TAsP
1
2P

TATs Q Hs

]
� 0, s ≤ S


as given by (22) admits another representation which may sometimes be more convenient. Specifically, excluding
trivial case Opt = 0 which takes place if and only if QTAsP = 0 for all s, one has

1
Opt = max

ρ,{Gs,Hs},λ,υ

ρ :

λ ≥ 0, υ ≥ 0, φT (λ) ≤ 1, φR(υ) ≤ 1∑
sGs �

∑
` υ`R`,

∑
sHs �

∑
k λkTk[

Gs ρQTAsP

ρPTATs Q Hs

]
� 0, s ≤ S

 . (24)

Indeed, the optimization problem specifying Opt clearly is solvable; let λ,υ, {Gs, Hs} be its optimal solution.
Looking at the problem, we see, first, that Opt > 0 implies λ 6= 0 and υ 6= 0, and thus φR(υ) > 0 and φT (λ) > 0.
Furthermore, whenever θ > 0, the collection θ−1λ, θυ, {θGs, θ−1Hs} is a feasible solution with the value of the
objective θφR(υ) + θ−1φT (λ). Since the solution we have started with is optimal, we have

θφR(υ) + θ−1φT (λ) ≥ φR(υ) + φT (λ) = Opt .
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This inequality holds true for all θ > 0, which with positive φR(λ) and φT (λ) is possible if and only if
φR(υ) = φT (λ) = Opt /2. It follows that setting

λ = 2λ/Opt, υ = 2υ/Opt, Gs = 2Gs/Opt, Hs = 2Hs/Opt, ρ = 1/Opt,

we get a feasible solution to (24) with the value of the objective 1/Opt, implying that the left hand side in (24) is
≤ the right hand side. On the other hand, the optimization problem in (24) clearly is solvable. If ρ, λ, υ, {Gs, Hs}
is an optimal solution to (24) then

Gs = Gs/(2ρ), Hs = Hs/(2ρ), λ = λ/(2ρ), υ = υ/(2ρ)

clearly form a feasible solution to the problem specifying Opt, and the value of the objective of the latter problem
at this solution is ≤ 1/ρ. Thus, Opt ≤ 1/ρ, ρ being the optimal value of the optimization problem in (24), so
that the left hand side in (24) is ≥ the right hand side.

4.2.1 An extension
Similarly to what was done in Section 3.2, the above results can be straightforwardly extended to the case when
‖ · ‖X is ellitopic, and ‖ · ‖B is co-ellitopic norm. Specifically, for an uncertain matrix

A =
{∑

s

εsAs : ‖ε‖∞ ≤ 1
}
,

the robust norm of A in the case of (10), (12) is

max
i,j

∥∥∥{∑
s

εsQ
T
j AsPi : ‖ε‖∞ ≤ 1

}∥∥∥
Z∗
j
,Xi

where Xi and polars Zj of Z∗j are ellitopes, and we know how to efficiently upper-bound the robust norms
‖{
∑
s εsQ

T
j AsPj : ‖ε‖∞ ≤ 1}‖Z∗

j
,Xi and how tight such bounds are.

4.2.2 Putting things together
So far, we have considered separately computationally efficient bounding of operator norms of matrices and
robust norms of uncertain matrices with box uncertainty. In applications to follow, we will be interested in a
“mixed” setting, where we want to upper-bound the robust norm

‖U‖B,X = max
A∈U
‖A‖B,X

of uncertain matrix

U = Anom +A, A =
{

S∑
s=1

εsAs : ‖ε‖∞ ≤ 1
}
. (25)

The corresponding blend of our preceding results is as follows:

I Proposition 8. Let X ⊂ Rn, B,B∗ ⊂ Rm be given by (10), (12), with basic ellitopes

Xi =
{
xi ∈ Rνi : ∃ ti ∈ T i : xTi Tkixi ≤ tik, 1 ≤ k ≤ Ki

}
, i ≤ I

Zj =
{
zj ∈ Rµj : ∃ sj ∈ Rj : zTj R`jzj ≤ s

j
` , 1 ≤ ` ≤ Lj

}
, j ≤ J

Then the efficiently computable quantity

Opt[U ] = max
i≤I,j≤J

Optij [U ],
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where

Optij [U ] = min
λij ,υij ,Gijs,Hijs

Gij ,Hij

1≤i≤I,1≤j≤J,1≤s≤S


φT i(λij) + φRj (υij) :

λij ≥ 0, υij ≥ 0∑S
s=1G

ijs +Gij �
∑Lj
`=1 υ

ij
` R`j ,∑S

s=1H
ijs +Hij �

∑Ki
k=1 λ

ij
k Tki[

Gijs 1
2 [QTj AsPi]

1
2 [QTj AsPi]T Hijs

]
� 0, s ≤ S[

Gij 1
2 [QTj AnomPi]

1
2 [QTj AnomPi]T Hij

]
� 0


(26)

is an efficiently computable convex in (Anom, A1, . . . , AS) upper bound on ‖U‖B,X . This upper bound is reasonably
tight, specifically, setting

Uij = QTj AnomPi +
{ S∑
s=1

εs[QTj AsPi] : ‖ε‖∞ ≤ 1
}
,

we have

‖Uij‖Z∗
j
,Xi ≤ Optij [U ] ≤ [ς(Ki, Lj) + κ(Ki)κ(Lj)ϑ(2κ)]‖Uij‖Z∗

j
,Xi ,

and

‖U‖B,X = max
i≤I,j≤J

‖Uij‖Z∗
j
,Xi ≤ Opt[U ] = max

i≤I,j≤J
Optij [U ]

≤
[

max
i≤I,j≤J

[ς(Ki, Lj) + κ(Ki)κ(Lj)ϑ(2κ)]
]
‖U‖B,X (27)

where κ is the maximum of ranks of As, 1 ≤ s ≤ S, and ς(K,L) and κ( · ), ϑ( · ) are as defined in Theorem 3
and Proposition 5.

Note that “extreme cases” (As = 0 for all s, on one hand, and Anom = 0, on the other) of Proposition 8
recover Theorem 3 and Proposition 5, and even their “advanced” versions with simple ellitopic/co-ellitopic norms
extended to ellitopic/co-ellitopic ones.

4.3Application to robust signal recovery
Consider the standard Signal Processing problem as follows. Given noisy observations

ω = Ax+ ξ, ξ ∼ N (0, Im) (28)

of unknown signal x known to belong to a given signal set X ⊂ Rn, we want to recover Bx ∈ Rν . Here A ∈ Rm×n

and B ∈ Rν×n are given matrices. We consider linear recovery x̂ = x̂H(ω) := HTω, H ∈ Rm×ν and quantify
the performance of a candidate estimate x̂H by its worst-case risk

Risk‖ · ‖B [x̂H |X ] = supx∈XEξ∼N (0,Im) {‖Bx− x̂H(Ax+ ξ)‖B} ,

where ‖ · ‖B is a given norm on Rν . There is an extensive literature dealing with the design and performance
analysis of linear estimates. In particular, it is known [21, Proposition 4.16] that when X is an ellitope of ellitopic
size K and the polar B∗ of the unit ball B of ‖ · ‖B is an ellitope of ellitopic size L, the linear estimate x̂H∗
yielded by the optimal solution to an explicit efficiently solvable convex optimization problem is optimal within
logarithmic in K, L factor:

Risk‖ · ‖B [x̂H∗ |X ] ≤ O(1)
√

ln(2K) ln(2L) Risk Opt‖ · ‖B [X ];

here Risk Opt‖ · ‖B [X ] is the minimax risk—the infimum of risks Risk‖ · ‖B [x̂|X ] over all estimates x̂, linear and
nonlinear alike.

The result we have just cited, as well as most of known to us results on performance of linear estimates,
deals with the case when the sensing matrix A is known in advance. Here we want to address the case when A is
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subject to “uncertain-but-bounded” perturbations, specifically, is selected (by nature or by an adversary) from
the uncertainty set

U = Anom +A, A =
{

S∑
s=1

εsAs : ‖ε‖∞ ≤ 1
}
.

This problem can be seen as a “noninterval” extension of the problem of solving systems of equations affected by
interval uncertainty which has received significant attention in the literature, cf., e.g., [14, 18, 23, 31, 36, 37, 38]
and references therein. Assuming that given perturbation in A and “true” signal x, the observation noise ξ is
N (0, Im), the worst-case risk of a linear estimate x̂H becomes

Risk+
‖ · ‖B [x̂H |X ] := sup

x∈X ,ε:
‖ε‖∞≤1

Eξ∼N (0,Im)

{∥∥∥[B −HTAnom]x−
[∑

s

εsH
TAs

]
x−HT ξ

∥∥∥
B

}

≤ ‖V[H]‖B,X + Eξ∼N (0,Im){‖HT ξ‖B}

where

V[H] =
{

[B −HTAnom] +
S∑
s=1

εsH
TAs : ‖ε‖∞ ≤ 1

}

and ‖V[H]‖B,X = maxV ∈V[H] ‖V ‖B,X . The simplest way to build a “presumably good” linear estimate is to
minimize over H the sum of the (efficiently computable upper bound on the) robust norm of V[H] and an
efficiently computable upper bound on Ψ(H) := Eξ∼N (0,Im){‖HT ξ‖B}. Combining the results of Proposition 8
with the upper bound on Ψ(H) from [21, Lemma 4.11], in the case of X = PX1, B∗ = QZ1, I = J = 1, we arrive
at the efficiently solvable convex optimization problem

Opt = min
H,λ,υ,µ,

Θ,Gs,Hs,G,H

φT (λ) + φR(υ) + φR(µ) + Tr(Θ) :

λ ≥ 0, υ ≥ 0, µ ≥ 0, G+
∑
sG

s �
∑
` υ`R`, H +

∑
sH

s �
∑
k λkTk[

Θ 1
2HQ

1
2Q

THT
∑
` µ`R`

]
� 0,

[
Gs 1

2Q
THTAsP

1
2P

TATs HQ Hs

]
� 0, s ≤ S[

G 1
2Q

T [B −HTAnom]P
1
2P

T [BT −ATnomH]Q H

]
� 0


(29)

(we use the notation from Proposition 8 with ν in the role of m). For every feasible solution to this problem, the
value of the objective at the solution is an upper bound on Risk+

‖ · ‖B [x̂H |X ], H being the H-component of the
solution in question. Moreover, from Proposition 8 combined with [21, Lemma 4.11] it follows that the function
Opt[H] obtained by partial minimization of the objective in (29) over all decision variables except H is a tight,
within factor O(1)

√
ln(2K) ln(2L)ϑ(2κ), upper bound on Risk+

‖ · ‖B [x̂H |X ]; here κ = min[m, ν,maxs rank(As)].
In particular, linear estimate x̂H∗ yielded by an optimal solution to (29) is optimal within the above factor, in
terms of its risk Risk+

‖ · ‖B [·|X ], among all linear estimates. Finally, when there is no uncertainty (As = 0 for all
s), x̂H∗ is exactly the near-minimax-optimal estimate from [21, Proposition 4.16].

4.3.1 System identification: the problem
Consider situation as follows: a linear time-invariant dynamical system with states ut ∈ Rd and inputs rt ∈ Rh

evolves according to

ut+1 = X[ut; rt]. (30)

We are given noisy observations ut of the states and of the inputs on time horizon 0 ≤ t ≤ N :

uti = uti − ξti, 0 ≤ t ≤ N, 1 ≤ i ≤ d; uti = rt,i−d − ξti, 0 ≤ t < N, d+ 1 ≤ i ≤ d+ h; (31)
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we also have at our disposal upper bounds on the magnitudes of observation errors:

|ξtj | ≤ ξtj

with known ξ’s. In addition, we have partial a priori knowledge of X expressed by a system of linear equations
on the entries of X. Our goal is to recover the image X+ of X under a given linear mapping.

Observe that the considered setting is rather different from the “classical” setting of linear system identification
problem, cf. [3, 16, 27, 29, 40], in which it is assumed that the states of the system are observed without errors,
and the errors in observations of inputs are corrupted by random zero mean noise. The situation in which
perturbations in the observation of the state of the system are uncertain-but-bounded (e.g., belong to an ellipsoid)
is the subject of the significant literature (see, e.g., [8, 12, 13, 19, 24, 25, 26, 28, 30, 32, 39, 43] and references
therein). The “generic” approach to the problem we develop below, to the best of our knowledge, differs
significantly from those proposed so far, and, we believe, can be considered as a meaningful contribution to the
this line of research.

Assigning the entries of X serial indices, denoting by ι(i, j) the index of Xij and setting x∗ι(i,j) = Xij , we get
n-dimensional vector x∗, n = d(d+ h), known to satisfy the system of linear equations

Px = p (32)

(P ∈ Rν×n has linearly independent rows), expressing our a priori knowledge of the actual entries of X. Dynamic
equations read

ut+1,i =
d+h∑
j=1

utjx
∗
ι(i,j) − ξt+1,i +

d+h∑
j=1

ξtjx
∗
ι(i,j), 1 ≤ i ≤ d, 0 ≤ t ≤ N − 1, (!ti)

which we rewrite as a system of linear equations on x∗ of the form

Qx−
S∑
s=1

ζsQsx = q −
S∑
s=1

ζsqs

where S = N(d+ h) + d is the total count of observation errors ξtj , ζ1, . . . , ζS are these errors written down in
certain order, Q and Qs are observable m×n matrices, m = dN , and q, qs are observable m-dimensional vectors.
Note that each matrix Qs has at most d+ 1 nonzero rows. Indeed, observation error ξtj with j ≤ d participates
only in equation (!t−1,j) (this happens when t ≥ 1) and d equations (!ti), 1 ≤ i ≤ d, and observation error ξtj
with j > d participates only in d equations (!ti), 1 ≤ i ≤ d. Setting

L = {x ∈ Rn : Px = 0}, x = (PPT )−1PT p, Π = In − PT (PPT )−1P,

so that Π is an orthoprojector of Rn onto L and x is the orthogonal projection of x∗ onto the orthogonal
complement of L, we have

x∗ = x+ ∆∗

with ∆∗ satisfying the relations

∆∗ ∈ L,

∃ (ε∗ ∈ RS , ‖ε∗‖∞ ≤ 1) : Q[x+ ∆∗]−
[

S∑
s=1

ε∗s ζsQs︸ ︷︷ ︸
Qs

]
[x+ ∆∗] = q −

S∑
s=1

ε∗sζsqs.

Thus, x∗ = x+ ∆∗, where ∆∗ solves, for properly selected vector ε = ε∗ ∈ RS , ‖ε∗‖∞ ≤ 1, the system of linear
equations[

Q−
∑
s

εsQs

]
∆ =

[
q +

∑
s

εsqs

]
& Π∆ = ∆[

q = q −Qx, qs = Qsx− ζsqs
] (33)

in variables ∆ ∈ Rn.
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Recall that out goal is to recover from observation the image of X under a given linear mapping; this is the
same as to recover

y∗ = Bx∗ = Bx︸︷︷︸
y

+B∆∗︸ ︷︷ ︸
δ∗

for a given ν × n matrix B. Let us quantify the recovery error by the norm ‖ · ‖B on Rν .

4.3.2 Robust linear recovery
Given m× n matrix E and m× ν matrix H, let us recover

∆∗ by the vector

∆̂ := ΠET q =
[

ΠETQ−
∑
s

ε∗sΠETQs

]
∆∗ −

∑
s

ε∗sΠET qs

and x∗—by the vector x+ ∆̂,
δ∗ by the vector

δ̂ := HT q =
[
HTQ−

∑
s

ε∗sH
TQs

]
∆∗ −

∑
s

ε∗sH
T qs

and y∗—by y + δ̂.

Performance analysis
By (33) we have

q =
[
Q−

∑
s

ε∗sQs

]
∆∗ −

∑
s

ε∗sqs.

Thus, ∆̂ ∈ L, ∆∗ ∈ L, and

∆̂−∆∗ =
[

ΠETQ− In −
∑
s

ε∗sΠETQs

]
∆∗ −

[∑
s

ε∗sΠET qs

]

=
[

Π[ETQ− In]Π−
∑
s

ε∗sΠETQsΠ
]

∆∗ −
[∑

s

ε∗sΠET qs

]
(34)

where the concluding equality is due to ∆∗ = Π∆∗ and Π2 = Π. Besides this,

δ̂ − δ∗ =
[
HTQ−B −

∑
s

ε∗sH
TQs

]
∆∗ −

[∑
s

ε∗sH
T qs

]

=
[

[HTQ−B]Π−
∑
s

ε∗sH
TQsΠ

]
∆∗ −

[∑
s

ε∗sH
T qs

]
(35)

Now let X be the unit ball of a norm ‖ · ‖X on Rn; assume that this norm is both ellitopic and co-ellitopic.
Let

W0[E] =
{∑

s

εsΠET qs : ‖ε‖∞ ≤ 1
}
⊂ Rn,

W[E] =
{

Π[ETQ− In]Π−
∑
s

εsΠETQsΠ : ‖ε‖∞ ≤ 1
}
,

and let Υ0[E] and Υ[E] be the efficiently computable convex in E upper bounds, given by our machinery, on the
robust norms

‖W0[E]‖X ,[−1,1] = max
w
{‖w‖X : w ∈ W0[E]}, ‖W[E]‖X ,X = max

W
{‖W‖X ,X : W ∈ W[E]}
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of the uncertain n× 1 matrix W0[E] and uncertain n× n matrix W[E]. By (34) we have

‖∆̂−∆∗‖X ≤ Υ[E]‖∆∗‖X + Υ0[E]. (36)

Assume from now on that ‖ · ‖B is a co-ellitopic norm, let

V0[H] =
{∑

s

εsH
T qs : ‖ε‖∞ ≤ 1

}
⊂ Rnν , V[H] =

{
[HTQ−B]Π−

∑
s

εsH
TQsΠ : ‖ε‖∞ ≤ 1

}

and let Υ0[H], Υ[H] be the efficiently computable convex in H upper bounds, given by our machinery, on the
robust norms

‖V0[H]‖B,[−1,1] = max
w
{‖w‖B : w ∈ V0[H]}, ‖V[H]‖B,X = max

W
{‖W‖B,X : W ∈ V[H]}

of the uncertain ν × 1 matrix V0[H] and uncertain ν × n matrix V[H]. By (35) we have

‖δ̂ − δ∗‖B ≤ Υ[H]‖∆∗‖X + Υ0[H]. (37)

Assume now that E is such that Υ[E] < 1. Then

‖∆∗‖X ≤ ‖∆̂−∆∗‖X + ‖∆̂‖X ≤ Υ[E]‖∆∗‖X + [‖∆̂‖X + Υ0[E]]

whence

‖∆∗‖X ≤
‖∆̂‖X + Υ0[E]

1−Υ[E] . (38)

As a result,

‖x̂− x∗‖X = ‖∆̂−∆∗‖X ≤
Υ[E]

1−Υ[E] [‖∆̂‖X + Υ0[E]] + Υ0[E]

= Υ[E]
1−Υ[E]

[
‖ΠET q‖X + Υ0[E]

]
+ Υ0[E] (39a)

‖ŷ − y∗‖B = ‖δ̂ − δ∗‖B ≤
Υ[H]

1−Υ[E] [‖∆̂‖X + Υ0[E]] + Υ0[H]

= Υ[H]
1−Υ[E]

[
‖ΠET q‖X + Υ0[E]

]
+ Υ0[H] (39b)

Synthesis of the linear estimate
Recall that the problem of minimizing Υ[E] w.r.t. E is efficiently solvable. If we are lucky to have Υ∗ :=
infE Υ[E] < 1, we can optimize, to some extent, our estimate HT q of y∗ = Bx∗ in H. To this end, let us select
E which “nearly minimizes” the quantity

Γ = 1
1−Υ[E]

[
‖ΠET q‖X + Υ0[E]

]
over E under the constraint Υ(E) < 1; after E is selected, we specify H by minimizing the resulting right hand
side of (39b), that is, ΓΥ(H) + Υ0[H] in H.

“Near-minimization” of Γ over E can be carried out as follows. Let us select somehow β < 1 close to 1 (e.g.,
β = 0.9 or β = 0.99) and set Υi = (1− βi) + βiΥ∗, i = 0, 1, 2, . . . , so that βi

1−Υ ≤
1

1−Υ∗ is equivalent to Υ ≤ Υi.
We solve one by one feasible convex optimization problems

Opti = 1
1−Υi

min
E

{
‖ΠET q‖X + Υ0[E] : Υ[E] ≤ Υi

}
, i = 0, 1, . . . , (Pi)

we run this process until the quantities Opti start to grow, and specify Γ as the smallest of Opti we have
generated.
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Let us write explicitly the problem (Pi) in the situation where

X = Conv
{ ⋃
k≤K

PkBnk

}
(40)

where Bm is the unit ‖ · ‖2-ball in Rm and Pk ∈ Rn×nk . As we know, in this case

‖x‖X = min
xk∈Rnk ,k≤K

{∑
k

‖xk‖2 :
∑
k

Pkxk = x

}
,

‖x‖X∗ = max
k≤K
‖PTk x‖2, (41)

‖A‖X ,X = max
k≤K
‖APk‖X ,Bnk .

Exploiting the fact that in our present situation X∗ = {x : ‖PTk x‖2 ≤ 1, k ≤ K} is an ellitope, (Pi) may be
rewritten as follows (cf. (26) in Proposition 8):

‖ΠET q‖X = min
{xk,k≤K}

{∑
k

‖xk‖2 :
∑
k

Pkxk = ΠET q
}

;

Υ0[E] = min
{Gs∈Rn,Hs∈R,s≤S},

υ∈RK ,λ∈R

1
2

[∑
k

υk + λ

]
:

υ ≥ 0,
∑
sGs �

∑
k υkPkP

T
k ,
∑
sHs ≤ λ[

Gs ΠET qs
qTs EΠ Hs

]
� 0


= min
{Hs∈R,s≤S},
υ∈RK ,λ∈R

{
1
2

[∑
k

υk + λ

]
: υ ≥ 0,

∑
sHs ≤ λ∑

sH
−1
s [ΠET qs][ΠET qs]T �

∑
k υkPkP

T
k

}

= min
υ∈RK ,µ∈RS

{
1
2

[∑
k

υk +
∑
s

µs

]
: υ ≥ 0,

[ ∑
k
υkPkP

T
k ΠET [q1, . . . , qS ]

[q1, . . . , qS ]TEΠ Diag{µ}

]
� 0
}

;

Υ[E] = min
{Gks ,H

k
s ,G

k
,H

k:k≤K,s≤S},
{υk,λk:k≤K}


1
2 max
k≤K

 K∑
j=1

υkj + λk

 :

υk ≥ 0, Gk +
∑
sG

k
s ≤

∑K
j=1 υ

k
j PjP

T
j , H

k +
∑
sH

k
s � λkInk[

Gk Π[ETQ− In]ΠPk
PTk Π[QTE − In]Π Hk

]
� 0,[

Gks ΠETQsΠPk
PTk ΠQTs EΠ Hk

s

]
� 0 k ≤ K, s ≤ S


,

and

Opti = 1
1−Υi

min
E,{xk,k≤K},υ∈RK ,µ∈RS ,

{Gks ,H
k
s ,G

k
,H

k
,k≤K,s≤S},

{υk∈RK ,λk,k≤K}


∑
k

‖xk‖2 + 1
2

[∑
k

υk +
∑
s

µs

]
:

∑
k Pkxk = ΠET q

υ ≥ 0,
[ ∑

k
υkPkP

T
k ΠET [q1, . . . , qS ]

[q1, . . . , qS ]TEΠ Diag{µ}

]
� 0

υk ≥ 0, Gk +
∑
sG

k
s ≤

∑K
j=1 υ

k
j PjP

T
j , H

k +
∑
sH

k
s � λkInk , k ≤ K,[

Gk Π[ETQ− In]ΠPk
PTk Π[QTE − In]Π Hk

]
� 0[

Gks ΠETQsΠPk
PTk ΠQTs EΠ Hk

s

]
� 0, k ≤ K, s ≤ S

1
2 maxk≤K [

∑
j υ

k
j + λk] ≤ Υi


.
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I Remark 9. Rationale behind restricting ourselves to X as in (40) is as follows. Recall that the norm ‖ · ‖X
we consider is assumed to be both ellitopic and co-ellitopic. There are only two known to us generic situations
in which the corresponding unit ball X is both ellitopic and co-ellitopic at the same time, and (40) is one of
them. The other nice situation which is “symmetric” to the first, is when ‖ · ‖X is the conjugate of the norm just
defined, that is, norm of the form maxk≤K ‖PTk x‖2. In our context, this second case reduces to the first due to
‖A‖X ,X = ‖AT ‖X∗,X∗ .

Numerical illustration
to follow deals with recovery of the parameters of the “Boeing 747” model used in Section 3.3.3, which in our
present notation reads

ut+1 =


0.9957 0.0339 −0.0211 −0.3214 0.0140 0.9886 0.0043 −0.0337
0.0076 0.4699 4.6604 0.0022 −3.4373 1.6648 −0.0079 0.5285
0.0168 −0.0605 0.4038 −0.0029 −0.8219 0.4378 −0.0167 0.0600
0.0091 −0.0370 0.7194 0.9990 −0.4735 0.2491 −0.0091 0.0370

 [ut; rt]

where ut ∈ R4 are the states, and rt ∈ R4 are the inputs (“in reality” the first two entries in rt are controls, and
the last two—external disturbances). We observe ut’s for 0 ≤ t ≤ N = 12 and rt’s for 0 ≤ t < N ; in the resulting
identification problem, m = 48, n = 32, S = 100, and L = Rn (whence Π = In and x = 0). Observations of
states and inputs are corrupted by “relative ε-noises”, so that an observable real r and its observation r satisfy
|r − r| ≤ εmax[|r|, 1]. In an experiment, we select a noise level ε ∈ [0.001, 0.01], generate a sample trajectory of
the system by selecting at random the initial state and the inputs, then add to the states and the inputs random
ε-errors, and apply to the resulting observations the above robust linear recovery with B = In and B = X being
the unit ‖ · ‖2-ball in Rn to recover the parameters of the system. We compare this recovery with the simplest
Least Squares estimation HT

LSq = argminx ‖Qx− q‖22, HLS = Q(QTQ)−1.
The results of a series of 10 experiments are presented in Table 2.9 In Figure 3, we present the trajectories of

the actual and the recovered (experiment # 10, ε = 0.01) systems on time horizon 1 ≤ t ≤ 49 for random initial
state and inputs (different from those used in the experiment).

Table 2 ‖ · ‖2-errors of recovery (first number in a cell) and ratios of upper bounds by (39b) on these
errors to the actual errors (second number in a cell); median values for 10 simulations per each value of
noise level ε.

ε 0.001 0.002 0.003 0.004 0.005
Least Squares 0.017/12.1 0.035/10.0 0.071/12.6 0.078/11.0 0.061/12.1

Linear Recovery 0.021/1.9 0.042/1.5 0.085/1.6 0.096/1.5 0.074/1.7
ε 0.006 0.007 0.008 0.009 0.010

Least Squares 0.118/12.2 0.124/11.4 0.123/ 10.4 0.124/12.1 0.145/13.2
Linear Recovery 0.131/1.4 0.163/1.4 0.162/1.6 0.157/1.8 0.189/1.6

A Proofs

A.1 Proof of Theorem 3
The below proof follows that of Theorem 2 as given in [21, Section 4.8.2], utilizing at some point bilinearity of
the quadratic form we want to upper-bound on Z ×W.

Let q, p be the dimensions of the embedding spaces of Z and W, and assume w.l.o.g. that q ≤ p.10

1°. Let

T = cl{[t; τ ] : τ > 0, t/τ ∈ T } and R = cl{[r; θ] : θ > 0, r/θ ∈ R}

9 MATLAB code for this experiment is available at https://github.com/ai1-fr/approximation-of-matrix-norms/tree/
main/ident.

10 It is immediately seen that the norm bound (7) is intelligent enough to respect the identity ‖A‖B,X = ‖AT ‖X∗,B∗ where Q∗
stands for the polar of a set Q. As a result, to ensure q ≤ p, we can pass, if necessary, from B,X and A to X∗,B∗ and AT .

https://github.com/ai1-fr/approximation-of-matrix-norms/tree/main/ident
https://github.com/ai1-fr/approximation-of-matrix-norms/tree/main/ident
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Figure 3 States of the actual (marked “o”) and the recovered (marked “+”) systems vs. time. Left:
Least Squares recovery; right: Robust recovery. Maximum relative magnitude of observation errors 0.01.
Actual values of ‖ · ‖2-errors of recovery are 0.1372 for LS and 0.1279 for Robust recovery.

be the closed conic hulls of T and R, so that T and R are regular (closed, pointed and convex with nonempty
interior) cones such that

T = {t : [t; 1] ∈ T}, R = {r : [r; 1] ∈ R}.

As is immediately seen, the cones dual to T, R are

T∗ = {[g; τ ] : τ ≥ φT (−g)}, R∗ = {[h; θ] : θ ≥ φR(−h)}.

In view of these observations, (7) is nothing but the conic problem

Opt(A) = min
λ,υ,τ,θ

τ + θ :
λ ≥ 0, υ ≥ 0, [−λ; τ ] ∈ T∗, [−υ; θ] ∈ R∗,[ ∑

` υ`R`
1
2Q

TAP
1
2P

TATQ
∑
k λkTk

]
� 0

 .

It is easily seen that this problem is strictly feasible and bounded. By Conic Duality,

Opt(A) = max
r,t,U,V,W

Tr(WTQTAP ) :

t ∈ T , r ∈ R
Tr(R`U) ≤ r` ∀ `,Tr(TkV ) ≤ tk ∀ k[

U W

WT V

]
� 0


= max
r,t,U,V,Y

{
Tr(~[U1/2Y V 1/2]TQTAP ) : r ∈ R, t ∈ T , U � 0, V � 0, Y TY � I

Tr(R`U) ≤ r` ∀ `,Tr(TkV ) ≤ tk ∀ k

}
= max
r,t,U,V

{
q∑
i=1

σi(U1/2QTAPV 1/2) : U � 0,Tr(R`U) ≤ r` ∀ `, r ∈ R
V � 0,Tr(TkV ) ≤ tk ∀ k, t ∈ T

}

where σi( · ), i ≤ q, are the singular values of q × p matrix (recall that q ≤ p). At the last two steps of the above
derivation, we have used the following well known facts[

U W

WT V

]
� 0 if and only if U � 0, V � 0 and W = U1/2Y V 1/2 with Y TY � I,

and
the maximum of Frobenius inner products of a given matrix with matrices of spectral norm not exceeding 1
is the nuclear norm of the matrix—the sum of singular values.

2°. The concluding optimization problem in the above chain clearly is solvable; let U, V, r, t be the optimal solution,
and let σi = σi(U1/2QTAPV 1/2), and

∑q
ι=1 σιeιf

T
ι be the singular value decomposition of U1/2QTAPV 1/2, so
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that

Opt(A) =
q∑
ι=1

σι,

U1/2QTAPV 1/2 =
q∑
ι=1

σιeιf
T
ι ,

eTi ej =
{

1, i = j

0, i 6= j,
i, j ≤ q & fTi fj =

{
1, i = j

0, i 6= j,
i, j ≤ p.

(42)

Let ε1, . . . , εp be independent random variables taking values ±1 with probabilities 1/2, and let

ξ =
q∑
i=1

εiei, η =
p∑
j=1

εjfj .

Then in view of (42) it holds, identically in εi = ±1, 1 ≤ i ≤ p:

ξTU1/2QTAPV 1/2η =
∑

i,ι≤q,j≤p

[εiεjσιeTi eιfTι fj ] =
q∑
ι=1

σι = Opt(A). (43)

On the other hand, setting E = [e1, . . . , eq], we get an orthonormal q × q matrix such that ξ = Eε, where
ε = [ε1; . . . ; εq] is a Rademacher vector (i.e., random vector with independent entries taking values ±1 with
probabilities 1/2), and

ξTU1/2R`U
1/2ξ = εT [ETU1/2R`U

1/2E]︸ ︷︷ ︸
R`

ε

By construction, R` � 0 and

Tr(R`) = Tr(U1/2R`U
1/2) = Tr(R`U) ≤ r`.

For every ` such that r` > 0 we have Tr(r−1
` R`) ≤ 1. Now let us use the following fact.

I Lemma 10 ([21, Lemma 4.48]). Let Q be positive semidefinite N × N matrix with trace ≤ 1 and ζ be
N -dimensional Rademacher random vector. Then

E
{

exp
{

1
3ζ

TQζ

}}
≤
√

3.

By Lemma 10, whenever r` > 0 we have

E{exp{ξT [r−1
` U1/2R`U

1/2]ξ/3}} = E{exp{εT [r−1
` R`]ε/3}} ≤

√
3.

As a result, for every ` such that r` > 0 we have

Prob{ξTU1/2R`U
1/2ξ > 3 ln(4L)r`} < 1/(2L).

The latter relation holds true for those ` for which r` = 0 as well, since for these ` one has U1/2R`U
1/2 = 0

because trace of the latter positive semidefinite matrix is ≤ r`. Similar reasoning with ε = [ε1; . . . ; εp] in the role
of ε and Tk, tk in the roles of R`, r` demonstrates that for every k we have

Prob{ηTV 1/2TkV
1/2η > 3 ln(4K)tk} < 1/(2K).

Consequently, invoking (43), we conclude that there exists realization (ξ, η) of (ξ, η) such that

ξTU1/2QTAPV 1/2η = Opt(A),

and

ξTU1/2R`U
1/2ξ ≤ 3 ln(4L)r` ∀ `, ηTV 1/2TkV

1/2η ≤ 3 ln(4K)tk ∀ k.
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Setting v = QU1/2ξ, x = PV 1/2η and invoking (6), we get ‖x‖X ≤
√

3 ln(4K), ‖v‖B∗ ≤
√

3 ln(4L), resulting in

Opt(A) = ξTU1/2QTAPV 1/2η = vTAx ≤ ‖x‖X ‖υ‖B∗‖A‖B,X ,

that is,

Opt(A) ≤ 3
√

ln(4K) ln(4L)‖A‖B,X .

as claimed.

3°. It remains to consider the case of K = L = 1. By evident scaling argument, the situation reduces to that
where X = P{w : wTTw ≤ 1} and B∗ = Q{z : zTSz ≤ 1}. In this case,

‖A‖B,X = max
z:zTSz≤1,
w:wTTw≤1

zT [QTAP ]w = max
ζ:‖ζ‖2≤1
ω:‖ω‖2≤1

ωT [S−1/2QTAPT−1/2]ζ

= min
ν

{√
ν :
[

νIq [S−1/2QTAPT−1/2]
[S−1/2QTAPT−1/2]T Ip

]
� 0
}
.

On the other hand,

Opt(A) = min
λ,υ

{
λ+ υ :

[
υS 1

2 [QTAP ]
1
2 [QTAP ]T λT

]
� 0
}

= min
λ,υ

{
1
2 [λ+ υ] :

[
υIq [S−1/2QTAPT−1/2]

[S−1/2QTAPT−1/2]T λIp

]
� 0
}

= min
λ≥0,υ≥0

{
1
2 [λ+ υ] :

[
υλIq [S−1/2QTAPT−1/2]

[S−1/2QTAPT−1/2]T Ip

]
� 0
}

= min
λ≥0,υ≥0,ν

{
1
2 [λ+ υ] : υλ ≥ ν,

[
νIq [S−1/2QTAPT−1/2]

[S−1/2QTAPT−1/2]T Ip

]
� 0
}

= min
ν

{√
ν :
[

νIq [S−1/2QTAPT−1/2]
[S−1/2QTAPT−1/2]T Ip

]
� 0
}

= ‖A‖B,X . J

A.2 Proof of Proposition 5
1°. Let R, T, R∗ and T∗ be as defined in item 1° of the proof of Theorem 3. Observe that

Opt = min
λ,υ,Gs,Hs,α,β

α+ β :

[
Gs

1
2Q

TAsP
1
2P

TATs Q Hs

]
� 0 ∀ s ≤ S, [−υ;α] ∈ R∗, [−λ;β] ∈ T∗∑

sGs �
∑
` υ`R`,

∑
sHs �

∑
k λkTk, λ ≥ 0, υ ≥ 0


= max
Y,X,Ws,r,t

∑
s

Tr(WT
s Q

TAsP ) :

[
Y Ws

WT
s X

]
� 0 ∀ s ≤ S, t ∈ T , r ∈ R

Tr(Y R`) ≤ r`, ` ≤ L, Tr(XTk) ≤ tk, k ≤ K


[by conic duality]

= max
Y,X,r,t

{∑
s

‖σ(Y 1/2QTAsPX
1/2)‖1 : Y � 0, X � 0, t ∈ T , r ∈ R,

Tr(Y R`) ≤ r`, ` ≤ L,Tr(XTk) ≤ tk, k ≤ K

}
where σ(A) is the singular spectrum of A; the last equality in the chain follows from the two simple observations
(cf. the proof of Theorem 3):

LMI
[

P Q

QT R

]
� 0 with p× p matrix P and r × r matrix R takes place if and only if P � 0, R � 0, and

Q = P 1/2Y R1/2 with p× r matrix Y such that Y TY � Ir, and
for p× r matrix A, one has maxY {Tr(Y TA) : Y ∈ Rp×r, Y TY � Ir} = ‖σ(A)‖1

With L[B] =
[ 1

2B
1
2B

T

]
, the nonzero eigenvalues of 2L[B] are exactly plus and minus nonzero singular

values of B, and we conclude that

Opt = max
Y,X,r,t

∑
s

‖λ(L[Y 1/2QTAsPX
1/2])‖1 :

Y ∈ Sq+, X ∈ Sp+, t ∈ T , r ∈ R
Tr(Y R`) ≤ r`, ` ≤ L,
Tr(XTk) ≤ tk, k ≤ K

 , (44)
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where λ(A) is the vector of eigenvalues of a symmetric matrix A.
Note that Opt as defined in (44) clearly is a convex function of [A1, . . . , AS ].
Observe that ‖A‖B,X ≤ Opt. Indeed, the problem specifying Opt clearly is solvable, and if λ ≥ 0, υ ≥

0, {Gs, Hs} is its optimal solution, we have for all z ∈ Z, w ∈ W, εs = ±1 :

εsz
TQTAsPw ≤ zTGsz + wTHsw.

Thus,

∑
s

εsz
TQTAsPw ≤ zT

[∑
`

υ`R`

]
z + wT

[∑
k

λkTk

]
w ≤ max

r∈R,t∈T

[
υT r + λT t

]
≤ φR(υ) + φT (λ) = Opt

for all w ∈ W, z ∈ Z, and all εs = ±1, implying that ‖A‖B,X ≤ Opt (recall that PW = X and QZ = B∗).

2°. Now, let X � 0, Y � 0, t, r be such that t ∈ T , r ∈ R, Tr(Y R`) ≤ r`, ` ≤ L, Tr(XTk) ≤ tk, k ≤ K, and

Opt =
∑
s

‖λ(L[Y 1/2QTAsPX
1/2])‖1.

By [7, Lemma 2.3] (cf. [6, Lemma 3.4.3]), if the ranks of all matrices As (and thus—matrices QTAsP ) do not
exceed a given κ, which we assume from now on, then for ω ∼ N (0, Im+n) one has

E
{
|ωTL[Y 1/2QTAsPX

1/2]ω|
}
≥ ‖λ(L[Y 1/2QTAsPX

1/2])‖1/ϑ(2κ),

where ϑ(k) is defined in (21). It follows that for [η; ξ] ∼ N (0,Diag{Y,X}),

Opt ≤ ϑ(2κ)E
{∑

s

|ωTL[Y 1/2QTAsPX
1/2]ω|

}
= ϑ(2κ)E

{∑
s

|ηTQTAsPξ|

}
.

Now, let π( · ) be the norm on Rp with the unit ball W, and ρ( · ) be the norm on Rq with the unit ball Z.
Taking into account that X = PW and B∗ = QZ we conclude that

∀ (η ∈ Rq, ξ ∈ Rp) :
∑
s

|ηTQTAsPξ| = max
εs=±1

ηTQT [
∑
s

εsAs]Pξ ≤ ρ(η)π(ξ)‖A‖B,X ,

thus arriving at

Opt ≤ ϑ(2κ)‖A‖B,XE{ρ(η)π(ξ)} = ϑ(2κ)‖A‖B,XE {π(ξ)}E {ρ(η)} . (45)

3°. It remains to invoke

I Lemma 11. Let

V = {v ∈ Rd : ∃ r ∈ R : vTRjv ≤ rj , 1 ≤ j ≤ J} ⊂ Rd

be a basic ellitope, W � 0 be symmetric d× d matrix such that

∃ r ∈ R : Tr(WRj) ≤ rj , j ≤ J,

and ω ∼ N (0,W ). Denoting by ρ( · ) the norm on Rd with the unit ball V, we have

E{ρ(ω)} ≤ κ(J)

where κ( · ) is as in (22).

The statement of the proposition now follows from (45) by applying Lemma 11 to V =W, W = X, and to
V = Z, W = Y .

4°. To complete the proof, it remains to prove Lemma 11. Let us start with the case of J = 1. Setting
r = max{r : r ∈ R} and R = R1/r, we have Tr(WR) ≤ 1 and ρ(u) = ‖R1/2u‖2. Setting W = R1/2WR1/2 and
ω = R1/2ω, we get ω ∼ N (0,W ), Tr(W ) ≤ 1, and

E{ρ(ω)} = E{‖ω‖2} ≤
√

E{ωTω} =
√

Tr(W ) ≤ 1 = κ(1).
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Now let J > 1. Observe that if Θ � 0 is a d × d matrix with trace 1, 0 ≤ t < 1/2, and ζ ∼ N (0, Id) then by
convexity of E

{
exp{t

∑
i ζ

2
i λi}

}
in λ

E
{

exp{tζTΘζ}
}

= E
{

exp
{
t
∑
i

ζ2
i λi(Θ)

}}
≤ Eς∼N (0,1){exp{tς2}} = (1− 2t)−1/2.

As a result,

∀ s ≥ 0 : Prob
{
ζTΘζ ≥ s2}

}
≤ exp{−ts2}√

1− 2t
.

Under the premise of the lemma, let W � 0 be such that Tr(WRj) ≤ rj for all j. For every j such that rj > 0,
setting Θj = W 1/2RjW

1/2/rj , we get Θj � 0, Tr(Θj) ≤ 1, so that by the above for all s > 0 and 0 ≤ t < 1/2

Probω∼N (0,W ){ωTRjω > s2rj} = Probζ∼N (0,Id){ζTΘjζ > s2} ≤ exp{−ts2}√
1− 2t

.

The resulting inequality clearly holds true for j with rj = 0 as well. Now, when ω and s > 0 are such that
ωTRjω ≤ s2rj for all j, we have ρ(ω) ≤ s. Combining our observations, we get

Probω∼N (0,W ){ρ(ω) > s} ≤ min
[
1, J exp{−ts2}√

1− 2t

]
,

implying that

Eω∼N (0,W ) {ρ(ω)} ≤
∫ ∞

0
min

[
1, J exp{−ts2}√

1− 2t

]
ds

Optimizing w.r.t. t, we arrive at

Eω∼N (0,W ) {ρ(ω)} ≤ 5
2
√

ln(2J) = κ(J). J

A.3 Proof of Proposition 8
0°. Equalities in (27) follow from (15), (16). Consequently, all we need is to prove that for all i, j it holds

‖Uij‖Z∗
j
,Xi ≤ Optij [U ] ≤ max[ς(Ki, Lj) + κ(Ki)κ(Lj)ϑ(2κ)]‖Uij‖Z∗

j
,Xi . (46)

1°. Let us fix i ≤ I, j ≤ J , and let A0 = QTj AnomPi and As = QTj AsPi, 1 ≤ s ≤ S. Setting

U ij = {
N∑
s=0

εsAs : ‖ε‖∞ ≤ 1},

we clearly have ‖Uij‖Z∗
j
,Xi = ‖U ij‖Z∗

j
,Xi . Now, comparing (22) with Z∗j in the role of B and Xi in the role of X

with the definition of Optij in (26), we see that Optij is nothing but the upper bound, as given by Proposition 5,
on ‖U ij‖Z∗

j
,Xi , implying the left inequality in (46).

2°. Observe that the upper bound on α := ‖A0‖Z∗
j
,Xi as given by Theorem 3, is nothing but

α := min
λ′,υ′,
G,H

φTi(λ′) + φRj (υ′) :
λ′ ≥ 0, υ′ ≥ 0, G �

∑Lj
`=1 υ

′
`R`j ,

H �
∑Ki
k=1 λ

′
kTki,

[
G 1

2A0
1
2A

T
0 H

]
� 0

 ,

and by this Theorem,

α ≤ α ≤ ς(Ki, Lj)α.

Next, the upper bound on β := ‖Aij‖Z∗
j
,Xi , Aij = {

∑N
s=1 εsAs : ‖ε‖∞ ≤ 1}, given by Proposition 5 is

β := min
λ′′,υ′′,

{Gs,Hs,s≤S}

φTi(λ′′) + φRj (υ′′) :
λ′′ ≥ 0, υ′′ ≥ 0,

∑
sG

s �
∑Lj
`=1 υ

′′
`R`j ,∑

sH
s �

∑Ki
k=1 λ

′′
kTki,

[
Gs 1

2As
1
2A

T
s Hs

}
� 0

 .
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and

β ≤ ϑ(2κ)κ(Ki)κ(Lj)‖Aij‖Z∗
j
,X

(since the ranks of matrices As, s ≥ 1, do not exceed those of matrices As).
Looking at (26), we see that if (λ′, υ′, G,H), (λ′′, υ′′, {Gs, Hs}) are feasible solutions to the optimization

problems specifying α and β, then

λij = λ′ + λ′′, υij = υ′ + υ′′, Gijs = Gs, Hijs = Hs, Gij = G,Hij = H

is a feasible solution to the problem specifying Optij [U ], and the value of the objective of the latter problem at
this feasible solution is

φTi(λ′ + λ′′) + φRj (υ′ + υ′′) ≤ φTi(λ′) + φTi(λ′′) + φRj (υ′) + φRj (υ′′).

We conclude that

Optij [U ] ≤ α+ β ≤ ς(Ki, Lj)‖A0‖Z∗
j
,Xi + κ(Ki)κ(Lj)ϑ(2κ)‖Aij‖Z∗

j
,Xi ,

and since by evident reasons one has ‖Uij‖Z∗
j
,Xi ≥ max

[
‖A0‖Z∗

j
,Xi , ‖Aij‖Z∗j ,Xi

]
, we arrive at the right inequality

in (46). J

B Spectratopic case

B.1 Spectratopes
A basic spectratope is a bounded set W represented as

W = {w ∈ Rp : ∃ t ∈ T : T 2
k [w] � tkIdk , 1 ≤ k ≤ K} (47)

where

Tk[w] =
p∑
i=1

wiTki

is a linear mapping from Rp to Sdk (so that Tki are symmetric dk × dk matrices), and T is as in the definition
of a basic ellitope.

A spectratope is a set X represented as the linear image of a basic spectratope W:

X = PW = {x ∈ Rn : ∃ w ∈ W : x = Pw}, W =
{
w ∈ Rp : ∃ t ∈ T :

[∑
i

wiTki

]2

� tkIdk , k ≤ K

}

We refer to D =
∑K
k=1 dk as spectratopic size of W and X .

Same as ellitopes, spectratopes are convex compact sets symmetric w.r.t. the origin; a basic spectratope, in
addition, has a nonempty interior.

B.1.1 Examples
First of all, every ellitope is a spectratope. Indeed, it suffices to consider the case when the ellitope W in question
is the basic ellitope (2). In this case, passing to eigenvalue decompositions of matrices Tk, we have

Tk =
νk∑
i=1

ekie
T
ki, νk = rank(Tk),

whence

W = {w : ∃ t ∈ T : wTTkw ≤ tk, k ≤ K}
= {w : ∃ t = {tki, i ≤ νk, k ≤ K} ∈ T : [eTkiw]2 � tkiIp, 1 ≤ i ≤ νk, k ≤ K},

T :=
{
tki ≥ 0 :

[∑
i

t1i; . . . ;
∑
i

tKi

]
∈ T

}
.
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An example of a “genuine” basic spectratope is the unit | · |-ball, | · | being the spectral norm on Rp×q:

{w ∈ Rp×q : |w| ≤ 1} =
{
w : ∃ t ∈ [0, 1] : T 2[w] :=

[
w

wT

]2

� tIp+q
}
,

Same as ellitopes, spectratopes admit fully algorithmic “calculus”, and their family is closed with respect to
basic operations preserving convexity and symmetry w.r.t. the origin, such as taking finite intersections, linear
images, inverse images under linear embedding, direct products, arithmetic summation (see [21, Section 4.6] for
details); what is missing, is taking convex hulls of finite unions.

B.1.2 Bounding maximum of quadratic form over a spectratope
Given a linear mapping

R[w] =
ν∑
i=1

wiRi : Rν → Sd

so that Ri ∈ Sd, we associate with it linear mappings

R+[W ] =
ν∑

i,j=1
WijRiRj : Sν → Sd, R+,∗[Λ] = [Tr(ΛRiRj)]i,j≤ν : Sd → Sν .

Note that

R+[wwT ] = R2[w] (48)

and

Tr(R+[W ]Λ) = Tr(WR+,∗[Λ]) ∀ (W ∈ Sν ,Λ ∈ Sd). (49)

Given a collection Λ = {Λk, k ≤ K} of symmetric matrices (of, perhaps, different sizes), we set

λ[Λ] = [Tr(Λ1); . . . ; Tr(ΛK)].

Finally, same as above, for a convex compact set T ,

φT (λ) = max
t∈T

λT t

is the support function of T .
Given a spectratope

X = PW, W =

w ∈ Rq : ∃ t ∈ T : T 2
k [w] :=

[∑
i

wiTki

]2

� tkIdk , k ≤ K

 ,

an efficiently computable upper bound Opt(C) on the quantity

Opt∗(C) = max
x∈X

xTCx

can be built as follows. Assume that Λ = {Λk ∈ Sdk+ , k ≤ K} is such that

PTCP �
∑
k

T+,∗
k [Λk]. (50)

When x ∈ X , there exists w ∈ Rq and t ∈ T such that (see (48))

x = Pw & T+
k [wwT ] = T 2

k [w] � tkIdk , k ≤ K,

whence∑
k

Tr(T+
k [wwT ]Λk) ≤

∑
k

tk Tr(Λk) ≤ φT (λ[Λ]). (51)
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On the other hand, by (49) we have

Tr(T+
k [wwT ]Λk) = Tr(T+,∗

k [Λk][wwT ]) = wTT+,∗
k [Λk]w, (52)

so that

xTCx = wT [PTCP ]w ≤︸︷︷︸
[by (50)]

wT

[∑
k

T+,∗
k [Λk]

]
w ≤ φT (λ[Λ])

due to (51) and (52). As a result, the efficiently computable convex function

Opt(C) = min
Λ

{
φT (λ[Λ]) : Λ = {Λk ∈ Sdk+ , k ≤ K}, PTCP �

∑
k

T+,∗
k [Λk]

}

is an upper bound on Opt(C). It is known ([21, Proposition 4.8]) that this bound is reasonably tight:

Opt∗(C) ≤ Opt(C) ≤ 2 ln(2D) Opt∗(C), D =
∑
k

dk.

B.2Bounding operator norms, spectratopic case
Similarly to the ellitopic case, our current problem of interest is tight computationally efficient upper-bounding
of the norm

‖A‖B,X = max
x∈X
‖Ax‖B = max

[y;x]∈B∗×X
[y;x]T

[ 1
2A

1
2A

T

]
[y;x]

in the case when X and B∗ are spectratopes:

X = PW = {x ∈ Rn : ∃ w ∈ W : x = Pw},
W = {w ∈ Rp : ∃ t ∈ T : T 2

k [w] � tkIdk , k ≤ K}
B = {v ∈ Rm : vT y ≤ 1 ∀ y ∈ B∗}, B∗ = QZ = {y ∈ Rm : ∃ z ∈ Z : y = Qz},

Z = {z ∈ Rq : ∃ r ∈ R : R2
` [z] � s`Ig` , ` ≤ L}.

(53)

In this case the efficiently computable upper bound on ‖A‖B,X and its tightness are given by the following result
(which is an improvement of the just cited result from [21]):

I Theorem 12. In the case of (53) the efficiently computable convex function of A given by

Opt(A) = min
Λ,Υ

φT (λ[Λ]) + φR(λ[Υ]) :
Λ = {Λk ∈ Sdk+ , k ≤ K},Υ = {Υ` ∈ Sg`+ , ` ≤ L}[ ∑

`R
+,∗
` [Υ`] 1

2Q
TAP

1
2P

TATQ
∑
k T

+,∗
k [Λk]

]
� 0

 (54)

is a reasonably tight upper bound on ‖A‖B,X :

‖A‖B,X ≤ Opt(A) ≤ ς
(

K∑
k=1

dk

)
ς

(
L∑
`=1

g`

)
‖A‖B,X ,

ς(M) =
√

2 ln(5M)

(55)

Proof. 1°. The left inequality in (55) is evident. Let us prove the right inequality. Let q, p be the dimensions
of the embedding spaces of Z and W, and assume that q ≤ p, which is w.l.o.g. for the same reasons as in the
ellitopic case. Same as in the latter case, (54) is nothing but the conic problem

Opt(A) = min
Λ,Υ,τ,θ

τ + θ :

Λ = {Λk ∈ Sdk+ , k ≤ K}, [−λ[Λ]; τ ] ∈ T∗
Υ = {Υ` ∈ Sg`+ , ` ≤ L}, [−λ[Υ]; θ] ∈ R∗[ ∑

`R
+,∗
` [Υ`] 1

2Q
TAP

1
2P

TATQ
∑
k T

+,∗
k [Λk]

]
� 0
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with the same cones T, R and their duals T∗, R∗ as in the ellitopic case. Same as in that case, the latter problem
is strictly feasible and bounded, and by Conic Duality one has

Opt(A) = max
r,t,U,V,W

Tr(WTQTAP ) :
R+
` [U ] ≤ r`Ig` ∀ `, T+

k [V ] ≤ tkIdk ∀ k

t ∈ T , r ∈ R,
[

U W

WT V

]
� 0


= max
r,t,U,V,Y

{
Tr([U1/2Y V 1/2]TQTAP ) : r ∈ R, t ∈ T , U � 0, V � 0, Y TY � I

R+
` [U ] ≤ r`Ig` ∀ `, T+

k [V ] ≤ tkIdk ∀ k

}
= max
r,t,U,V

{
q∑
i=1

σi(U1/2QTAPV 1/2) : R+
` [U ] ≤ r`Ig` ∀ `, T+[V ] ≤ tkIdk ∀ k

U � 0, V � 0, r ∈ R, t ∈ T

}

(cf. item 1° in the “ellitopic proof”).

2°. The concluding optimization problem in the above chain clearly is solvable; let U, V, r, t be the optimal
solution, and

∑q
ι=1 σιeιf

T
ι be the singular value decomposition of U1/2QTAPV 1/2, so that

Opt(A) =
q∑
ι=1

σι

U1/2QTAPV 1/2 =
q∑
ι=1

σιeιf
T
ι

eTi ej =
{

1, i = j

0, i 6= j,
i, j ≤ q & fTi fj =

{
1, i = j

0, i 6= j,
i, j ≤ p.

(56)

Let ε1, . . . , εp be independent random variables taking values ±1 with probabilities 1/2, and let

ξ =
q∑
i=1

εiei, η =
p∑
j=1

εjfj .

Then, in view of (56) it holds, identically in εi = ±1, 1 ≤ i ≤ p:

ξTU1/2QTAPV 1/2η =
∑

i,ι≤q,j≤p

[εiεjσιeTi eιfTι fj ] =
q∑
ι=1

σι = Opt(A). (57)

On the other hand, setting E = [e1, . . . , eq], we get an orthonormal q × q matrix such that ξ = Eε, where
ε = [ε1; . . . ; εq] is a Rademacher vector. Now let ξ̂ = U1/2ξ = U1/2Eε. Observe that for every ` ≤ L and for
properly selected matrices R`i ∈ Sg` we have

R`[U1/2Ey] =
q∑
i=1

R`iyi, ∀ y ∈ Rq.

We have

E{ξ̂ξ̂T } = E{U1/2EεεTETU1/2} = U1/2EE{εεT }ETU1/2 = U1/2EETU1/2 = U,

whence

E
{
R2
` [ξ̂]
}

= R+
` [E{ξ̂ξ̂T }] = R+

` [U ] � r`Ig` ∀ ` ≤ L

(we have used (48)). On the other hand,

R`[ξ̂] = R`[U1/2Eε] =
q∑
i=1

R`iεi,

so that
∑q
i=1R

2
`i = E

{
R2
` [ξ̂]
}
, and we end up with

q∑
i=1

R2
`i � r`Ig` .
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Applying the noncommutative Khintchine inequality11 we conclude that

∀ s > 0 : Prob{R2
` [ξ̂] � s2r`Ig`} = 1− Prob

{∣∣∣∣∣∑
i

R`iεi

∣∣∣∣∣ > s
√
r`

}
≥ 1− 2d` exp

{
−1

2s
2
}
.

As a result, when setting D =
∑
k dk and s =

√
2 ln(5D) we get

Prob{R2
` [ξ̂] � 2 ln(5D)r`Id` , ` ≤ L} > 1/2,

and

Prob
{
‖QU1/2ξ‖B∗ ≤

√
2 ln(5D)

}
≥ Prob{R2

` [ξ̂] � 2 ln(5D)r`Id` , ` ≤ L} > 1/2.

By similar reasoning,

Prob{‖PV 1/2η‖X ≤
√

2 ln(5G)} > 1/2, G =
∑
`

g`.

As a result, there exists realization (ξ, η) of (ξ, η) such that

‖QU1/2ξ‖B∗ ≤
√

2 ln(5D) & ‖PV 1/2η‖X ≤
√

2 ln(5G).

On the other hand, invoking (57),

Opt(A) = ξTU1/2QTAPV 1/2η ≤ ‖QU1/2ξ‖B∗‖PV 1/2η‖X ‖A‖B,X .

Combining our observations, we conclude that

Opt(A) ≤ 2
√

ln(5D) ln(5G)‖A‖B,X . J

B.3 Bounding robust norms of uncertain matrices, spectratopic case
Let spectratopes X ⊂ Rn, B∗ ⊂ Rm with nonempty interiors and the polar B of B∗ be given by (53). Our goal
is to conceive a computationally efficient upper-bounding of the robust norm

‖A‖B,X = max
A∈A
‖A‖B,X

of uncertain matrix

A =
{∑

s

εsAs : ‖ε‖∞ ≤ 1
}
⊂ Rm×n.

B.3.1 Processing the problem
Acting exactly as in the ellitopic case, with the results of Section B.1.2 in the role of their “ellitopic counterparts”
from Section 2.2, we conclude that the efficiently computable quantity

Opt := min
Λ,Υ,
{Gs,Hs}

φR(λ[Υ]) + φT (λ[Λ]) :

[
Gs

1
2Q

TAsP
1
2P

TATs Q Hs

]
� 0, s ≤ S

Υ = {Υ` ∈ Sg`+ , ` ≤ L},
∑
sGs �

∑
`R

+,∗
` [Υ`]

Λ = {Λk ∈ Sdk+ , k ≤ K},
∑
sHs �

∑
k T

+,∗
k [Λk]

 (58)

—the “spectratopic analog” of (22)—is an upper bound on ‖A‖B,X such that for properly selected matrices
X ∈ Sp+, Y ∈ Sq+ and r ∈ R, t ∈ T one has

R+
` [Y ] � r`Ig` , ` ≤ L, & T+

k [X] � tkIdk , k ≤ K,

and for the norms π( · ) and ρ( · ) with unit balls W and Z, respectively, and [η; ξ] ∼ N (0,Diag{Y,X}),

Opt ≤ ϑ(2κ)‖A‖B,XE{ρ(η)π(ξ)} = ϑ(2κ)‖A‖B,XE {π(ξ)}E {ρ(η)} (59)

where κ is the maximum of ranks of As and ϑ( · ) is given by (21) (cf. (45)).
We have the following spectratopic analog of Lemma 11.

11Noncommutative Khintchine’s inequality due to Lust-Piquard, Pisier, and Buchholz, see [42, Theorem 4.6.1], states that if
Qi ∈ Sn, 1 ≤ i ≤ I, and ξi, i = 1, . . . , I, are independent Rademacher or N (0, 1) random variables, then for all t ≥ 0 one has

Prob
{∣∣∑I

i=1 ξiQi
∣∣ ≥ t} ≤ 2n exp

{
− t2

2
∣∣∑I

i=1
Q2
i

∣∣} where | · | is the spectral norm.
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I Lemma 13. Let

V = {v ∈ Rd : ∃ r ∈ R : R2
j [v] � rjIνj , 1 ≤ j ≤ J} ⊂ Rd

be a basic spectratope, W � 0 be symmetric d× d matrix such that

∃ r ∈ R : R+
j [W ] � rjIνj , j ≤ J,

and ω ∼ N (0,W ). Denoting by γ( · ) the norm on Rd with the unit ball V, we have

E{ρ(ω)} ≤ κ

∑
j

νj

 , κ(F ) = 2
√

2 ln(2F ). (60)

Proof. Let ζ ∼ N (0, Id). When setting

Rj [z] = Rj [W 1/2z] =
d∑
i=1

Rjizj , [Rji ∈ Sνj , j ≤ J ],

we have∑
i

R2
ji = E{R2

j [ζ]} = E{R2
j [W 1/2ζ]} = E{R+

j [W 1/2ζζTW 1/2]} = R+
j [W ] � rjIνj .

Hence for every s > 0

Prob
{
R2
j [ω] � s2rjIνj

}
= Prob

{
R2
j [ζ] � s2rjIνj

}
= 1− Prob

{∣∣∣∣∣∑
i

ζiRji

∣∣∣∣∣ > s
√
rj

}
[as above, | · | is the spectral norm]
≥ 1− 2νj exp{−s2/2},

with the concluding ≥ given by
∑
iR

2
ji � rjIνj combined with the noncommutative Khintchine inequality. As a

result,

Prob{γ(ω) > s} ≤ 1− Prob
{
∃ j : R2

j [ω] � s2rjIνj
}
≤

[∑
j

2νj

]
exp{−s2/2}.

Therefore, when setting F =
∑
j νj we obtain

E{γ(ω)} ≤
∫ ∞

0
min

[
1, 2F exp{−γ2/2}

]
dγ ≤ 2

√
2 ln(2F ). J

Applying the lemma to V =W, W = X, and to V = Z, W = Y , we get from (59) the following analog of
Proposition 5:

I Proposition 14. In the situation described in the beginning of this section, assuming that ranks of all As are
≤ κ, the efficiently computable quantity Opt as given by (58) is a reasonably tight upper bound on the robust
norm ‖A‖B,X of uncertain matrix A, specifically,

‖A‖B,X ≤ Opt ≤ κ

(∑
k

dk

)
κ

(∑
`

g`

)
ϑ(2κ)‖A‖B,X (61)

where κ( · ) is given by (60) and ϑ( · ), as given by (21), satisfies

ϑ(1) = 1, ϑ(2) = π

2 , ϑ(4) = 2, ϑ(k) ≤ π
√
k/2.
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B.3.2 Putting things together
Results of Proposition 14 (and, as a byproduct, of Theorem 12) can be extended, in exactly the same fashion
as in the ellitopic case, to the situation where X and the polar B∗ of B are convex hulls of finite unions of
spectratopes rahter than plain spectratopes, and the uncertain matrix in question is not centered, resulting in
the following spectratopic analogy of Proposition 8:

I Theorem 15. Let U = {Anom +
∑S
s=1 εsAs : ‖ε‖∞ ≤ 1} be an uncertain m× n matrix, X ⊂ Rn, B,B∗ ⊂ Rm

be given by

X = Conv
{

I⋃
i=1

PiXi

}
=
{
x =

I∑
i=1

λiPixi : xi ∈ Xi, λi ≥ 0,
∑
i

λi = 1
}
,

B =
{
v ∈ Rm : max

y∈B∗
vT y ≤ 1

}
, B∗ = Conv

{
J⋃
J=1

QjZj

}
=

y =
J∑
j=1

µjQjzj , zj ∈ Zj , µj ≥ 0,
∑
j

µj = 1

 ,

with basic spectratopes

Xi =
{
xi ∈ Rνi : ∃ ti ∈ T i : T 2

ki[xi]2 � tikIdki , 1 ≤ k ≤ Ki

}
, Tki[x] =

νi∑
ι=1

xιTkiι, i ≤ I

Zj =
{
zj ∈ Rµj : ∃ rj ∈ Rj : R2

`j [zj ] � r
j
`Ig`j , 1 ≤ ` ≤ L,

}
, R`j [z] =

µj∑
ι=1

zιR`jι j ≤ J

Then the efficiently computable quantity

Opt[U ] = max
i≤I,j≤J

Optij [U ],

where

Optij [U ] = min
Λij ,Υij ,Gijs,Hijs

Gij ,Hij

1≤i≤I,1≤j≤J,1≤s≤S

φT i(λ[Υij ]) + φRj (λ[Λij ]) :

Λij = {Λijk � 0, k ≤ Ki}, Υij = {Υij
` � 0, ` ≤ Lj}∑S

s=1H
ijs +Hij �

∑Ki
k=1 T

+,∗
ki [Λijk ]∑S

s=1G
ijs +Gij �

∑Lj
`=1R

+,∗
`j [Υij

` ],[
Gijs 1

2 [QTj AsPi]
1
2 [QTj AsPi]T Hijs

]
� 0, s ≤ S[

Gij 1
2 [QTj AnomPi]

1
2 [QTj AnomPi]T Hij

]
� 0


, i ≤ I, j ≤ J,

is an efficiently computable convex in (Anom, A1, . . . , AS) upper bound on ‖U‖B,X . This upper bound is reasonably
tight, specifically, setting

Uij = QTj AnomPi +
{

S∑
s=1

εs[QTj AsPi] : ‖ε‖∞ ≤ 1
}
,

we have

‖Uij‖Z∗
j
,Xi ≤ Optij [U ] ≤ [ς (Di) ς (Gj) + κ (Di)κ (Gj)ϑ(2κ)]‖Uij‖Z∗

j
,Xi ,

Di =
Ki∑
k=1

dki, Gj =
Lj∑
`=1

g`j ,
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and

‖U‖B,X = max
i≤I,j≤J

‖Uij‖Z∗
j
,Xi ≤ Opt[U ] = max

i≤I,j≤J
Optij [U ]

≤
[

max
i≤I,j≤J

[ς (Di) ς (Gj) + κ (Di)κ (Gj)ϑ(2κ)]
]
‖U‖B,X

where κ is the maximum of ranks of As, 1 ≤ s ≤ S, ς( · ) and κ( · ) are as defined in (55) and (60), and ϑ( · ) is
defined by (21) and satisfies (19).
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