ON SOME NEW CONGRUENCES
BETWEEN GENERALIZED BERNOULLI NUMBERS, I

On some new congruences between

generalized Bernoulli numbers, I

by
Jerzy Urbanowicz
Institute of Mathematics
Polish Academy of Sciences, ul. Śniadeckich 8, 00-950 Warszawa, Poland

On some new congruences between generalized Bernoulli numbers, I

Abstract. In the paper some new congruences modulo 64 for generalized Bernoulli numbers $B_{k,\left(\frac{d}{4}\right)}$ belonging to quadratic characters $\left(\frac{d}{\cdot}\right), d<0$ are proved and for each $-1 \leq \nu \leq 5$ all negative d and odd k satisfying ord ${ }_{2} B_{k,\left(\frac{d}{1}\right)}=\nu$ are found. In the second part of the paper we shall deal with the case of positive d.

All results are consequences of [1] and [2].

Key words: Bernoulli numbers, Kummer congruences, class numbers.

1. Introduction.

For the discriminant d of a quadratic field, let $\left(\frac{d}{d}\right)$ denote the Kronecker symbol. Denote by $B_{k, \chi}$ the k th generalized Bernoulli number belonging to the Dirichlet character χ.

For $x \geq 0$ put

$$
t_{k}(x):=\sum_{0 \leq a \leq x}\left(\frac{d}{a}\right) a^{k},
$$

and for $X \subset \mathbf{N} \cup\{0\}$ denote by $t_{k}(x, a \in X), t_{k}(x, b \mid a), t_{k}(x, b \nmid a), t_{k}(x, b \| a)$ or $t_{k}(x, a \equiv r(\bmod b))$ the above sum with the appropriate additional condition: $a \in X$, $b \mid a, b \nmid a, b \| a$ or $a \equiv r(\bmod b)$. Set $t_{k}:=t_{k}(\delta)$, where $\delta:=|d|$. If $d=-4 d^{*}$ or $\pm 8 d^{*}$, where d^{*} is the discriminant of a quadratic field then $\delta^{*}:=\left|d^{*}\right|$ and we continue to write t_{k}^{*} for the above sums defined for the discriminant d^{*} in contrast with t_{k} given for d.

For $d<0$ we have $t_{1}=-d B_{1,\left(\frac{d}{d}\right)}$, and for $d>0$ we have $t_{2}=d B_{2,\left(\frac{d}{d}\right)}$. Put $h(d):=-B_{1,(\underline{d})}$, if $d<-4$ and $h(-3)=h(-4):=1$. Put $k_{2}(d):=B_{2,(\underline{d})}$, if $d>8$ and $k_{2}(5)=k_{2}(8):=4$. It is known that $h(d)$ equals the class number and $k_{2}(d)$ probably (certainly up to 2 -torsion and in many cases) equals the order of the group K_{2} of integers of a quadratic field with the discriminant d.

It is known that $B_{0,\left(\frac{d}{d}\right)}=0$ and for $k \geq 1$

$$
\begin{equation*}
B_{k,\left(\frac{d}{l}\right)}=0 \tag{1.1}
\end{equation*}
$$

if and only if $d>0$ and k is odd or $d<0$ and k is even. Write $\alpha(-3):=\frac{1}{3}, \gamma(-4):=\frac{1}{2}$, $\beta(5):=\frac{1}{5}, \rho(8):=\frac{1}{2}$, and $\alpha(d), \gamma(d), \beta(d), \rho(d)=1$, otherwise. Put $\xi(-3):=\alpha(-3)$, $\xi(-4):=\gamma(-4), \eta(5):=\beta(5), \eta(8):=\rho(8)$, and $\xi(d), \eta(d):=1$, otherwise.

Our purpose is for each $-1 \leq \nu \leq 5$, if $d<0$ (in the first part of the paper), and for $0 \leq \nu \leq 5$, if $d>0$ (in the second one) to find all d and k such that $\operatorname{ord}_{2} B_{k,\left(\frac{d}{1}\right)}=$ $\operatorname{ord}_{2} k+\nu$. In order to do it we need some new congruences of the generalized Kummer congruences type modulo 64 but without any assumptions on k.

Set

$$
b_{k}(d):=\frac{B_{k,(\underline{d})}}{k} .
$$

Let us recall the generalized Kummer congruences (see [3]) imply the following:

$$
\begin{equation*}
b_{k}(d) \equiv-\left(1-\left(\frac{d}{2}\right)\right) h(d) \xi(d)\left(\bmod 2^{a+1}\right) \tag{1.2}
\end{equation*}
$$

if $d<0, d \neq-4,-8, k \equiv 1\left(\bmod 2^{a}\right), k \geq a+2, a \geq 1$, and

$$
\begin{equation*}
b_{k}(d) \equiv \frac{1}{2}\left(1-2\left(\frac{d}{2}\right)\right) k_{2}(d) \eta(d)\left(\bmod 2^{a+1}\right) \tag{1.3}
\end{equation*}
$$

if $d>0, d \neq 8, k \equiv 2\left(\bmod 2^{a}\right), k \geq a+2, a \geq 1$.
Also (1.2) implies

$$
\begin{equation*}
\operatorname{ord}_{2} B_{k,\left(\frac{d}{!}\right)} \geq a+1 \tag{1.4}
\end{equation*}
$$

if $\left(\frac{d}{2}\right)=1$ or $\left(\frac{d}{2}\right) \neq 1$ and $\operatorname{ord}_{2} h(d) \geq a+1+\left(\frac{d}{2}\right)$, and

$$
\begin{equation*}
\operatorname{ord}_{2} B_{k,\left(\frac{d}{!}\right)}=\operatorname{ord}_{2} h(d)-\left(\frac{d}{2}\right) \tag{1.5}
\end{equation*}
$$

if $\left(\frac{d}{2}\right) \neq 1$ and $\operatorname{ord}_{2} h(d) \leq a+\left(\frac{d}{2}\right)$. Similarly (1.3) implies

$$
\begin{equation*}
\operatorname{ord}_{2} B_{k,\left(\frac{d}{1}\right)} \geq \operatorname{ord}_{2} k+a+1 \tag{1.6}
\end{equation*}
$$

if $\operatorname{ord}_{2} k_{2}(d) \geq a+2$, and

$$
\begin{equation*}
\operatorname{ord}_{2} B_{k,\left(\frac{d}{2}\right)}=\operatorname{ord}_{2} k+\operatorname{ord}_{2} k_{2}(d)-1, \tag{1.7}
\end{equation*}
$$

otherwise.
In both the papers we discuss the above formulas for any k and $a \leq 5$.
In this part we prove the following:
Theorem 1. Let $d, 2 \nmid d$ and $k \geq 3$ be the discriminant of an imaginary quadratic field and an odd natural number respectively. With the above notation, the numbers $B_{k,\left(\frac{d}{1}\right)}$ are 2-integral and the following congruence holds:

$$
b_{k}(d) \equiv-k \mu\left(1-\left(\frac{d}{2}\right)\right) h(d) \alpha(d)-\vartheta \frac{k-1}{2} k_{2}(-4 d)(\bmod 64)
$$

where $\mu:=\mu_{k}(d), \vartheta:=\vartheta_{k}(d)$, and $\vartheta_{3} d=5, \mu_{3} d=-d-2, \mu_{5}=-15$, and $\mu_{k}, \vartheta_{k}=1$, otherwise.

If $2 \mid d$ we get more complicated congruences. We prove the following:
Theorem 2. Let $d=-4 d^{*}$, where d^{*} is the discriminant of a real quadratic field (i.e. $d \neq-4$), and let $k \geq 3$ be an odd natural number. Then the numbers $B_{k,\left(\frac{d}{1}\right)}$ are 2-integral and we have:

$$
b_{k}(d) \equiv \vartheta_{1} k_{2}\left(d^{*}\right) \beta\left(d^{*}\right)+\vartheta_{2} h(d)+\vartheta_{3} h(2 d)(\bmod 64)
$$

where $\vartheta_{i}:=\vartheta_{i}(d, k) \in \mathbf{Z}(i=1,2,3)$ are of the form

$$
\vartheta_{i}=p_{i} k+q_{i}
$$

and

$$
\begin{array}{ll}
p_{1}=\frac{1}{2}\left(1-\left(\frac{-1}{k}\right)\right), & q_{1}=-2\left(1-\left(\frac{2}{k}\right)\right)+\left(1-\left(\frac{-1}{k}\right)\right)\left(3-\left(\frac{d^{d}}{2}\right)\right), \\
p_{2}=1+\left(\frac{-1}{k}\right), & q_{2}=-2\left(3+2\left(\frac{2}{k}\right)\right)\left(2-\left(\frac{-1}{k}\right)\right)+7, \\
p_{3}=2\left(\frac{-1}{k}\right), & q_{3}=2\left(3-4\left(\frac{-1}{k}\right)\left(\frac{2}{k}\right)\right) .
\end{array}
$$

Theorem 3. Let $d= \pm 8 d^{*}, d<0$, where d^{*} is the discriminant of a quadratic field (i.e. $d \neq-8$), and let $k \geq 3$ be an odd natural number. Then the numbers $B_{k,(\underline{d})}$ are 2-integral and we have:

$$
b_{k}(d) \equiv \begin{cases}\vartheta_{1} k_{2}\left(-4 d^{*}\right)+\vartheta_{2} h(d)+\vartheta_{3} h\left(d^{*}\right) \alpha\left(d^{*}\right)(\bmod 64), & \text { if } d^{*}<0 \\ \mu_{1} k_{2}\left(d^{*}\right) \beta\left(d^{*}\right)+\mu_{2} h(d)+\mu_{3} h\left(-4 d^{*}\right)(\bmod 64), & \text { if } d^{*}>0\end{cases}
$$

where $\vartheta_{i}:=\vartheta_{i}(d, k), \mu_{i}:=\mu_{i}(d, k) \in \mathbb{Z}(i=1,2,3)$ are of the form $\vartheta, \mu=p k+q$, and

$$
\begin{array}{lll}
\vartheta_{1}=-\frac{1}{2}(k-1), & \vartheta_{2}=4 k-5, & \vartheta_{3}=\left(7-15\left(\frac{d}{2}\right)\right)(k-1) \\
\mu_{1}=-\frac{3}{2}\left(1-2\left(\frac{d^{2}}{2}\right)\right)(k-1), & \mu_{2}=8 k-9, & \mu_{3}=5(k-1)
\end{array}
$$

Combining Thm. 2 and 3 with Cor. 1 to Thm. 1, 2 [2] we can get many new congruences for generalized Bernoulli numbers modulo 64 (or 32).

Lemma 4 and the congruence (5.1) imply a weaker version of Thm. 1 and 2:
Theorem 4. Let $d<0,2 \mid d, d \neq-4$ be the discriminant of a quadratic field, and let $k \geq 3$ be an odd natural number. Then the numbers $B_{k,\left(\frac{d}{1}\right)}$ are 2 -integral and we have:

$$
b_{k}(d) \equiv-h(d)\left(\bmod 2^{6-\operatorname{ord}_{2} d}\right)
$$

2. Lemmas

We have divided the proof of the theorems into a sequence of lemmas.
Lemma 1. Let $d, 2 \nmid d$ be the discriminant of a quadratic field. Then we have:
(i) If $d>0($ i.e. $\delta \equiv 1(\bmod 4))$ then

$$
\begin{aligned}
t_{0}(\delta, a \equiv \delta(\bmod 8)) & =\left(\frac{d}{2}\right) t_{0}(\delta / 8) \\
t_{0}(\delta, a \equiv \delta+2(\bmod 8)) & =-\left(1+\left(\frac{d}{2}\right)\right) t_{0}(\delta / 4)+\left(\frac{d}{2}\right) t_{0}(\delta / 8), \\
t_{0}(\delta, a \equiv \delta+4(\bmod 8)) & =t_{0}(\delta / 4)-\left(\frac{d}{2}\right) t_{0}(\delta / 8), \\
t_{0}(\delta, a \equiv \delta+6(\bmod 8)) & =\left(\frac{d}{2}\right) t_{0}(\delta / 4)-\left(\frac{d}{2}\right) t_{0}(\delta / 8)
\end{aligned}
$$

(ii) If $d<0($ i.e. $\delta \equiv 3(\bmod 4)))$ then

$$
\begin{aligned}
t_{0}(\delta, a \equiv \delta(\bmod 8)) & =-\left(\frac{d}{2}\right) t_{0}(\delta / 8) \\
t_{0}(\delta, a \equiv \delta+2(\bmod 8)) & =\left(\frac{d}{2}\right) t_{0}(\delta / 4)-\left(\frac{d}{2}\right) t_{0}(\delta / 8) \\
t_{0}(\delta, a \equiv \delta+4(\bmod 8)) & =-t_{0}(\delta / 4)+\left(\frac{d}{2}\right) t_{0}(\delta / 8) \\
t_{0}(\delta, a \equiv \delta+6(\bmod 8)) & =t_{0}(\delta / 2)-\left(1+\left(\frac{d}{2}\right)\right) t_{0}(\delta / 4)+\left(\frac{d}{2}\right) t_{0}(\delta / 8)
\end{aligned}
$$

Proof. Let us note that

$$
\begin{align*}
t_{0}(\delta / 2, a \equiv \delta(\bmod 4)) & =\left(\frac{d}{-1}\right) \sum_{\substack{0 \leq a \leq \delta / 2, a \equiv \delta(\bmod 4)}}\left(\frac{d}{\delta-a}\right)=\left(\frac{d}{-1}\right) \sum_{\delta / 2 \leq a \leq \delta,}^{4 \mid a}< \\
& \left(\frac{d}{a}\right) \\
& =\left(\frac{d}{-1}\right)\left[t_{0}(\delta, 4 \mid a)-t_{0}(\delta / 2,4 \mid a)\right] \tag{2.1a}\\
& =\left(\frac{d}{-1}\right)\left[t_{0}(\delta / 4)-t_{0}(\delta / 8)\right]
\end{align*}
$$

and

$$
\begin{align*}
t_{0}(\delta / 2, a \equiv \delta+2(\bmod 4)) & =\left(\frac{d}{-1}\right) \sum_{\substack{0 \leq a \leq \delta / 2, a \equiv \delta+2(\bmod 4)}}\left(\frac{d}{\delta-a}\right)=\left(\frac{d}{-1}\right) \sum_{\substack{\delta / 2 \leq a \leq \delta, a \equiv 2(\bmod 4)}}\left(\frac{d}{a}\right) \\
& =\left(\frac{d}{-1}\right)\left[\left.\sum_{\substack{\delta / 2 \leq a \leq \delta, 2|a|}}\left(\frac{d}{a}\right)-\sum_{\delta / 2 \leq a \leq \delta,}^{\substack{4 \mid a}} \right\rvert\,\left(\frac{d}{a}\right)\right] \\
& =\left(\frac{d}{-1}\right)\left[t_{0}(\delta, 2 \mid a)-t_{0}(\delta / 2,2 \mid a)-t_{0}(\delta, 4 \mid a)+t_{0}(\delta / 2,4 \mid a)\right] \\
& =\left(\frac{d}{-1}\right)\left[\left(\frac{d}{2}\right) t_{0}(\delta / 2)-\left(1+\left(\frac{d}{2}\right)\right) t_{0}(\delta / 4)+t_{0}(\delta / 8)\right] . \quad(2.1 \mathrm{~b}) \tag{2.1b}
\end{align*}
$$

From this we conclude the lemma because

$$
\begin{aligned}
t_{0}(\delta, a \equiv \delta(\bmod 8)) & =\left(\frac{d}{-1}\right) t_{0}(\delta, 8 \mid a)=\left(\frac{d}{-1}\right)\left(\frac{d}{2}\right) t_{0}(\delta / 8), \\
t_{0}(\delta, a \equiv \delta+2(\bmod 8)) & =\left(\frac{d}{-1}\right) t_{0}(\delta, a \equiv-2(\bmod 8)) \\
& =\left(\frac{d}{-1}\right)\left(\frac{d}{2}\right) t_{0}(\delta / 2, a \equiv 3(\bmod 4)), \\
t_{0}(\delta, a \equiv \delta+4(\bmod 8)) & =\left(\frac{d}{-1}\right)\left[t_{0}(\delta, 4 \mid a)-t_{0}(\delta, 8 \mid a)\right] \\
& =\left(\frac{d}{-1}\right)\left[t_{0}(\delta / 4)-\left(\frac{d}{2}\right) t_{0}(\delta / 8)\right], \\
t_{0}(\delta, a \equiv \delta+6(\bmod 8)) & =\left(\frac{d}{-1}\right) t_{0}(\delta, a \equiv 2(\bmod 8)) \\
& =\left(\frac{d}{-1}\right)\left(\frac{d}{2}\right) t_{0}(\delta / 2, a \equiv 1(\bmod 4)) .
\end{aligned}
$$

For $i \geq 0$ set $t_{i}^{\prime}:=t_{i}(\delta, 2 \nmid a)$. To prove the theorems we apply the following lemmas:
Lemma 2. Let d be the discriminant of an imaginary quadratic field. Then we have:

$$
\begin{align*}
& t_{0}^{\prime}=-\left(\frac{d}{2}\right)\left(2-\left(\frac{d}{2}\right)\right) h(d) \alpha(d) \tag{i}\\
& t_{1}^{\prime}= \begin{cases}\left(\frac{d}{2}\right) d h(d) \alpha(d), & \text { if } 2 \nmid d \\
d h(d) \gamma(d), & \text { if } 2 \mid d .\end{cases}
\end{align*}
$$

$$
\begin{equation*}
t_{2}^{\prime}=-d^{2} h(d) \gamma(d), \text { if } 2 \mid d \tag{iii}
\end{equation*}
$$

$$
\begin{equation*}
t_{2}^{\prime} \equiv C_{1}(d) h(d) \alpha(d)+k_{2}(-4 d)(\bmod 64) \text { if } 2 \nmid d, \tag{iv}
\end{equation*}
$$

where

$$
\begin{gathered}
C_{1}(d):=-2\left(\frac{d}{2}\right) d+2\left(\frac{d}{2}\right)-1 \\
t_{3}^{\prime} \equiv \begin{cases}C_{2}(d) h(d) \alpha(d)(\bmod 64), & \text { if } 2 \nmid d, \\
4(15 \gamma(d)-14) h(d)(\bmod 64), & \text { if } 4 \| d, \\
8 \operatorname{sgn} d^{*} h(d)(\bmod 64) & \text { if } 8 \mid d, d= \pm 8 d^{*},\end{cases}
\end{gathered}
$$

(v)
where

$$
C_{2}(d):=3\left(\frac{d}{2}\right) d+2\left(\frac{d}{2}\right)-4 .
$$

More generally, for $d \neq-4,-8$ we have

$$
t_{3}^{\prime} \equiv\left\{\begin{array}{cl}
\left(3-2\left(\frac{d^{\prime}}{2}\right)\right) \delta k_{2}\left(d^{*}\right) \beta\left(d^{*}\right)-13 \delta h(d)+ & \text { if } d=-4 d^{*}, 2 \nmid d^{*}, \\
+8 \delta h(2 d)(\bmod 64 \delta), & \\
-3 \delta k_{2}\left(-4 d^{*}\right)-11 \delta h(d)+ & \text { if } d=8 d^{*}, d^{*}<0 \\
+2\left(5+3\left(\frac{d^{2}}{2}\right)\right) \delta h\left(d^{*}\right) \alpha\left(d^{*}\right)(\bmod 64 \delta), \\
\left(3-2\left(\frac{d^{\prime}}{2}\right)\right) \delta k_{2}\left(d^{*}\right) \beta\left(d^{*}\right)+13 \delta h(d)- & \text { if } d=-8 d^{*}, d^{*}>0 \\
-2 \delta h\left(-4 d^{*}\right)(\bmod 64 \delta), &
\end{array}\right.
$$

Here for $d=-4 d^{*}$ or $\pm 8 d^{*}, d^{*}$ is the discriminant of a quadratic field or $d^{*}=1$, if $d=-4,-8$.
Proof. Since for $d<0$ (see [3])

$$
\begin{equation*}
t_{0}(\delta / 2)=\left(2-\left(\frac{d}{2}\right)\right) h(d) \xi(d) \tag{2.1}
\end{equation*}
$$

(i) of the lemma follows immediately.

On the other hand for any d we have

$$
\begin{equation*}
t_{1}^{\prime}=t_{1}-2\left(\frac{d}{2}\right) t_{1}(\delta / 2) \tag{2.2}
\end{equation*}
$$

Also for $d<0$ we have (see [3])

$$
\begin{equation*}
t_{\mathbf{1}}=d h(d) \xi(d) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{1}(\delta / 2)=-\frac{1}{2} d\left(1-\left(\frac{d}{2}\right)\right) h(d) \xi(d) \tag{2.4}
\end{equation*}
$$

(cf. p. 255 [2]). Therefore (ii) of the lemma follows from (2.2).
In order to prove (iii) of the lemma, we apply (1.1). Then for $d<0$ we have

$$
B_{2,\left(\frac{d}{1}\right)}=0 .
$$

Consequently from (3.1) (with $F=\delta$) we get

$$
\begin{equation*}
t_{2}=-d^{2} h(d) \xi(d) \tag{2.5}
\end{equation*}
$$

To prove (iv) let us note that for any d we have

$$
t_{2}^{\prime} \equiv 2 \sum_{\substack{1 \leq r \leq 7, r \text { odd }}} r t_{1}(\delta, a \equiv r(\bmod 8))-\sum_{\substack{1 \leq r \leq 7, r \text { odd }}} r^{2} t_{0}(\delta, a \equiv r(\bmod 8))(\bmod 64) .
$$

Hence for $d<0,2 \nmid d$ we obtain

$$
\begin{aligned}
t_{2}^{\prime} \equiv & 2 t_{1}^{\prime}-t_{0}^{\prime}+2 \sum_{\substack{3 \leq r \leq 7, r \text { odd }}}(r-1) t_{1}(\delta, a \equiv r(\bmod 8))-\sum_{\substack{3 \leq r \leq 7, r \text { odd }}}\left(r^{2}-1\right) t_{0}(\delta, a \equiv r(\bmod 8)) \\
\equiv & 2 t_{1}^{\prime}-t_{0}^{\prime}+8 \sum_{\substack{3 \leq r \leq 7, r \text { odd }}} r t_{0}(\delta, a \equiv r(\bmod 8))-4 t_{1}(\delta, a \equiv 3(\bmod 8))+ \\
& +4 t_{1}(\delta, a \equiv 7(\bmod 8))-\sum_{\substack{3 \leq r \leq 7, r \text { odd }}}\left(r^{2}-1\right) t_{0}(\delta, a \equiv r(\bmod 8)) \\
\equiv & 2 t_{1}^{\prime}-t_{0}^{\prime}+\sum_{\substack{3 \leq r \leq 7, r \text { odd }}}\left(1+8 r-r^{2}\right) t_{0}(\delta, a \equiv r(\bmod 8))- \\
& -24 t_{0}(\delta, a \equiv 3(\bmod 8))+4 t_{1}(\delta, a \equiv 3(\bmod 4)) \\
\equiv & 2 t_{1}^{\prime}-t_{0}^{\prime}-8 t_{0}(\delta, a \equiv 3(\bmod 8))+16 t_{0}(\delta, a \equiv 5(\bmod 8))+ \\
& +8 t_{0}(\delta, a \equiv 7(\bmod 8))+4 t_{1}(\delta, a \equiv 3(\bmod 4)) \\
\equiv & 2 t_{1}^{\prime}-t_{0}^{\prime}-8 t_{0}(\delta, a \equiv 3(\bmod 4))+16 t_{0}(\delta, a \equiv 5,7(\bmod 8))+ \\
& +4 t_{1}(\delta, a \equiv 3(\bmod 4))(\bmod 64) .
\end{aligned}
$$

Consequently in view of Lemma 1 (ii) we deduce that

$$
\begin{aligned}
t_{2}^{\prime} & \equiv 2 t_{1}^{\prime}-t_{0}^{\prime}+8 t_{0}(\delta / 4)+16\left[\frac{1}{2}\left(1+\left(\frac{d}{2}\right)\right) t_{0}(\delta / 2)-2 t_{0}(\delta / 4)\right]+16 t_{1}(\delta / 4)-4 \delta t_{0}(\delta / 4) \\
& \equiv 2 t_{1}^{\prime}-t_{0}^{\prime}+4(10-\delta) t_{0}(\delta / 4)+16 t_{1}(\delta / 4)+8\left(1+\left(\frac{d}{2}\right)\right) t_{0}(\delta / 2) \quad(\bmod 64)
\end{aligned}
$$

Thus by Lemma 2(i), (ii) and (2.1), (iv) of the lemma follows because for $d<0,2 \nmid d$ we have

$$
\begin{equation*}
t_{0}(\delta / 4)=\frac{1}{2}\left(1+\left(\frac{d}{2}\right)\right) h(d) \alpha(d) \tag{2.6}
\end{equation*}
$$

(see Thm. 7.1 [1]), and

$$
\begin{equation*}
t_{1}(\delta / 4)=\frac{1}{16} k_{2}(-4 d)+\frac{1}{8} d\left(1-\left(\frac{d}{2}\right)\right) h(d) \alpha(d) \tag{2.7}
\end{equation*}
$$

(see Thm. 2(i) [2]).
In order to prove (v) let us notice that for any d we have

$$
\begin{aligned}
t_{3}^{\prime} \equiv 3 \sum_{\substack{1 \leq r \leq 7, r \text { odd }}} r t_{2}(\delta, a \equiv r(\bmod 8))-3 & \sum_{\substack{1 \leq r \leq 7, r \text { odd }}} r^{2} t_{1}(\delta, a \equiv r(\bmod 8))+ \\
& +\sum_{\substack{1 \leq r \leq 7, r \text { odd }}} r^{3} t_{0}(\delta, a \equiv r(\bmod 8))\left(\bmod 2^{9}\right)
\end{aligned}
$$

Therefore in view of the congruence

$$
t_{2}(\delta, a \equiv r(\bmod 8)) \equiv 2 r t_{1}(\delta, a \equiv r(\bmod 8))-r^{2} t_{0}(\delta, a \equiv r(\bmod 8))(\bmod 64)
$$

we see that

$$
t_{3}^{\prime} \equiv 3 \sum_{\substack{\leq \leq r \leq 7, r \text { odd }}} r^{2} t_{1}(\delta, a \equiv r(\bmod 8))-2 \sum_{\substack{1 \leq r \leq 7, r \text { odd }}} r^{3} t_{0}(\delta, a \equiv r(\bmod 8))(\bmod 64)
$$

From this it may be concluded that

$$
\begin{aligned}
t_{3}^{\prime} \equiv & 3 t_{1}^{\prime}+3 \sum_{\substack{3 \leq r \leq 7, r \text { odd }}}\left(r^{2}-1\right) r t_{0}(\delta, a \equiv r(\bmod 8))-2 t_{0}^{\prime}- \\
& -2 \sum_{\substack{3 \leq r \leq 7, r \text { odd }}}\left(r^{3}-1\right) t_{0}(\delta, a \equiv r(\bmod 8)) \\
\equiv & 3 t_{1}^{\prime}-2 t_{0}^{\prime}+\sum_{\substack{3 \leq r \leq 7, r \text { odd }}}\left(r^{3}-3 r+2\right) t_{0}(\delta, a \equiv r(\bmod 8)) \\
\equiv & 3 t_{1}^{\prime}-2 t_{0}^{\prime}+20 t_{0}(\delta, a \equiv 3(\bmod 8))-16 t_{0}(\delta, a \equiv 5(\bmod 8)) \\
& +4 t_{0}(\delta, a \equiv 7(\bmod 8)) \\
\equiv & 3 t_{1}^{\prime}-2 t_{0}^{\prime}+20 t_{0}(\delta, a \equiv 3(\bmod 4))-16 t_{0}(\delta, a \equiv 5,7(\bmod 8))(\bmod 64)
\end{aligned}
$$

Consequently in virtue of Lemma 1(ii) we find that

$$
\begin{aligned}
t_{3}^{\prime} & \equiv 3 t_{1}^{\prime}-2 t_{0}^{\prime}-20 t_{0}(\delta / 4)-16\left[\frac{1}{2}\left(1+\left(\frac{d}{2}\right)\right) t_{0}(\delta / 2)-2 t_{0}(\delta / 4)\right] \\
& \equiv 3 t_{1}^{\prime}-2 t_{0}^{\prime}+12 t_{0}(\delta / 4)-8\left(1+\left(\frac{d}{2}\right)\right) t_{0}(\delta / 2) \quad(\bmod 64)
\end{aligned}
$$

Thus by Lemma 2(i), (ii), (2.1) and (2.6) we obtain (v) of the lemma for $2 \nmid d$.
Now we are going to consider the case $2 \mid d$. Then for any $2 \mid d, d \neq-4$ and k we have

$$
\begin{align*}
t_{k}=t_{k}(\delta / 2)+\left(\frac{d}{-1}\right) \sum_{a=0}^{\delta / 2}\left(\frac{d}{a}\right)(\delta-a)^{k}= & t_{k}(\delta / 4)-\left(\frac{d}{-1}\right) \sum_{a=0}^{\delta / 4}\left(\frac{d}{a}\right)\left(\frac{\delta}{2}-a\right)^{k}+ \\
& +\left(\frac{d}{-1}\right) \sum_{a=0}^{\delta / 4}\left(\frac{d}{a}\right)(\delta-a)^{k}-\sum_{a=0}^{\delta / 4}\left(\frac{d}{a}\right)\left(\frac{\delta}{2}+a\right)^{k} \tag{2.7a}
\end{align*}
$$

because for $2 \mid d$ we deduce that

$$
\left(\frac{d}{\delta / 2-a}\right)=\left(\frac{d}{-1}\right)\left(\frac{d}{-\delta / 2+a}\right)=\left(\frac{d}{-1}\right)\left(\frac{d}{\delta / 2+a}\right)=-\left(\frac{d}{-1}\right)\left(\frac{d}{a}\right) .
$$

Therefore putting $\tau:=\min (k, 7)$ for $k \geq 3$ (i.e. $\tau \geq 3$) we have

$$
\begin{aligned}
t_{k} \equiv t_{k}(\delta / 4)-\sum_{i=0}^{\tau}\binom{k}{i}\left(\frac{\delta}{2}\right)^{i}\left[(-1)^{k-i}\right. & \left.\left(\frac{d}{-1}\right)+1\right] t_{k-i}(\delta / 4)+ \\
& +\left(\frac{d}{-1}\right) \sum_{i=0}^{3}\binom{k}{i} \delta^{i}(-1)^{k-i} t_{k-i}(\delta / 4)(\bmod 64 \delta)
\end{aligned}
$$

By the above, under the condition that $\left(\frac{d}{-1}\right)=(-1)^{k}$ we conclude that

$$
\begin{equation*}
t_{k} \equiv \varepsilon_{k}^{\prime}+\varepsilon_{k}^{\prime \prime}(\bmod 64 \delta), \tag{2.8}
\end{equation*}
$$

where

$$
\begin{aligned}
\varepsilon_{k}^{\prime}:=\varepsilon_{k}^{\prime}(d) & =-\sum_{i=1}^{3}\binom{k}{i}(\delta / 2)^{i}\left[(-1)^{i}\left(1-2^{i}\right)+1\right] t_{k-i}(\delta / 4) \\
& =-k \delta t_{k-1}(\delta / 4)+\frac{1}{2} \delta^{2}\binom{k}{2} t_{k-2}(\delta / 4)-\binom{k}{3} \delta^{3} t_{k-3}(\delta / 4)
\end{aligned}
$$

and

$$
\begin{aligned}
\varepsilon_{k}^{\prime \prime}:=\varepsilon_{k}^{\prime \prime}(d) & =-\sum_{i=4}^{\tau}\binom{k}{i}(\delta / 2)^{i}\left[(-1)^{i}+1\right] t_{k-i}(\delta / 4) \\
& =-\frac{1}{8}\binom{k}{4} \delta^{4} t_{k-4}(\delta / 4)-\frac{\lambda_{k}}{32}\binom{k}{6} \delta^{6} t_{k-6}(\delta / 4),
\end{aligned}
$$

if $k \geq 4$, and $\varepsilon_{3}^{\prime \prime}=0$, where $\lambda_{k}=0$, if $k \leq 5$, and $\lambda_{k}=1$, otherwise.
Consequently from (2.8) for $k=3$ and $d<0$ we obtain

$$
\begin{equation*}
t_{3} \equiv-3 \delta t_{2}(\delta / 4)+\frac{3}{2} \delta^{2} t_{1}(\delta / 4)-\delta^{3} t_{0}(\delta / 4) \quad(\bmod 64 \delta) \tag{2.9}
\end{equation*}
$$

We will apply (2.8) in the proof of Lemma 5 . For $k=3$ this congruence is an equality.
We need consider three cases: $d=-4 d^{*}$ or $d= \pm 8 d^{*}$, where d^{*} is the discriminant of a quadratic field or $d^{*}=1$, if $d=-4,-8$. We follow the notation of Introduction.

First, let $d=-4 d^{*}, d^{*}>0$. Since for $d>0,2 \nmid d$ we have

$$
\begin{equation*}
t_{0}(\delta / 4)=\frac{1}{2} h(-4 d) \tag{2.10}
\end{equation*}
$$

(see Thm 7.1 [1]) in our case we observe that

$$
\begin{align*}
t_{0}(\delta / 4) & =t_{0}^{*}\left(\delta^{*}, a \equiv 1(\bmod 4)\right)-t_{0}^{*}\left(\delta^{*}, a \equiv 3(\bmod 4)\right) \\
& =t_{0}^{*}\left(\delta^{*} / 4\right)-\left(\left(\frac{d^{*}}{2}\right) t_{0}^{*}\left(\delta^{*} / 2\right)-t_{0}^{*}\left(\delta^{*} / 4\right)\right)=2 t_{0}^{*}\left(\delta^{*} / 4\right) \\
& =h\left(-4 d^{*}\right)=h(d) \tag{2.11}
\end{align*}
$$

Moreover we find that

$$
\begin{align*}
t_{1}(\delta / 4)= & t_{1}^{*}\left(\delta^{*}, a \equiv 1(\bmod 4)\right)-t_{1}^{*}\left(\delta^{*}, a \equiv 3(\bmod 4)\right) \\
= & {\left[-t_{1}^{*}\left(\delta^{*}, 4 \mid a\right)+\delta^{*} t_{0}^{*}\left(\delta^{*}, 4 \mid a\right)\right]-\left[-t_{1}^{*}\left(\delta^{*}, a \equiv 2(\bmod 4)\right)\right.} \\
& \left.+\delta^{*} t_{0}^{*}\left(\delta^{*}, a \equiv 2(\bmod 4)\right)\right] \\
= & -4 t_{1}^{*}\left(\delta^{*} / 4\right)+\delta^{*} t_{0}^{*}\left(\delta^{*} / 4\right)+\left[2\left(\frac{d^{*}}{2}\right) t_{1}^{*}\left(\delta^{*} / 2\right)-4 t_{1}^{*}\left(\delta^{*} / 4\right)\right]- \\
& -\delta^{*}\left[\left(\frac{d^{*}}{2}\right) t_{0}^{*}\left(\delta^{*} / 2\right)-t_{0}^{*}\left(\delta^{*} / 4\right)\right] \\
= & 2\left(\frac{d^{*}}{2}\right) t_{1}^{*}\left(\delta^{*} / 2\right)-8 t_{1}^{*}\left(\delta^{*} / 4\right)+2 \delta^{*} t_{0}^{*}\left(\delta^{*} / 4\right) . \tag{2.11a}
\end{align*}
$$

Consequently, since for $d>0,2 \nmid d$

$$
\begin{equation*}
t_{1}(\delta / 2)=-\frac{1}{4}\left(4-\left(\frac{d}{2}\right)\right) k_{2}(d) \beta(d) \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{1}(\delta / 4)=-\frac{1}{16}\left(7+2\left(\frac{d}{2}\right)\right) k_{2}(d) \beta(d)+\frac{1}{8} d h(-4 d) \tag{2.13}
\end{equation*}
$$

(see Thm. 1 (i) [2]), by (2.10) in our case for $d \neq-4$ we get

$$
\begin{equation*}
t_{1}(\delta / 4)=\left(4-\left(\frac{d^{*}}{2}\right)\right) k_{2}\left(d^{*}\right) \beta\left(d^{*}\right) \tag{2.14}
\end{equation*}
$$

Furthermore we have

$$
\begin{align*}
t_{2}(\delta / 4)= & t_{2}^{*}\left(\delta^{*}, a \equiv 1(\bmod 4)\right)-t_{2}^{*}\left(\delta^{*}, a \equiv 3(\bmod 4)\right) \\
\equiv & 2 \sum_{r=1 \text { or } 5} r t_{1}^{*}\left(\delta^{*}, a \equiv r(\bmod 8)\right)-\sum_{r=1 \text { or } 5} r^{2} t_{0}^{*}\left(\delta^{*}, a \equiv r(\bmod 8)\right)- \\
& -2 \sum_{r=3 \text { or } 7} r t_{1}^{*}\left(\delta^{*}, a \equiv r(\bmod 8)\right)+\sum_{r=3 \text { or } 7} r^{2} t_{0}^{*}\left(\delta^{*}, a \equiv r(\bmod 8)\right) \\
\equiv & 2 t_{1}^{* \prime}-t_{0}^{* \prime}+8 t_{1}^{*}\left(\delta^{*}, a \equiv 5(\bmod 8)\right)-8 t_{1}^{*}\left(\delta^{*}, a \equiv 3(\bmod 8)\right)- \\
& -16 t_{1}^{*}\left(\delta^{*}, a \equiv 7(\bmod 8)\right)-24 t_{0}^{*}\left(\delta^{*}, a \equiv 5(\bmod 8)\right)+ \\
& +10 t_{0}^{*}\left(\delta^{*}, a \equiv 3(\bmod 8)\right)-14 t_{0}^{*}\left(\delta^{*}, a \equiv 7(\bmod 8)\right) \\
\equiv & 2 t_{1}^{* \prime}-t_{0}^{* \prime}-24 t_{0}^{*}\left(\delta^{*}, a \equiv 5(\bmod 8)\right)-24 t_{0}^{*}\left(\delta^{*}, a \equiv 3(\bmod 8)\right)+ \\
& +16 t_{0}^{*}\left(\delta^{*}, a \equiv 7(\bmod 8)\right)-24 t_{0}^{*}\left(\delta^{*}, a \equiv 5(\bmod 8)\right)+ \\
& +10 t_{0}^{*}\left(\delta^{*}, a \equiv 3(\bmod 8)\right)-14 t_{0}^{*}\left(\delta^{*}, a \equiv 7(\bmod 8)\right) \\
\equiv & 2 t_{0}^{* \prime}-t_{0}^{* \prime}+16 t_{0}^{*}\left(\delta^{*}, a \equiv 5,7(\bmod 8)\right)- \\
& -14 t_{0}^{*}\left(\delta^{*}, a \equiv 3,7(\bmod 8)\right)(\bmod 64) . \tag{2.14a}
\end{align*}
$$

Consequently by $t_{0}^{* \prime}=0$ and Lemma $1(\mathrm{i})$ we find that

$$
\begin{aligned}
t_{2}(\delta / 4) & \equiv 2 t_{1}^{* \prime}+16\left[\left(1+\left(\frac{d^{\prime}}{2}\right)\right) t_{0}^{*}\left(\delta^{*} / 4\right)-2 t_{0}^{*}\left(\delta^{*} / 8\right)\right]+14 t_{0}^{*}\left(\delta^{*} / 4\right) \\
& \equiv 2 t_{1}^{* \prime}+32 t_{0}^{*}\left(\delta^{*} / 8\right)+2\left(15+8\left(\frac{d^{\prime}}{2}\right)\right) t_{0}^{*}\left(\delta^{*} / 4\right)(\bmod 64)
\end{aligned}
$$

On the other hand for $d>0,2 \nmid d$ we have

$$
\begin{equation*}
t_{0}(\delta / 8)=\frac{1}{4}\left(\frac{d}{2}\right) h(-4 d)+\frac{1}{4} h(-8 d) \tag{2.15}
\end{equation*}
$$

(see Thm. 7.1 [1]). Therefore by $t_{1}^{*}=0$, together with (2.12), (2.2) and (2.10) in our case for $d \neq-4$ we get

$$
\begin{equation*}
t_{2}(\delta / 4) \equiv\left(4\left(\frac{d^{*}}{2}\right)-1\right) k_{2}\left(d^{*}\right) \beta\left(d^{*}\right)-h(d)+8 h(2 d)(\bmod 64) \tag{2.16}
\end{equation*}
$$

Now we can apply (2.9). From (2.11), (2.14) and (2.16) we deduce that

$$
\begin{aligned}
t_{3}^{\prime}=t_{3} \equiv\left[3\left(1-4\left(\frac{d^{*}}{2}\right)\right)+\frac{3}{2} \delta\left(4-\left(\frac{d^{*}}{2}\right)\right)\right] & \delta k_{2}\left(d^{*}\right) \beta\left(d^{*}\right)+ \\
& +\left(3-\delta^{2}\right) \delta h(d)-24 \delta h(2 d)(\bmod 64 \delta)
\end{aligned}
$$

Hence and from Cor. 1(i) to Thm. 1 [2], (v) of the lemma for $4 \| d$ follows.
Now let $d= \pm 8 d^{*}$. Since for $2 \nmid a$ we have

$$
\begin{equation*}
\left(\frac{ \pm 8}{a}\right) \pm\left(\frac{d}{-1}\right)\left(\frac{ \pm 8}{2 \delta^{k}-a}\right)=\left(\frac{ \pm 8}{a}\right)\left(1 \pm(-1)^{\frac{a, 1}{2}}\right) \tag{2.17}
\end{equation*}
$$

we find that

$$
\begin{align*}
t_{1}(\delta / 4)= & t_{1}\left(\delta^{*}\right)+\sum_{a=0}^{\delta}\left(\frac{d}{2 \delta^{\prime}-a}\right)\left(2 \delta^{*}-a\right) \\
= & \sum_{a=0}^{\delta^{\prime}}\left[\left(\frac{ \pm 8}{a}\right)-\left(\frac{d^{*}}{-1}\right)\left(\frac{ \pm 8}{2 \delta^{*}-a}\right)\right]\left(\frac{d^{*}}{a}\right) a+2 \delta^{*} \sum_{\substack{0 \leq a \leq \delta \\
2 \nmid a}}(-1)^{\frac{a \cdot 1}{2}}\left(\frac{d}{a}\right) \\
= & 2 t_{1}\left(\delta^{*}, a \equiv 3(\bmod 4)\right)+2 \delta^{*}\left[t_{0}\left(\delta^{*}, a \equiv 1(\bmod 4)\right)-\right. \\
& \left.-t_{0}\left(\delta^{*}, a \equiv 3(\bmod 4)\right)\right] . \tag{2.17a}
\end{align*}
$$

Therefore for $d<0$ we have

$$
\begin{aligned}
t_{1}(\delta / 4) \equiv & 2\left(\frac{d^{*}}{-1}\right)\left[3 t_{0}^{*}\left(\delta^{*}, a \equiv 3(\bmod 8)\right)-7 t_{0}^{*}\left(\delta^{*}, a \equiv 7(\bmod 8)\right)\right]+ \\
& +2 \delta^{*}\left[t_{0}^{*}\left(\delta^{*}, a \equiv 1(\bmod 8)\right)-t_{0}^{*}\left(\delta^{*}, a \equiv 5(\bmod 8)\right)-\right. \\
& \left.-\left(\frac{d^{*}}{-1}\right) t_{0}^{*}\left(\delta^{*}, a \equiv 3(\bmod 8)\right)+\left(\frac{d^{\prime}}{-1}\right) t_{0}^{*}\left(\delta^{*}, a \equiv 7(\bmod 8)\right)\right] \\
\equiv & 2\left(\frac{d^{*}}{-1}\right)\left(3-\delta^{*}\right) t_{0}^{*}\left(\delta^{*}, a \equiv 3(\bmod 8)\right)+2\left(\frac{d^{*}}{-1}\right)\left(\delta^{*}-7\right) t_{0}^{*}\left(\delta^{*}, a \equiv 7(\bmod 8)\right)+ \\
& +2 \delta^{*} t_{0}^{*}(\delta, a \equiv 1(\bmod 8))-2 \delta^{*} t_{0}^{*}\left(\delta^{*}, a \equiv 5(\bmod 8)\right)(\bmod 16) .
\end{aligned}
$$

Consequently by Lemma 1 if $d= \pm 8 d^{*}, d<0$ then we observe that

$$
\begin{aligned}
t_{1}(\delta / 4) \equiv 4\left(\frac{d}{-1}\right) t_{0}^{*}\left(\delta^{*} / 8\right)-2\left(\frac{d^{*}}{-1}\right)\left(1+\left(\frac{d^{*}}{-1}\right)\right. & \left.+\left(\frac{d^{*}}{2}\right)\right) t_{0}^{*}\left(\delta^{*} / 4\right)+ \\
& +2\left(2-\left(\frac{d^{*}}{2}\right)\right) t_{0}^{*}\left(\delta^{*} / 2\right)(\bmod 16)
\end{aligned}
$$

Now, let $d=8 d^{*}, d^{*}<0$. Then since for $d<0,2 \nmid d$

$$
\begin{equation*}
t_{0}(\delta / 8)=\frac{1}{4}\left(5-\left(\frac{d}{2}\right)\right) h(d) \alpha(d)-\frac{1}{4} h(8 d) \tag{2.18}
\end{equation*}
$$

(see Thm. 7.1 [1], again), by (2.1) and (2.6) in our case we see that

$$
\begin{equation*}
t_{1}(\delta / 4) \equiv 6\left(1-\left(\frac{d^{*}}{2}\right)\right) h\left(d^{*}\right) \alpha\left(d^{*}\right)+h(d)(\bmod 16) \tag{2.19}
\end{equation*}
$$

Similarly, if $d=-8 d^{*}, d^{*}>0, d \neq-8$ then by (2.10) and (2.15) we obtain

$$
\begin{equation*}
t_{1}(\delta / 4) \equiv-2 h\left(-4 d^{*}\right)+h(d) \quad(\bmod 16) \tag{2.20}
\end{equation*}
$$

Now the lemma will be proved as soon as we can find $t_{2}(\delta / 4)$ modulo 64 . But applying (2.17) for any d we get

$$
\begin{align*}
t_{2}(\delta / 4)= & t_{2}\left(\delta^{*}\right)+\sum_{a=0}^{\delta}\left(\frac{d}{2 \delta^{*}-a}\right)\left(2 \delta^{*}-a\right)^{2}=\sum_{a=0}^{\delta^{*}}\left[\left(\frac{ \pm 8}{a}\right)+\left(\frac{d^{*}}{-1}\right)\left(\frac{ \pm 8}{2 \delta^{8}-a}\right)\right]\left(\frac{d^{*}}{a}\right) a^{2}+ \\
& +4 \delta^{* 2} \sum_{0 \leq a \leq \delta^{*},}(-1)^{\frac{a r 1}{2}}\left(\frac{d}{a}\right)-4 \delta^{*} \sum_{0 \leq a \leq \delta^{*}}(-1)^{\frac{a, 1}{2}}\left(\frac{d}{a}\right) a \\
= & 2 t_{2}\left(\delta^{*}, a \equiv 1(\bmod 4)\right)+4 \delta^{* 2}\left[t_{0}\left(\delta^{*}, a \equiv 1(\bmod 4)\right)-t_{0}\left(\delta^{*}, a \equiv 3(\bmod 4)\right)\right]- \\
& -4 \delta^{*}\left[t_{1}\left(\delta^{*}, a \equiv 1(\bmod 4)\right)-t_{1}\left(\delta^{*}, a \equiv 3(\bmod 4)\right)\right] \\
\equiv & 2\left[2 t_{1}^{*}\left(\delta^{*}, a \equiv 1(\bmod 8)\right)-t_{0}^{*}\left(\delta^{*}, a \equiv 1(\bmod 8)\right)-10 t_{1}^{*}\left(\delta^{*}, a \equiv 5(\bmod 8)\right)+\right. \\
& \left.+25 t_{0}^{*}\left(\delta^{*}, a \equiv 5(\bmod 8)\right)\right]+4 \delta^{* 2}\left[t_{0}^{*}\left(\delta^{*}, a \equiv 1(\bmod 8)\right)-\right. \\
& -t_{0}^{*}\left(\delta^{*}, a \equiv 5(\bmod 8)\right)+\left(\frac{d}{-1}\right)\left(\frac{d^{*}}{-1}\right) t_{0}^{*}\left(\delta^{*}, a \equiv 3(\bmod 8)\right)- \\
& \left.-\left(\frac{d}{-1}\right)\left(\frac{d^{*}}{-1}\right) t_{0}^{*}\left(\delta^{*}, a \equiv 7(\bmod 8)\right)\right]- \\
& -4 \delta^{*}\left[t_{1}^{*}\left(\delta^{*}, a \equiv 1(\bmod 8)\right)-t_{1}^{*}\left(\delta^{*}, a \equiv 5(\bmod 8)\right)+\right. \\
& \left.+\left(\frac{d}{-1}\right)\left(\frac{d^{*}}{-1}\right) t_{1}^{*}\left(\delta^{*}, a \equiv 3(\bmod 8)\right)-\left(\frac{d}{-1}\right)\left(\frac{d^{*}}{-1}\right) t_{1}^{*}\left(\delta^{*}, a \equiv 7(\bmod 8)\right)\right] \\
\equiv & 2\left(1-2 \delta^{*}+2 \delta^{* 2}\right) t_{0}^{*}\left(\delta^{*}, a \equiv 1(\bmod 8)\right)- \\
& -2\left(25-10 \delta^{*}+2 \delta^{* 2}\right) t_{0}^{*}\left(\delta^{*}, a \equiv 5(\bmod 8)\right)+ \\
& +4 \delta^{*}\left(\frac{d}{-1}\right)\left(\frac{d^{*}}{-1}\right)\left[-t_{1}^{*}\left(\delta^{*}, a \equiv 3(\bmod 4)\right)+14 t_{1}^{*}\left(\delta^{*}, a \equiv 7(\bmod 8)\right)\right]+ \\
& +4 \delta^{* 2}\left(\frac{d}{-1}\right)\left(\frac{d^{*}}{-1}\right)\left[t_{0}^{*}\left(\delta^{*}, a \equiv 3(\bmod 4)\right)-2 t_{0}^{*}\left(\delta^{*}, a \equiv 7(\bmod 8)\right)\right] \\
\equiv & 2\left(2 \delta^{*}+3-4\left(\frac{d^{2}}{-1}\right)\right) t_{0}^{*}\left(\delta^{*}, a \equiv 1(\bmod 8)\right)- \\
& -2\left(2 \delta^{*}+11+4\left(\frac{d^{*}}{-1}\right)\right) t_{0}^{*}\left(\delta^{*}, a \equiv 5(\bmod 8)\right)- \\
& -8\left(\delta^{*}+1\right)\left(\frac{d}{-1}\right)\left(\frac{d^{*}}{-1}\right) t_{0}^{*}\left(\delta^{*}, a \equiv 7(\bmod 8)\right)+ \\
& +4 \delta^{*}\left(\frac{d}{-1}\right)\left[\frac{1}{2}\left(1+\left(\frac{d^{*}}{-1}\right)\right) t_{1}^{*}\left(\delta^{*}, 2 \mid a\right)-\left(\frac{d^{*}}{-1}\right) t_{1}^{*}\left(\delta^{*}, 4 \mid a\right)\right]+ \\
& +4 \delta^{* 2}\left(\frac{d}{-1}\right)\left(1-\left(\frac{d^{*}}{-1}\right)\right) t_{0}^{*}\left(\delta^{*}, 4 \mid a\right)(\bmod 64), \tag{2.20a}
\end{align*}
$$

because

$$
t_{1}^{*}\left(\delta^{*}, a \equiv \delta^{*}-3(\bmod 4)\right)=\frac{1}{2}\left(1+\left(\frac{d^{\prime}}{-1}\right)\right) t_{1}^{*}\left(\delta^{*}, 2 \mid a\right)-\left(\frac{d^{\prime}}{-1}\right) t_{1}^{*}\left(\delta^{*}, 4 \mid a\right),
$$

and for $d^{*}<0$

$$
t_{0}^{*}\left(\delta^{*}, a \equiv 3(\bmod 4)\right)=-t_{1}^{*}\left(\delta^{*}, 4 \mid a\right)
$$

Consequently for $d<0$ by Lemma 1 we deduce

$$
\begin{aligned}
t_{2}(\delta / 4) \equiv & -4 \delta^{*}\left[\left(1+\left(\frac{d^{*}}{-1}\right)\right)\left(\frac{d^{*}}{2}\right) t_{1}^{*}\left(\delta^{*} / 2\right)-4\left(\frac{d^{*}}{-1}\right) t_{1}^{*}\left(\delta^{*} / 4\right)\right]+20\left(\frac{d^{*}}{-1}\right) t_{0}^{*}\left(\delta^{*} / 8\right)+ \\
& +2\left(2 \delta^{*}-5\left(\frac{d^{*}}{2}\right)+2\right) t_{0}^{*}\left(\delta^{*} / 2\right)+ \\
& +2\left[2 \delta^{*}-5\left(\frac{d^{*}}{2}\right)+6-12\left(\frac{d^{*}}{-1}\right)\right] t_{0}^{*}\left(\delta^{*} / 4\right)(\bmod 64),
\end{aligned}
$$

because $t_{0}^{*}\left(\delta^{*} / 2\right)=0$, if $d^{*}>0$, and by (2.6) we have $t_{0}^{*}\left(\delta^{*} / 4\right)=0$, if $d^{*}<0,\left(\frac{d^{*}}{2}\right)=-1$.
We now turn to the cases. Let $d=8 d^{*}, d^{*}<0$. Then from (2.1), (2.6), (2.7) and (2.18) we obtain

$$
\begin{align*}
t_{2}(\delta / 4) \equiv & 16 t_{1}^{*}\left(\delta^{*} / 4\right)-20 t_{0}^{*}\left(\delta^{*} / 8\right)+2\left(2 \delta^{*}+13\right) t_{0}^{*}\left(\delta^{*} / 4\right)+ \\
& +2\left(2 \delta^{*}-5\left(\frac{d^{*}}{2}\right)+2\right) t_{0}^{*}\left(\delta^{*} / 2\right) \\
\equiv & k_{2}\left(-4 d^{*}\right)+5 h(d)+2\left(13-5\left(\frac{d^{\prime}}{2}\right)\right) h\left(d^{*}\right) \alpha\left(d^{*}\right)(\bmod 64), \tag{2.21}
\end{align*}
$$

because $t_{0}^{*}\left(\delta^{*} / 4\right)=0$, if $d^{*}<0$ and $\left(\frac{d^{*}}{2}\right)=-1$, again.
Likewise, if $d=-8 d^{*}, d^{*}>0, d \neq-8$ then by $t_{0}^{*}\left(\delta^{*} / 2\right)=0,(2.10),(2.12),(2.13)$ and (2.15) we find that

$$
\begin{align*}
t_{2}(\delta / 4) \equiv & -8 \delta^{*}\left(\frac{d^{*}}{2}\right) t_{1}^{*}\left(\delta^{*} / 2\right)+16 t_{1}^{*}\left(\delta^{*} / 4\right)+20 t_{0}^{*}\left(\delta^{*} / 8\right)+ \\
& +2\left(2 \delta^{*}-5\left(\frac{d^{*}}{2}\right)-6\right) t_{0}^{*}\left(\delta^{*} / 4\right) \\
\equiv & 3\left(1-2\left(\frac{d^{*}}{2}\right)\right) k_{2}\left(d^{*}\right) \beta\left(d^{*}\right)+5 h(d)-2\left(5-4\left(\frac{d^{*}}{2}\right)\right) h\left(-4 d^{*}\right) \\
& (\bmod 64) . \tag{2.22}
\end{align*}
$$

Now to finish the proof of the lemma it suffices to use (2.19), (2.21), if $d=8 d^{*}$, $d^{*}<0$ or (2.20), (2.22), if $d=-8 d^{*}, d^{*}>0$ together with (2.9). Let us note in the case $8 \mid d$ we have

$$
t_{3}^{\prime}=t_{3} \equiv-3 \delta t_{2}(\delta / 4)+\frac{3}{2} \delta^{2} t_{1}(\delta / 4) \quad(\bmod 64 \delta) .
$$

This gives immediately the congruences modulo 64δ of (v) of the lemma for $8 \mid d$. The congruences modulo 64 follow easily from them and Cor. 1(i) to Thm. 1, 2 [2].
Lemma 3. Let X be be a subset of the set of the odd natural numbers. For given $x \geq 0$ and any d we have:

$$
t_{k}(x, a \in X) \equiv \frac{k-\sigma}{2} t_{\sigma+2}(x, a \in X)-\frac{k-\sigma-2}{2} t_{\sigma}(x, a \in X)(\bmod 64)
$$

where $k \equiv \sigma(\bmod 2), \sigma \in\{0,1\}$.
Proof. It is easily seen that for natural $2 \nmid a$ and even k

$$
a^{k} \equiv \frac{k}{2} a^{2}-\frac{k}{2}+1(\bmod 64) .
$$

Therefore for even k and any discriminant d the lemma follows. Furthermore, the above congruence implies

$$
a^{k} \equiv \frac{k-1}{2} a^{3}-\frac{k-1}{2} a+a \quad(\bmod 64)
$$

if k is odd. Hence the lemma for odd k follows easily.

Corollary. For any d we have:

$$
t_{k}^{\prime} \equiv \begin{cases}\frac{k}{2} t_{2}^{\prime}-\frac{k-2}{2} t_{0}^{\prime}(\bmod 64), & \text { if } 2 \mid k \\ \frac{k-1}{2} t_{3}^{\prime}-\frac{k-3}{2} t_{1}^{\prime}(\bmod 64), & \text { if } 2 \nmid k\end{cases}
$$

Lemma 4. Let d be the discriminant of an imaginary quadratic field. Then we have:
(i) If $i \geq 2$ then

$$
t_{2 i} \equiv \begin{cases}A_{1}(d, i) h(d) \alpha(d)+i k_{2}(-4 d)(\bmod 64), & \text { if } 2 \nmid d \\ -i d^{2} h(d) \gamma(d)(\bmod 64), & \text { if } 2 \mid d\end{cases}
$$

where

$$
A_{1}(d, i):=-3 \cdot 2^{2 i-1}\left(1-\left(\frac{d}{2}\right)\right)+2 i\left(2\left(\frac{d}{2}\right)-1-\left(\frac{d}{2}\right) d\right)-2\left(\frac{d}{2}\right)+1
$$

(ii) If $i \geq 1$ then

$$
t_{2 i+1} \equiv \begin{cases}A_{2}(d, i) h(d) \alpha(d)-2^{2 i-2} k_{2}(-4 d)(\bmod 64), & \text { if } 2 \nmid d \\ A_{2}(d, i) h(d)(\bmod 64), & \text { if } 2 \mid d,\end{cases}
$$

where

$$
\begin{array}{ll}
A_{2}(d, i):=2^{2 i-1} d\left(1-\left(\frac{d}{2}\right)\right)+2 i\left(\left(\frac{d}{2}\right)-2+\left(\frac{d}{2}\right) d\right)+\left(\frac{d}{2}\right) d, & \text { if } 2 \nmid d, \\
A_{2}(d, i):=i[\gamma(d)(60-d)+8]+d \gamma(d), & \text { if } 4 \| d, \\
A_{2}(d, i):=i\left(8 \operatorname{sgn} d^{*}-d\right)+d, & \text { if } 8 \mid d, d= \pm 8 d^{*}
\end{array}
$$

Proof. Let $i \geq 3$. We start with the following obvious congruence:

$$
\begin{equation*}
t_{i} \equiv 2^{i}\left(\frac{d}{2}\right) t_{\sigma}(\delta / 2,2 \nmid a)+t_{i}^{\prime}(\bmod 64) \tag{2.23}
\end{equation*}
$$

where $i \equiv \sigma(\bmod 2), \sigma \in\{0,1\}$. Hence and from Corollary to Lemma 3 for $i \geq 2$ we obtain

$$
\begin{aligned}
t_{2 i} & \equiv 2^{2 i}\left(\frac{d}{2}\right) t_{0}(\delta / 2,2 \nmid a)+t_{2 i}^{\prime} \\
& \equiv 2^{2 i}\left(\frac{d}{2}\right)\left[t_{0}(\delta / 2)-\left(\frac{d}{2}\right) t_{0}(\delta / 4)\right]+i t_{2}^{\prime}-(i-1) t_{0}^{\prime}(\bmod 64)
\end{aligned}
$$

Now, if $2 \nmid d$ then (i) of the lemma follows immediately from the above congruence, (2.1), (2.6) and Lemma 2(i), (iv). If $2 \mid d$ then it is an easy consequence of Lemma 2(i), (iii).

Similarly from (2.23) and Corollary to Lemma 3 for $i \geq 1$ we get

$$
\begin{aligned}
t_{2 i+1} & \equiv 2^{2 i+1}\left(\frac{d}{2}\right) t_{1}(\delta / 2,2 \nmid a)+t_{2 i+1}^{\prime} \\
& \equiv 2^{2 i+1}\left(\frac{d}{2}\right)\left[t_{1}(\delta / 2)-2\left(\frac{d}{2}\right) t_{1}(\delta / 4)\right]+i t_{3}^{\prime}-(i-1) t_{1}^{\prime}(\bmod 64)
\end{aligned}
$$

Now, if $2 \nmid d$ then (ii) of the lemma is an obvious consequence of Lemma 2 (i), (v), (2.4) and (2.7). If $2 \mid d$ then it follows immediately from Lemma $2(\mathrm{i}),(\mathrm{v})$. The lemma is proved.

Lemma 5. Let $d, 2 \mid d, d \neq-4,-8$ and $k \geq 5$ be the discriminant of an imaginary quadratic field and an odd natural number respectively. Then we have:

$$
t_{k} \equiv \begin{cases}\frac{7}{2}\left(k+3+4\left(\frac{d^{2}}{2}\right)\right)\binom{k}{2} \delta k_{2}\left(d^{*}\right) \beta\left(d^{*}\right)-A_{3} \delta h(d)+ & \\ \quad+2\binom{k}{2}(k-7) \delta h(2 d)(\bmod 64 \delta), & \text { if } d=-4 d^{*}, d^{*}>0 \\ -\binom{k}{2} \delta k_{2}\left(-4 d^{*}\right)+A_{3} \delta h(d)+ & \\ \quad+2\left(7-15\left(\frac{d^{*}}{2}\right)\right)\binom{k}{2} \delta h\left(d^{*}\right) \alpha\left(d^{*}\right)(\bmod 64 \delta), & \text { if } d=8 d^{*}, d^{*}<0 \\ -3\left(1-2\left(\frac{d^{*}}{2}\right)\right)\binom{k}{2} \delta k_{2}\left(d^{*}\right) \beta\left(d^{*}\right)-A_{3} \delta h(d)+ & \\ +10\binom{k}{2} \delta h\left(-4 d^{*}\right)(\bmod 64 \delta), & \text { if } d=-8 d^{*}, d^{*}>0\end{cases}
$$

where $A_{3}:=A_{3}(d, k)$, and $A_{3}=\omega\binom{k}{2}+\left(\frac{d^{2}}{-1}\right) k$, where $\omega=-3(k+3)$, resp. $12+4\left(\frac{d^{d}}{-1}\right)$, if $4 \| d$, resp. $8 \mid d$.

Proof. We begin by proving the lemma in the case $4 \| d, d \neq-4$. Applying (2.8) for $2 \nmid k, k \geq 5$ we get

$$
\begin{aligned}
t_{k} \equiv-k \delta t_{k-1}(\delta / 4)+\frac{1}{2} \delta^{2}\binom{k}{2} t_{k-2}(& \delta / 4)-16\binom{k}{3} \delta t_{0}(\delta / 4)- \\
& -2\binom{k}{4} \delta^{2} t_{1}(\delta / 4)-32 \lambda_{k}\binom{k}{6} \delta t_{0}(\delta / 4)(\bmod 64 \delta) .
\end{aligned}
$$

Thus by Lemma 3 for $2 \nmid k, k \geq 5$ we deduce that

$$
\begin{align*}
t_{k} \equiv & -k \delta\left[\frac{k-1}{2} t_{2}(\delta / 4)-\frac{k-3}{2} t_{0}(\delta / 4)\right]+\frac{1}{2} \delta^{2}\binom{k}{2}\left[\frac{k-3}{2} t_{3}(\delta / 4)-\frac{k-5}{2} t_{1}(\delta / 4)\right]- \\
& -16\binom{k}{3} \delta t_{0}(\delta / 4)-2\binom{k}{4} \delta^{2} t_{1}(\delta / 4)-32 \lambda_{k}\binom{k}{6} t_{0}(\delta / 4) \\
\equiv & \frac{1}{4}(k-3)\binom{k}{2} \delta^{2} t_{3}(\delta / 4)-\binom{k}{2} \delta t_{2}(\delta / 4)-\frac{1}{4} \delta^{2}\left[\binom{k}{2}(k-5)+8\binom{k}{4}\right] t_{1}(\delta / 4)+ \\
& +\left[\frac{k(k-3)}{2}-16\binom{k}{3}-32 \lambda_{k}\binom{k}{6}\right] \delta t_{0}(\delta / 4)(\bmod 64 \delta) . \tag{2.24}
\end{align*}
$$

On the other hand in this case by $t_{0}^{* \prime}=0$ and Lemma 1(i) we have

$$
\begin{aligned}
t_{3}(\delta / 4)= & t_{3}^{*}\left(\delta^{*}, a \equiv 1(\bmod 4)\right)-t_{3}^{*}\left(\delta^{*}, a \equiv 3(\bmod 4)\right) \\
\equiv & 3 t_{1}^{*}\left(\delta^{*}, a \equiv 1(\bmod 4)\right)-2 t_{0}^{*}\left(\delta^{*}, a \equiv 1(\bmod 4)\right)+ \\
& +5 t_{1}^{*}\left(\delta^{*}, a \equiv 3(\bmod 4)\right)-10 t_{0}^{*}\left(\delta^{*}, a \equiv 3(\bmod 4)\right) \\
= & 3 t_{1}^{* \prime}-2 t_{0}^{* \prime}+2 t_{1}^{*}\left(\delta^{*}, a \equiv 3(\bmod 4)\right)-8 t_{0}^{*}\left(\delta^{*}, a \equiv 3(\bmod 4)\right) \\
= & 3 t_{1}^{* \prime}+6 t_{0}^{*}\left(\delta^{*}, a \equiv 3(\bmod 8)\right)-2 t_{0}^{*}\left(\delta^{*}, a \equiv-1(\bmod 8)\right)- \\
& -8 t_{0}^{*}\left(\delta^{*}, a \equiv 3(\bmod 4)\right)=3 t_{1}^{* \prime}-2 t_{0}^{*}\left(\delta^{*}, a \equiv 3(\bmod 4)\right)- \\
& -8 t_{0}^{*}\left(\delta^{*}, a \equiv-1(\bmod 8)\right) \equiv 3 t_{1}^{* \prime}+2 t_{0}^{*}\left(\delta^{*} / 4\right)- \\
& -4\left(1+\left(\frac{d^{2}}{2}\right)\right) t_{0}^{*}\left(\delta^{*} / 4\right)+8 t_{0}^{*}\left(\delta^{*} / 8\right) \equiv 3 t_{1}^{* \prime}- \\
& -2\left(1+2\left(\frac{d^{\prime}}{2}\right)\right) t_{0}^{*}\left(\delta^{*} / 4\right)+8 t_{0}^{*}\left(\delta^{*} / 8\right)(\bmod 16),
\end{aligned}
$$

and by (2.12) (together with $t_{1}^{*}=0$ and (2.2)), (2.10) and (2.15) for $d \neq-4$ we obtain

$$
t_{3}(\delta / 4) \equiv \frac{3}{2}\left(4\left(\frac{d^{*}}{2}\right)-1\right) k_{2}\left(d^{*}\right) \beta\left(d^{*}\right)-h(d)+2 h(2 d)(\bmod 16) .
$$

Consequently by (2.24) together with (2.11), (2.14) and (2.16), the lemma for $4 \| d$ follows, because $2|h(d), h(2 d), 4| k_{2}\left(d^{*}\right)$, and $4 \mid h(d)$, if $\left(\frac{d}{2}\right)=1$.

Now, consider the case $8 \mid d$. From (2.8) in this case we have

$$
t_{k} \equiv-k \delta t_{k-1}(\delta / 4)+\frac{1}{2} \delta^{2}\binom{k}{2} t_{k-2}(\delta / 4) \quad(\bmod 64 \delta)
$$

and in consequence by Lemma 3 for $2 \nmid k, k \geq 5$ we deduce that

$$
\begin{align*}
t_{k} & \equiv-k \delta\left[\frac{k-1}{2} t_{2}(\delta / 4)-\frac{k-3}{2} t_{0}(\delta / 4)\right]+\frac{1}{2} \delta^{2}\binom{k}{2}\left[\frac{k-3}{2} t_{3}(\delta / 4)-\frac{k-5}{2} t_{1}(\delta / 4)\right] \\
& \equiv-\binom{k}{2} \delta t_{2}(\delta / 4)+\frac{1}{2} \delta^{2}\binom{k}{2} t_{1}(\delta / 4)+\frac{k(k-3)}{2} \delta t_{0}(\delta / 4)(\bmod 64 \delta) \tag{2.25}
\end{align*}
$$

On the other hand in view of (2.17), putting $d= \pm 8 d^{*}$ we get

$$
\begin{aligned}
t_{0}(\delta / 4) & =t_{0}\left(\delta^{*}\right)+\sum_{a=0}^{\delta^{*}}\left(\frac{d}{2 \delta^{*}-a}\right)=\sum_{a=0}^{\delta}\left[\left(\frac{ \pm 8}{a}\right)+\left(\frac{d^{*}}{-1}\right)\left(\frac{ \pm 8}{2 \delta^{*}-a}\right)\right]\left(\frac{d^{*}}{a}\right) \\
& =2 t_{0}\left(\delta^{*}, a \equiv 1(\bmod 4)\right)=2 t_{0}^{*}\left(\delta^{*}, a \equiv 1(\bmod 8)\right)-2 t_{0}^{*}\left(\delta^{*}, a \equiv 5(\bmod 8)\right)
\end{aligned}
$$

and in consequence by Lemma 1 we see that

$$
\begin{equation*}
t_{0}(\delta / 4)=4\left(\frac{d^{*}}{-1}\right) t_{0}^{*}\left(\delta^{*} / 8\right)+2\left(1-2\left(\frac{d^{*}}{-1}\right)\right)\left(\frac{d^{*}}{2}\right) t_{0}^{*}\left(\delta^{*} / 4\right)-2\left(\frac{d^{*}}{2}\right) t_{0}^{*}\left(\delta^{*} / 2\right) \tag{2.25a}
\end{equation*}
$$

because $t_{0}^{*}\left(\delta^{*} / 2\right)$, resp. $t_{0}^{*}\left(\delta^{*} / 4\right)=0$, if $d^{*}>0$, resp. $d^{*}<0,\left(\frac{d^{\prime}}{2}\right)=-1$ (see (2.6)).
Thus by (2.1), (2.6) and (2.18) in the case $d^{*}<0$, and by (2.10) and (2.15) in the case $d^{*}>0, d \neq-8$ we obtain

$$
t_{0}(\delta / 4)=h(d)
$$

Thus the lemma for $8 \mid d$ follows from (2.25) together with the above formula and (2.19), (2.21) in the case $d^{*}<0$, and (2.20), (2.22) in the case $d^{*}>0$, because $4 \mid h(d), h\left(-4 d^{*}\right)$, if $\left(\frac{d^{+}}{2}\right)=1$.

3. Used formulas.

It is known that for $k \geq 0$, a Dirichlet character χ with the conductor f and $f \mid F$ the following formula holds:

$$
\begin{equation*}
B_{k, \chi}=F^{k-1} \sum_{a=0}^{F} \chi(a) B_{k}(a / F) \tag{3.1}
\end{equation*}
$$

(see Proposition 4.1 [3]). Here $B_{k}(x)$ denotes the k th Bernoulli polynomial. It is known that for $k \geq 0$

$$
B_{k}(x)=\sum_{i=0}^{k}\binom{k}{i} B_{i} x^{i},
$$

where B_{i} are ordinary Bernoulli numbers. Hence and from (3.1) for $F=2 f$ and $\chi(-1)=$ $(-1)^{k}$ we obtain

$$
\begin{aligned}
B_{k, \chi} & =(2 f)^{k-1} \sum_{a=0}^{2 f} \chi(a) B_{k}(a / 2 f) \\
& =(2 f)^{k-1}\left[\sum_{a=0}^{f} \chi(a) B_{k}(a / 2 f)+\sum_{a=0}^{f} \chi(f-2 a) B_{k}\left(\frac{2 f-a}{2 f}\right)\right] \\
& =(2 f)^{k-1}\left(1+\chi(-1)(-1)^{k}\right) \sum_{a=0}^{f} \chi(a) B_{k}(a / 2 f) \\
& =\sum_{i=0}^{k}\binom{k}{i} 2 B_{k-i}(2 f)^{k-i-1} t_{i} .
\end{aligned}
$$

Therefore for $k \geq 2$ we conclude that

$$
\begin{equation*}
B_{k, \chi}=\sum_{i=0}^{k-2}\binom{k}{i} 2 B_{k-i}(2 f)^{k-1-i}-k t_{k-1}+\frac{1}{f} t_{k} . \tag{3.2}
\end{equation*}
$$

4. Proof of Theorem 1.

We start with the formula (3.2). For $k \geq 3,2 \nmid k$ and $\chi=\left(\frac{d}{f}\right), d<0$ it states that

$$
\begin{equation*}
B_{k,\left(\frac{d}{9}\right)}=\sum_{i=0}^{\frac{k_{1} 3}{2}}\binom{k}{2 i+1} 2 B_{k-2 i-1}(2 \delta)^{k-2 i-2} t_{2 i+1}-k t_{k-1}+\frac{1}{\delta} t_{k} . \tag{4.1}
\end{equation*}
$$

Thus in view of the von Staudt-Clausen theorem for $p=2$ and Lemma 4 we see that the numbers $B_{k,\left(\frac{d}{U}\right)}$ are 2 -integral unless $d=-4$. Then we have $2 \| t_{k}$ and $\operatorname{ord}_{2} B_{k,\left(\frac{d}{d}\right)}=-1$.

Let us apply the formula (4.1) to the case $2 \nmid d$ and $k \geq 7$. Then we have

$$
\begin{equation*}
\delta B_{k,\left(\frac{d}{l}\right)} \equiv \sum_{i=\frac{k, 3}{2}-2}^{\frac{k, 3}{2}}\binom{k}{2 i+1} 2 B_{k-2 i-1} 2^{k-2 i-2} \delta^{k-2 i-1} t_{2 i+1}-k \delta t_{k-1}+t_{k} \quad(\bmod 64) \tag{4.2}
\end{equation*}
$$

Hence in virtue of Lemma 4 (in the case $2 \nmid d$) for $k \geq 9$ we get

$$
\begin{aligned}
\delta B_{k,\left(\frac{d}{(}\right)} \equiv & h(d) \alpha(d) \sum_{i=\frac{k+3}{2}-2}^{\frac{k+3}{2}}\binom{k}{2 i+1} 2 B_{k-2 i-1} 2^{k-2 i-2} \delta^{k-2 i-1} A_{2}(d, i)- \\
& -k_{2}(-4 d) 2^{k-4} \sum_{i=\frac{k, 3}{2}-2}^{\frac{k, 3}{2}}\binom{k}{2 i+1} 2 B_{k-2 i-1} \delta^{k-2 i-1}- \\
& -k \delta\left[A_{1}\left(d, \frac{k-1}{2}\right) h(d) \alpha(d)+\frac{k-1}{2} k_{2}(-4 d)\right]+A_{2}\left(d, \frac{k-1}{2}\right) h(d) \alpha(d)(\bmod 64)
\end{aligned}
$$

From this, in view of $4 \mid k_{2}(-4 d)$ and $k \geq 9$ it follows

$$
\delta B_{k,(\underline{d})} \equiv A_{4}(d, k) h(d) \alpha(d)+d\binom{k}{2} k_{2}(-4 d) \quad(\bmod 64)
$$

where

$$
A_{4}(d, k):=32\binom{k}{6}+8\binom{k}{4}\left(\frac{d}{2}\right) d+\frac{2}{3}\left(\frac{d}{2}\right)\binom{k}{2} d^{3}+k d A_{1}\left(d, \frac{k-1}{2}\right)+A_{2}\left(d, \frac{k-1}{2}\right) .
$$

The task is now to find A_{4} modulo 64 . Indeed we have

$$
\begin{aligned}
A_{4}(d, k) \equiv & 32\binom{k}{6}+8\binom{k}{4}\left(\frac{d}{2}\right) d+22\left(\frac{d}{2}\right)\binom{k}{2} d^{3}+ \\
& +2\binom{k}{2} d\left(2\left(\frac{d}{2}\right)-1-\left(\frac{d}{2}\right) d\right)-k d\left(2\left(\frac{d}{2}\right)-1\right)+ \\
& +k\left(\left(\frac{d}{2}\right)-2+\left(\frac{d}{2}\right) d\right)-\left(\frac{d}{2}\right)+2 \equiv 32\binom{k}{6}+8\binom{k}{4}\left(\frac{d}{2}\right) d+ \\
& +2\binom{k}{2}\left(\frac{d}{2}\right)\left(d+2+8\left(\frac{d}{2}\right)\right)+2\binom{k}{2}\left(-d+8-7\left(\frac{d}{2}\right)\right)+ \\
& +k\left(d+\left(\frac{d}{2}\right)-2-\left(\frac{d}{2}\right) d\right)+2-\left(\frac{d}{2}\right) \equiv 32\binom{k}{6}+8\binom{k}{4}\left(\frac{d}{2}\right) d+ \\
& +2\binom{k}{2}\left(\left(\frac{d}{2}\right) d-d+16-5\left(\frac{d}{2}\right)\right)+k\left(d+\left(\frac{d}{2}\right)-2-\left(\frac{d}{2}\right) d\right)+ \\
& +2-\left(\frac{d}{2}\right)(\bmod 64) .
\end{aligned}
$$

We need consider two cases. If $\left(\frac{d}{2}\right)=1$ then we see that

$$
\begin{aligned}
A_{4}(d, k) & \equiv 32\binom{k}{6}+8\binom{k}{4}+22\binom{k}{2}-k+1 \\
& \equiv(k-1)[2(k-3)(k-5)+3(1-2 k)(k-3)+11 k-1] \\
& \equiv(k-1)[(k-3)(4 k+1)+11 k-1] \\
& \equiv 4(k-1)^{2}(k+1) \equiv 0(\bmod 64) .
\end{aligned}
$$

Let $\left(\frac{d}{2}\right)=-1$. Then we have

$$
A_{4}(d, k) \equiv 32\binom{k}{6}+24\binom{k}{4}+2\binom{k}{2}(21-2 d)+k(2 d-3)+3(\bmod 64) .
$$

Therefore in the case $k \equiv 1(\bmod 4)$ we conclude that

$$
\begin{aligned}
A_{4}(d, k) & \equiv 24\binom{k}{4}-10\binom{k}{2}-9(k-1)+2 d \\
& \equiv(k-1)[(k-3)(1-2 k)-5 k-9]+2 d \equiv 2\left(k^{2}-1\right)+2 d(\bmod 64)
\end{aligned}
$$

and in the case $k \equiv 3(\bmod 4)$ we get

$$
\begin{aligned}
A_{4}(d, k) & \equiv 32\binom{k}{6}+24\binom{k}{4}+11 k(k-3)-3(k-3)+16+2 d \\
& \equiv(k-3)[2(k-1)(k-5)+(k-1)(4 k-9)+11 k-3]+16+2 d \\
& \equiv(k-3)[-(k-1)(2 k+3)+11 k-3]+16+2 d \\
& \equiv 2(k-3)(5 k-1)+16+2 d \equiv 2\left(k^{2}-1\right)+2 d(\bmod 64) .
\end{aligned}
$$

On account of the above for $k \geq 9$ the following congruence

$$
\begin{equation*}
\delta B_{k,\left(\frac{d}{(}\right)} \equiv\left(k^{2}-\mu^{\prime}+d\right)\left(1-\left(\frac{d}{2}\right)\right) h(d) \alpha(d)+\vartheta^{\prime} d\binom{k}{2} k_{2}(-4 d)(\bmod 64) \tag{4.3}
\end{equation*}
$$

holds with $\mu^{\prime}=\vartheta^{\prime}=1$, and consequently after an easy computation the theorem for $k \geq 9$ follows.

If $k=3$ then from (3.1) we have

$$
\delta B_{3,(\underline{d})}=2 d^{2} t_{1}+3 d t_{2}+t_{3}
$$

Therefore by Lemma 4, (2.3) and (2.5) we deduce that

$$
\delta B_{3,\left(\frac{d}{1}\right)} \equiv\left[-d^{3}+A_{2}(d, 1)\right] h(d) \alpha(d)-k_{2}(-4 d)(\bmod 64)
$$

Consequently the congruence (4.3) with $\mu^{\prime}=3+2 d$ and ϑ^{\prime} satisfying $3 d \vartheta^{\prime}=-1$ holds, and in consequence the theorem for $k=3$ follows.

If $k=5$ then from (3.1) we have

$$
\delta B_{5,\left(\frac{d}{1}\right)}=-\frac{8}{3} d^{4} t_{1}+\frac{20}{3} d^{2} t_{3}+5 d t_{4}+t_{5}
$$

Thus by Lemma $4,(2.3)$ and in view of $4 \mid k_{2}(-4 d)$

$$
\delta B_{5,\left(\frac{d}{!}\right)} \equiv A_{5}(d) h(d) \alpha(d)+10 d k_{2}(-4 d)(\bmod 64)
$$

where

$$
A_{5}(d):=-24 d+28(d-1) A_{2}(d, 1)+5 d A_{1}(d, 2)+A_{2}(d, 2)
$$

After a computation this congruence implies (4.3) with $\mu^{\prime}=17$ and $\vartheta^{\prime}=1$, and so the theorem for $k=5$ follows.

Finally, if $k=7$ then from (4.2) we find that

$$
\delta B_{7,(\underline{d})} \equiv 32 t_{1}+24 t_{3}+14 d^{2} t_{5}+7 d t_{6}+t_{7}(\bmod 64)
$$

Therefore by Lemma $4,(2.3)$ and in virtue of $4 \mid k_{2}(-4 d)$ we observe that

$$
\delta B_{7,\left(\frac{d}{l}\right)} \equiv A_{6}(d) h(d) \alpha(d)+5 d k_{2}(-4 d)(\bmod 64)
$$

where

$$
A_{6}(d):=32+24 A_{2}(d, 1)+14 d^{2} A_{2}(d, 2)+7 d A_{1}(d, 3)+A_{2}(d, 3)
$$

This yields (4.3) with $\mu^{\prime}=\vartheta^{\prime}=1$, and consequently the theorem for $k=7$. The theorem is proved.

5. Proofs of Theorems 2 and 3.

We start with the formula (4.1). In the case $2 \mid d$ and $k \geq 3$ it implies the congruence

$$
\delta B_{k,\left(\frac{d}{4}\right)} \equiv 6\binom{k}{2} \delta^{2} t_{k-2}-k \delta t_{k-1}+t_{k} \quad(\bmod 64)
$$

But Lemma 4 for $k \geq 5$ and (2.3) for $k=3$ give

$$
64 \delta \left\lvert\, 6\binom{k}{2} \delta^{2} t_{k-2}\right.
$$

Consequently we get the congruence

$$
\begin{equation*}
\delta B_{k,\left(\frac{d}{d}\right)} \equiv-k \delta t_{k-1}+t_{k}(\bmod 64 \delta) . \tag{5.1}
\end{equation*}
$$

On the other hand by Lemma 4 we have

$$
-k \delta t_{k-1} \equiv\binom{k}{2} \delta^{3} h(d) \equiv \begin{cases}16\binom{k}{2} \delta h(d)(\bmod 64 \delta), & \text { if } 4 \| d \\ 0(\bmod 64 \delta), & \text { if } 8 \mid d\end{cases}
$$

and consequently, from (5.1) and Lemma 5 for $k \geq 5$, or Lemma 2 for $k=3$ the theorems follow at once because of the divisibilities $4\left|k_{2}\left(d^{*}\right), 2\right| h(d), h(2 d)$, and $8\left|k_{2}\left(d^{*}\right), 4\right| h(d), h(2 d)$, if $\left(\frac{d^{*}}{2}\right)=1$ in the case $d=-4 d^{*}$.

6. Corollaries to Theorem 1.

In the corollaries below let us adopt the notation of Theorem 1. The following congruences follow immediately from the above theorem and Cor. 1, 2 to Thm. 2 [2].
Corollary 1. If $\left(\frac{d}{2}\right)=1$ and $k \geq 3$ then we have:

$$
b_{k}(d) \equiv-\frac{k-1}{2} k_{2}(-4 d)(\bmod 64),
$$

and

$$
b_{k}(d) \equiv 8\left(3+\left(\frac{-1}{k}\right)\right) \kappa \equiv 2(k-1) h(8 d) \equiv(k-1) k_{2}(-8 d)\left(\bmod 16\left(3+\left(\frac{-1}{k}\right)\right)\right)
$$

where $\kappa:=1$, if $\delta=p \equiv 7(\bmod 16)$ is a prime number and $k \not \equiv 1(\bmod 8)$, and $\kappa:=0$, otherwise.

Moreover if $\delta=p \equiv-1(\bmod 8)$ is a prime number then we have

$$
b_{k}(d) \equiv 2(k-1)(p+1+h(8 d))(\bmod 64) .
$$

Corollary 2. If $\left(\frac{d}{2}\right)=1$ and $k \geq 3$ then we have:
(i) $\operatorname{ord}_{2} B_{k,\left(\frac{d}{l}\right)} \geq 4$.
(ii) $\operatorname{ord}_{2} B_{k,(\underline{d})}=4 \Longleftrightarrow 16 \| k_{2}(-4 d)($ or $4 \| h(8 d))$ and $k \equiv 3(\bmod 4)$.
(iii) $\operatorname{ord}_{2} B_{k,\left(\frac{d}{(}\right)}=5 \Longleftrightarrow\left(16 \| k_{2}(-4 d)\right.$ and $\left.k \equiv-3(\bmod 8)\right)$ or $\left(32 \| k_{2}(-4 d)\right.$ and $k \equiv 3(\bmod 4))$.
(iv) $\operatorname{ord}_{2} B_{k,\left(\frac{d}{4}\right)} \geq 6 \Longleftrightarrow k \equiv 1(\bmod 8)$ or $\left(32 \mid k_{2}(-4 d)\right.$ and $\left.k \equiv-3(\bmod 8)\right)$ or $64 \mid k_{2}(-4 d)$.
(v) If $\delta=p \equiv-1(\bmod 8)$ is a prime number then we have:

$$
\begin{aligned}
\operatorname{ord}_{2} B_{k,\left(\frac{d}{d}\right)}=4 \Longleftrightarrow & p \equiv 7(\bmod 16) \text { and } k \equiv 3(\bmod 4) \\
\operatorname{ord}_{2} B_{k,\left(\frac{d}{d}\right)}=5 \Longleftrightarrow & (p \equiv 7(\bmod 16) \text { and } k \equiv-3(\bmod 8)) \text { or } \\
& (p \equiv-1(\bmod 16) \text { and } 8 \| h(8 d) \text { and } k \equiv 3(\bmod 4)),
\end{aligned}
$$

$\operatorname{ord}_{2} B_{k,\left(\frac{d}{2}\right)} \geq 6$, otherwise.
Corollary 3. If $\left(\frac{d}{2}\right)=-1$ and $k \geq 3$ then we have:

$$
b_{k}(d) \equiv-2 \lambda(6 k-5) h(d) \alpha(d)-2(k-1) h(8 d)\left(\bmod 16\left(3+\left(\frac{-1}{k}\right)\right)\right)
$$

where $\lambda:=\lambda_{k}(d)$, and $\lambda_{3}=2 \nu_{3}-\mu_{3}, \lambda_{5}=\mu_{5}$, and $\lambda_{k}=1$, otherwise.
Moreover if $\delta=p \equiv 3(\bmod 8)$ is a prime number then

$$
b_{k}(d) \equiv-2 \theta_{k} h(d) \alpha(d)-2(k-1) h(8 d)(\bmod 64)
$$

where $\theta_{k}:=\theta_{k}(d)$, and

$$
\theta_{k}=(6 k-5) \lambda_{k}+(p-3)(k-1) .
$$

The above corollary and Theorem 1 imply the following:
Corollary 4. If $\left(\frac{d}{2}\right)=-1$ and $k \geq 3$ then we have:
(i) $\operatorname{ord}_{2} B_{k,\left(\frac{d}{1}\right)} \geq 1$.
(ii) $\operatorname{ord}_{2} B_{k,(\underline{d})}=1 \Longleftrightarrow 2 \nmid h(d)\left(\right.$ or $4 \| k_{2}(-4 d)$, or $2 \| h(8 d)$, or $\left.4 \| k_{2}(-8 d)\right) \Longleftrightarrow$ $\delta=p \equiv 3(\bmod 8)$ is a prime number.
(iii) $\operatorname{ord}_{2} B_{k,\left(\frac{d}{d}\right)}=2 \Longleftrightarrow 2 \| h(d)$ (or $8 \| k_{2}(-4 d)$).
(iv) $\operatorname{ord}_{2} B_{k,(\underline{d})}=3 \Longleftrightarrow 4 \| h(d)$ and $[k \equiv 1(\bmod 4)$ or $(k \equiv 3(\bmod 4)$ and $4 \mid h(8 d))]$.
(v) $\operatorname{ord}_{2} B_{k,\left(\frac{d}{1}\right)}=4 \Longleftrightarrow\{8 \| h(d)$ and $[k \equiv 1(\bmod 8)$ or $(k \equiv-3(\bmod 8)$ and $4 \mid h(8 d))$ or $(k \equiv 3(\bmod 4)$ and $8 \mid h(8 d))]\}$ or $(16 \mid h(d)$ and $k \equiv 3(\bmod 4)$ and $4 \| h(8 d))$.
(vi) $\operatorname{ord}_{2} B_{k,\left(\frac{d}{1}\right)}=5 \Longleftrightarrow\left[8 \| h(d)\right.$ and $16 \| k_{2}(-4 d)$ and $k \equiv 3(\bmod 4)$ and $\left.\frac{1}{8} h(d) \alpha(d) \not \equiv \frac{1}{16}\left(\frac{2}{k}\right) k_{2}(-4 d)(\bmod 4)\right]$ or $\{16 \| h(d))$ and $[(k \equiv 1(\bmod 8)$ and $\left.16 \mid k_{2}(-4 d)\right)$ or $\left(k \equiv-3(\bmod 8)\right.$ and $\left.32 \mid k_{2}(-4 d)\right)$ or $(k \equiv 3(\bmod 4)$ and $\left.\left.\left.64 \mid k_{2}(-4 d)\right)\right]\right\}$ or $\left\{32 \mid h(d)\right.$ and $\left[\left(k \equiv-3(\bmod 8)\right.\right.$ and $\left.16 \| k_{2}(-4 d)\right)$ or $(k \equiv 3$ $(\bmod 4)$ and $\left.\left.\left.32 \| k_{2}(-4 d)\right)\right]\right\}$.
(vii) $\operatorname{ord}_{2} B_{k,\left(\frac{d}{1}\right)} \geq 6 \Longleftrightarrow\left[8 \| h(d)\right.$ and $16 \| k_{2}(-4 d)$ and $k \equiv 3(\bmod 4)$ and $\left.\frac{1}{8} h(d) \alpha(d) \equiv \frac{1}{16}\left(\frac{2}{k}\right) k_{2}(-4 d)(\bmod 4)\right]$ or $\{16 \| h(d)$ and $[(k \equiv-3(\bmod 8)$ and $\left.16 \| k_{2}(-4 d)\right)$ or $\left(k \equiv 3(\bmod 4)\right.$ and $\left.\left.\left.32 \| k_{2}(-4 d)\right)\right]\right\}$ or $\{32 \mid h(d)$ and $[(k \equiv 1$ $(\bmod 8)$ and $\left.16 \mid k_{2}(-4 d)\right)$ or $\left(k \equiv-3(\bmod 8)\right.$ and $\left.32 \mid k_{2}(-4 d)\right)$ or $(k \equiv 3$ $(\bmod 4)$ and $\left.\left.\left.64 \mid k_{2}(-4 d)\right)\right]\right\}$.

If $k \equiv 1\left(\bmod 2^{a}\right), a \leq 5$ then the congruence of the theorem implies the congruence (1.2) and so this is a generalization of this congruence. If $k \equiv 1\left(\bmod 2^{a}\right)$ then Theorem 1 leads to

$$
b_{k}(d) \equiv-k \mu\left(1-\left(\frac{d}{2}\right)\right) h(d) \alpha(d)\left(\bmod 2^{a+f-1}\right)
$$

where $f:=\operatorname{ord}_{2} k_{2}(-4 d)$ (i.e. $f \geq 2$, or $f \geq 4$, if $\left(\frac{d}{2}\right)=1$, cf. (1.2)).
In the case $\left(\frac{d}{2}\right)=1$ by the congruences of Cor. 1 , for any k we get a fairly straightforward generalization of the formula (1.4) for $a \leq 5$ (see Cor. 2(iv)). Also in this case we get formulas of the type of (1.5) (see Cor. 2(ii), (iii), (v)). In the case $\left(\frac{d}{2}\right)=-1$, Cor. 4 gives an extension of the formula (1.5) for $a \leq 5$.

In the second part of the paper we shall present analogous congruences and formulas to (1.3) and (1.6), (1.7).

7. Corollaries to Theorems 2, 3 and 4.

Applying Cor. 1,2 to Thm. 1, 2 [2] to Theorems 2,3 and 4 in the notation of these theorems we obtain the following:

Corollary 1. If $4 \| d$ and $k \geq 3$ then we have:
(i) $\operatorname{ord}_{2} B_{k,\left(\frac{d}{!}\right)}=-1$, if $d=-4$, and $\operatorname{ord}_{2} B_{k,\left(\frac{d}{U}\right)} \geq 1$, if $d<-4$.
(ii) $\operatorname{ord}_{2} B_{k,(\underline{d})}=\nu, 1 \leq \nu \leq 3 \Longleftrightarrow 2^{\nu} \| h(d)$.
(iii) $\operatorname{ord}_{2} B_{k,\left(\frac{d}{U}\right)}=4 \Longleftrightarrow\{16 \| h(d)$ and $[k \equiv 1(\bmod 4)$ or $(k \equiv 3(\bmod 4)$ and $\left.\left.\left.32 \mid k_{2}\left(d^{*}\right)\right)\right]\right\}$ or $\left(32 \mid h(d)\right.$ and $k \equiv 3(\bmod 4)$ and $\left.16 \| k_{2}\left(d^{*}\right)\right)$.
(iv) $\operatorname{ord}_{2} B_{k,\left(\frac{d}{(}\right)}=5 \Longleftrightarrow\left[16 \| h(d)\right.$ and $16 \| k_{2}\left(d^{*}\right)$ and $k \equiv 3(\bmod 4)$ and $k_{2}\left(d^{*}\right)+$ $\left.h(d) \equiv 16\left(1-\left(\frac{2}{k}\right)\right)(\bmod 64)\right]$ or $\{32 \| h(d)$ and $[k \equiv 1(\bmod 8)$ or $(k \equiv 5$ $(\bmod 8)$ and $\left.32 \mid k_{2}\left(d^{*}\right)\right)$ or $\left(k \equiv 3(\bmod 4)\right.$ and $\left.\left.\left.64 \mid k_{2}\left(d^{*}\right)\right)\right]\right\}$ or $(64 \mid h(d)$ and $k \equiv 3(\bmod 4)$ and $\left.32 \| k_{2}\left(d^{*}\right)\right)$, $\operatorname{ord}_{2} B_{k,\left(\frac{d}{L}\right)} \geq 6$, otherwise.

Corollary 2. If $8 \mid d$ and $k \geq 3$ then we have:
(i) $\operatorname{ord}_{2} B_{k,(\underset{1}{d})} \geq 0$.
(ii) $\operatorname{ord}_{2} B_{k,\left(\frac{d}{!}\right)}=\nu, 0 \leq \nu \leq 3 \Longleftrightarrow 2^{\nu} \| h(d)$ (i.e. $\operatorname{ord}_{2} B_{k,\left(\frac{d}{1}\right)}=0 \Longleftrightarrow d=-8$).
(iii) If $d^{*}<0$ and $\left(\frac{d^{*}}{2}\right)=1$ then:
$\operatorname{ord}_{2} B_{k,(\underline{d})}=4 \Longleftrightarrow\{16 \| h(d)$ and $[k \equiv 1(\bmod 4)$ or $(k \equiv 3(\bmod 4)$ and $\left.\left.4 \mid h\left(d^{*}\right)\right]\right\}$ or $\left(32 \mid h(d)\right.$ and $k \equiv 3(\bmod 4)$ and $\left.2 \| h\left(d^{*}\right)\right)$,
$\operatorname{ord}_{2} B_{k,(\underline{d})}=5 \Longleftrightarrow\left(16 \| h(d)\right.$ and $k \equiv 3(\bmod 4)$ and $2 \| h\left(d^{*}\right)$ and $k_{2}\left(-4 d^{*}\right)+$ $\left.8 h\left(d^{*}\right) \alpha\left(d^{*}\right) \equiv-\left(\frac{2}{k}\right) h(d)(\bmod 64)\right)$ or $\{32 \| h(d)$
and $\left[k \equiv 1(\bmod 8)\right.$ or $\left(k \equiv-3(\bmod 8)\right.$ and $\left.4 \mid h\left(d^{*}\right)\right)$ or $\left(k \equiv 3(\bmod 4)\right.$ and $\left.\left.\left.64 \mid k_{2}\left(-4 d^{*}\right)+8 h\left(d^{*}\right) \alpha\left(d^{*}\right)\right)\right]\right\}$ or $\left\{64 \mid h(d)\right.$ and $\left[\left(k \equiv-3(\bmod 8)\right.\right.$ and $\left.2 \| h\left(d^{*}\right)\right)$ or $\left(k \equiv 3(\bmod 4)\right.$ and $\left.\left.\left.32 \| k_{2}\left(-4 d^{*}\right)+8 h\left(d^{*}\right) \alpha\left(d^{*}\right)\right)\right]\right\}$,
$\operatorname{ord}_{2} B_{k,(\underline{d})} \geq 6$, otherwise.
If $d^{*}<0$ and $\left(\frac{d^{*}}{2}\right)=-1$ then:
$\operatorname{ord}_{2} B_{k,\left(\frac{d}{2}\right)}=4 \Longleftrightarrow\{16 \| h(d)$ and $[k \equiv 1(\bmod 4)$ or $(k \equiv 3(\bmod 4)$ and $\left.\left.\left.k_{2}\left(-4 d^{*}\right) \equiv 12 h\left(d^{*}\right) \alpha\left(d^{*}\right)(\bmod 32)\right)\right]\right\}$ or $(32 \mid h(d)$ and $k \equiv 3(\bmod 4)$ and $\left.16 \| k_{2}\left(-4 d^{*}\right)+20 h\left(d^{*}\right) \alpha\left(d^{*}\right)\right)$,
$\operatorname{ord}_{2} B_{k,(\underline{d})}=5 \Longleftrightarrow(16 \| h(d)$ and $k \equiv 3(\bmod 4)$ and
$\left.k_{2}\left(-4 d^{*}\right)+20 h\left(d^{*}\right) \alpha\left(d^{*}\right) \equiv-\left(\frac{2}{k}\right) h(d)(\bmod 64)\right)$ or $\{32 \| h(d)$ and $[k \equiv 1(\bmod 8)$ or $(k \equiv-3(\bmod 8)$ and $\left.k_{2}\left(-4 d^{*}\right) \equiv 12 h\left(d^{*}\right) \alpha\left(d^{*}\right)(\bmod 32)\right)$ or $(k \equiv 3(\bmod 4)$ and $\left.\left.\left.k_{2}\left(-4 d^{*}\right) \equiv-20 h\left(d^{*}\right) \alpha\left(d^{*}\right)(\bmod 64)\right)\right]\right\}$ or $\{64 \mid h(d)$ and $\left[\left(k \equiv-3(\bmod 8)\right.\right.$ and $\left.16 \| k_{2}\left(-4 d^{*}\right)+20 h\left(d^{*}\right) \alpha\left(d^{*}\right)\right)$ or $\left(k \equiv 3(\bmod 4)\right.$ and $\left.\left.\left.32 \| k_{2}\left(-4 d^{*}\right)+20 h\left(d^{*}\right) \alpha\left(d^{*}\right)\right)\right]\right\}$,
$\operatorname{ord}_{2} B_{k,\left(\frac{d}{1}\right)} \geq 6$, otherwise.
(iv) If $d^{*}>0$ then
$\operatorname{ord}_{2} B_{k,\left(\frac{d}{1}\right)}=4 \Longleftrightarrow\{16 \| h(d)$ and $[k \equiv 1(\bmod 4)$ or $(k \equiv 3(\bmod 4)$ and $\left.\left.\left.k_{2}\left(d^{*}\right) \beta\left(d^{*}\right) \equiv 2 h\left(-4 d^{*}\right)(\bmod 32)\right)\right]\right\}$ or $(32 \mid h(d)$ and $k \equiv 3(\bmod 4)$ and $\left.16 \| k_{2}\left(d^{*}\right) \beta\left(d^{*}\right)-2 h\left(-4 d^{*}\right)\right)$,
$\operatorname{ord}_{2} B_{k,(\underline{d})}=5 \Longleftrightarrow\left[16 \| h(d)\right.$ and $k \equiv 3(\bmod 4)$ and $\left(1-2\left(\frac{d^{*}}{2}\right)\right) k_{2}\left(d^{*}\right) \beta\left(d^{*}\right)$
$\left.+2 h\left(-4 d^{*}\right) \equiv\left(\frac{2}{k}\right) h(d)(\bmod 64)\right]$
or $\{32 \| h(d)$ and $[k \equiv 1(\bmod 8)$ or $(k \equiv-3(\bmod 8)$
and $\left.\left(1-2\left(\frac{d^{*}}{2}\right)\right) k_{2}\left(d^{*}\right) \beta\left(d^{*}\right) \equiv-2 h\left(-4 d^{*}\right)(\bmod 32)\right)$
or $\left(k \equiv 3(\bmod 4)\right.$ and $\left(1-2\left(\frac{d^{*}}{2}\right)\right) k_{2}\left(d^{*}\right) \beta\left(d^{*}\right) \equiv$
$\left.\left.\left.-2 h\left(-4 d^{*}\right)(\bmod 64)\right)\right]\right\}$ or $\{64 \mid h(d)$ and

$$
\begin{aligned}
& {\left[\left(k \equiv-3(\bmod 8) \text { and } 16 \| k_{2}\left(d^{*}\right) \beta\left(d^{*}\right)-2 h\left(-4 d^{*}\right)\right)\right.} \\
& \text { or }(k \equiv 3(\bmod 4) \text { and } \\
& \left.\left.32 \|\left(1-2\left(\frac{d^{\prime}}{2}\right)\right) k_{2}\left(d^{*}\right) \beta\left(d^{*}\right)+2 h\left(-4 d^{*}\right)\right]\right\},
\end{aligned}
$$

$\operatorname{ord}_{2} B_{k,\left(\frac{d}{!}\right)} \geq 6$, otherwise.
Corollaries to Theorems 2, 3 and 4 are extensions of the formulas (1.4) and (1.5) for $2 \mid d$ and $a \leq 5$.
Remark. If $d=-4$ then by Lemma 4 and the congruence (5.1) we get

$$
2 b_{k}(d) \equiv 18+\frac{13}{k}(\bmod 32)
$$

i.e.

$$
E_{k-1} \equiv 14-\frac{13}{k}(\bmod 32)
$$

where E_{i} denotes the i th Euler number. This congruence completes Theorem 4.

8. Proofs of Corollaries to Theorems.

Corollaries to Theorem 1 follow immediately from this theorem and Cor. 1, 2 to Thm. 2 [2]. It remains to prove Corollaries to Theorems 2, 3 and 4. Indeed, Corollaries 1, 2(i), (ii) (2(ii) for $\nu \leq 2$) are easy consequences of Theorem 4. To prove Corollary 1(iii), (iv) let us notice that by Cor. 2(i), (ii) to Thm. 1 [2], $16 \mid h(d)$ implies $4 \mid h(2 d)$ and $16 \mid k_{2}\left(d^{*}\right)$. Therefore we have

$$
\vartheta_{1} k_{2}\left(d^{*}\right) \beta\left(d^{*}\right)+\vartheta_{3} h(2 d) \equiv\left\{\begin{array}{cl}
2(k-1) h(2 d)(\bmod 64), & \text { if } k \equiv 1(\bmod 4) \tag{6.1}\\
-k_{2}\left(d^{*}\right)-2(k+1) h(2 d) & \\
(\bmod 64), & \text { if } k \equiv 3(\bmod 4)
\end{array}\right.
$$

This yields (iii) at once. To prove (iv) let us make the following observation. If $a, b, c \in \mathbb{Z}$ then

$$
\left.\left.\begin{array}{r}
a+c, b \equiv 16(\bmod 32) \tag{6.2}\\
a+b+c \equiv 32(\bmod 64)
\end{array}\right\} \Longleftrightarrow \begin{array}{r}
a+c \equiv b(\bmod 64) \\
b \equiv 16(\bmod 32)
\end{array}\right\}
$$

Combining this with (6.1) gives (iv) because by Cor. 2(iii) to Thm. 1 [2], $16 \| h(d)$ and $16 \| k_{2}\left(d^{*}\right)$ imply $4 \| h(2 d)$, and if $16 \mid h(d)$ then $8 \mid h(2 d)$ if and only if $32 \mid k_{2}\left(d^{*}\right)$.

We now turn to Corollary 2(ii) (for $\nu=3$), (iii), (iv). Let $d^{*}<0$. If $\left(\frac{d^{*}}{2}\right)=1$ then by Cor. 2(i) to Thm. 2 [2] we find that $16 \mid k_{2}\left(-4 d^{*}\right)$ and $2 \mid h\left(d^{*}\right)$, if $\left(\frac{d^{*}}{2}\right)=-1$ then by Cor. 2(iii) to the mentioned theorem the divisibility $8 \mid h(d)$ implies $2 \mid h\left(d^{*}\right)$ and $8 \mid k_{2}\left(-4 d^{*}\right)$. Moreover we have

$$
\vartheta_{1} k_{2}\left(-4 d^{*}\right)+\vartheta_{3} h\left(d^{*}\right) \alpha\left(d^{*}\right) \equiv\left\{\begin{array}{cl}
-\frac{k-1}{2}\left[k_{2}\left(-4 d^{*}\right)+8 h\left(d^{*}\right) \alpha\left(d^{*}\right)\right] & \\
(\bmod 64), & \text { if }\left(\frac{d^{*}}{2}\right)=1 \\
-\frac{k-1}{2}\left[k_{2}\left(-4 d^{*}\right)+20 h\left(d^{*}\right) \alpha\left(d^{*}\right)\right] & \\
(\bmod 64), & \text { if }\left(\frac{d^{d}}{2}\right)=-1
\end{array}\right.
$$

Hence and from Cor. 1(i) to Thm. 2[2],(ii) for $\nu=3$ follows immediately. Indeed, $8 \mid h(d)$ yields $16 \mid \vartheta_{1} k_{2}\left(-4 d^{*}\right)+\vartheta_{3} h\left(d^{*}\right) \alpha\left(d^{*}\right)$ in both the cases. To prove (iii) it suffices to use Cor. 2(i) ((i), resp. (iii), if $\left(\frac{d^{+}}{2}\right)=1$, resp. -1) to Thm. 2 [2]. In fact, if $\left(\frac{d^{2}}{2}\right)=1$ and $16 \| h(d)$ then by the mentioned corollary we have $32 \mid k_{2}\left(-4 d^{*}\right)$. Now Corollary 2(iii) follows from (6.3) and (6.2).

Now let $d^{*}>0$. Then by Cor. $2(\mathrm{i})$ to Thm. $1[2], 8 \mid h(d)$ implies $4 \mid h\left(-4 d^{*}\right)$ and $8 \mid k_{2}\left(d^{*}\right)$. Moreover we have

$$
\begin{equation*}
\mu_{1} k_{2}\left(d^{*}\right) \beta\left(d^{*}\right)+\mu_{3} h\left(-4 d^{*}\right)=-\frac{k-1}{2}\left[3\left(1-2\left(\frac{d^{*}}{2}\right)\right) k_{2}\left(d^{*}\right) \beta\left(d^{*}\right)-10 h\left(-4 d^{*}\right)\right] . \tag{6.3}
\end{equation*}
$$

Thus by Cor. 1(i) to Thm. 1 [2] we get (ii) for $\nu=3$. Then the left hand side of (6.3) is congruent to $-4\left(1+3\left(\frac{d^{*}}{2}\right)\right) h\left(-4 d^{*}\right) \equiv 0(\bmod 16)$.

To prove (iv) it is sufficient to use (6.3), and also (6.2), if $16 \| h(d)$ and $k \equiv 3(\bmod 4)$. This completes the proof.

Acknowledgement.

The author wishes to thank Professors E. Bayer, G. Gras and the University of Besançon (France), where the paper was written, for the invitation and hospitality.

References

[1] B. C. Berndt: Classical theorems on quadratic residues, L'Enseign. Math. 22 (1976), 261-304.
[2] J. Urbanowicz: Connections between $B_{2, \chi}$ for even quadratic Dirichlet characters χ and class numbers of appropriate imaginary quadratic fields, I, Compositio Math. 75 (1990), 247-270.
[3] L. C. Washington, Introduction to cyclotomic fields, Springer Verlag, New York - Heidelberg - Berlin 1982.

ON SOME NEW CONGRUENCES
BETWEEN GENERALIZED BERNOULLI NUMBERS, II

On some new congruences between generalized Bernoulli numbers, II
by
Jerzy Urbanowicz
Institute of Mathematics
Polish Academy of Sciences,
ul. Śniadeckich 8, 00-950 Warszawa, Poland

On some new congruences between generalized Bernoulli numbers, II

Abstract

The paper is a continuation of my earlier paper on this subject. We prove analogous congruences as in that paper, but for positive discriminants d. Also for each $0 \leq \nu \leq 5$ all positive d and even k satisfying $\operatorname{ord}_{2} B_{k,\left(\frac{d}{1}\right)}=\nu+\operatorname{ord}_{2} k$ are found.

The proofs are similar in spirit to proofs of [3], and based on ideas of [1] and [2], again.

In the third part of the paper we shall study related problems, but from a p-adic measure point of view.

Key words: Bernoulli numbers, Kummer congruences, class numbers.

1. Notation.

We follow the notation of [3]. Let d stand for the discriminant of a quadratic field. Denote by (\underline{d}), resp. $B_{k, \chi}$ the Kronecker symbol, resp. the k th generalized Bernoulli number belonging to the Dirichlet character χ. Set $\delta:=|d|$. Write $h(d):=-B_{1,(\underline{d})}$, if $d<-4$ and $h(-3)=h(-4):=1$. Put $k_{2}(d):=B_{2,\left(\frac{d}{9}\right)}$, if $d>8$ and $k_{2}(5)=k_{2}(8):=4$. Let $x \geq 0$ and $X \subset \mathbb{N} \cup\{0\}$. To simplify the notation we continue to write (as in $[3]) t_{k}(x), t_{k}(x, a \in X)$, resp. $t_{k}^{*}(x), t_{k}^{*}(x, a \in X)$ for sums of the k th powers of natural numbers taken from 0 to x, involving quadratic characters $\left(\frac{d}{9}\right)$, resp. $\left(\frac{d^{*}}{.}\right)$, where d^{*} is the discriminant of a quadratic field satisfying $d=-4 d^{*}$ or $\pm 8 d^{*}$. Write $t_{k}:=t_{k}(\delta)$ and $t_{k}^{\prime}:=t_{k}(\delta, 2 \nmid a)$.

Let us recall that $B_{0,\left(\frac{d}{!}\right)}=0$, and for $k \geq 1$

$$
\begin{equation*}
B_{k,\left(\frac{d}{!}\right)}=0 \tag{1.1}
\end{equation*}
$$

if and only if $\left(\frac{d}{-1}\right) \neq(-1)^{k}$. Write $\alpha(-3):=\frac{1}{3}, \beta(5):=\frac{1}{5}, \rho(8):=\frac{1}{2}$, and $\alpha(d), \beta(d)$, $\rho(d):=1$, otherwise. Put $\eta(5):=\beta(5), \eta(8):=\rho(8)$, and $\eta(d):=1$, otherwise. Set

$$
b_{k}(d):=\frac{B_{k,\left(\frac{d}{l}\right)}}{k} .
$$

2. Theorems.

Our purpose is for each $0 \leq \nu \leq 5$ to find all positive d and even k such that $\operatorname{ord}_{2} B_{k,\left(\frac{d}{l}\right)}=\nu+\operatorname{ord}_{2} k$. We prove some new congruences between generalized Bernoulli numbers of the Kummer congruences type modulo 64 but with deleted assumptions on k. For a deeper discussion of it we refer the reader to [3].

In this part we prove the following generalizations of the congruence (1.3) of [3]:
Theorem 1. Let $d, 2 \nmid d$ and $k \geq 4$ be the discriminant of a real quadratic field and an even natural number respectively. With the above notation, the numbers $b_{k}(d)$ are 2-integral and the following congruence holds:

$$
b_{k}(d) \equiv\left(2 k\left(\frac{d}{2}\right)+k+2\right) \mu h(-4 d)+\frac{3}{2}\left(-k-2\left(\frac{d}{2}\right)+1\right) \vartheta k_{2}(d) \beta(d)(\bmod 64)
$$

where $\mu:=\mu_{k}(d), \vartheta:=\vartheta_{k}(d)$, and

$$
\begin{array}{ll}
\mu_{4}=-d+10+4\left(\frac{d}{2}\right), & \mu_{6}=8+5\left(\frac{d}{2}\right) \\
\vartheta_{4}=2 d+8\left(\frac{d}{2}\right)+7, & \vartheta_{6}=-4\left(\frac{d}{2}\right)-11,
\end{array}
$$

and $\mu_{k}, \vartheta_{k}=1$, otherwise.

The case $2 \mid d$ is more complicated. We prove the following:
Theorem 2. Let $d=-4 d^{*}$, where d^{*} is the discriminant of an imaginary quadratic field, and let $k \geq 4$ be an even natural number. Then the numbers $b_{k}(d)$ are 2 -integral and we have:

$$
b_{k}(d) \equiv \vartheta_{1} \frac{1}{2} k_{2}(d)+\vartheta_{2} h\left(d^{*}\right) \alpha\left(d^{*}\right)+\vartheta_{3} h(-2 d)(\bmod 64)
$$

where $\vartheta_{i}:=\vartheta_{i}(d, k) \in \mathbf{Z}(i=1,2,3)$ are of the form $\vartheta=p k+q$, and

$$
\begin{gathered}
\vartheta_{1}=k-1, \quad \vartheta_{3}=-4(k-2), \\
\vartheta_{2}=-3\left(1-\left(\frac{d^{d}}{2}\right)\right)(k-2)+8\left(1+\left(\frac{d^{d}}{2}\right)\right)\left(1-\left(\frac{-1}{k-1}\right)\right) .
\end{gathered}
$$

Theorem 3. Let $d= \pm 8 d^{*}, d>0$, where d^{*} is the discriminant of a quadratic field (i.e. $d \neq 8$), and let $k \geq 4$ be an even natural number. Set $\lambda:=1$, if $k=4$, and $\lambda:=0$, otherwise. Then the numbers $b_{k}(d)$ are 2 -integral and we have:

$$
b_{k}(d) \equiv \begin{cases}\vartheta_{1} \frac{1}{2} k_{2}(d)+\vartheta_{2} h(-d)+\vartheta_{3} h\left(-4 d^{*}\right)(\bmod 64), & \text { if } d^{*}>0 \\ \mu_{1} \frac{1}{2} k_{2}(d)+\mu_{2} h(-d)+\mu_{3} h\left(d^{*}\right) \alpha\left(d^{*}\right)(\bmod 64), & \text { if } d^{*}<0\end{cases}
$$

where $\vartheta_{i}:=\vartheta_{i}(d, k), \mu_{i}:=\mu_{i}(d, k) \in \mathbb{Z}(i=1,2,3)$ are of the form $\vartheta, \mu=p k+q$, and

$$
\begin{array}{cc}
\vartheta_{1}=k-1, & \vartheta_{2}=13(k-2)+16 \lambda, \quad \vartheta_{3}=-4\left(\frac{d}{2}\right)(k-2), \\
\mu_{1}=k-1, & \mu_{2}=\left(4\left(\frac{d}{2}\right)+1\right)(k-2)+16 \lambda, \quad \mu_{3}=8(k-2) .
\end{array}
$$

Combining Thm. 2 and 3 with Cor. 1 to Thm. 1, 2 [2] we can get many new congruences for generalized Bernoulli numbers modulo 64 (or 32).

Lemma 6 and the congruence (5.1) give a weaker version of Thm. 2 and 3:
Theorem 4. Let $d>0,2 \mid d$ be the discriminant of a quadratic field, and let $k \geq 4$ be an even natural number. Then the numbers $b_{k}(d)$ are 2 -integral and

$$
b_{k}(d) \equiv \frac{1}{2} k_{2}(d) \rho(d)\left(\bmod 2^{6-\operatorname{ord}_{2} d}\right)
$$

3. Lemmas.

We shall need Lemma 1 [3]. Likewise in [3], the proofs of the theorems fall naturally into a sequence of lemmas. First we shall prove a lemma of the kind of the above mentioned lemma:
Lemma 1. Let $d, 2 \nmid d$ be the discriminant of a quadratic field. Then we have:
(i) If $d>0$ then

$$
\begin{aligned}
t_{1}(\delta, a \equiv \delta(\bmod 8))= & \left(\frac{d}{2}\right)\left[-8 t_{1}(\delta / 8)+\delta t_{0}(\delta / 8)\right] \\
t_{1}(\delta, a \equiv \delta+2(\bmod 8))= & 4\left[t_{1}(\delta / 2)-\left(2\left(\frac{d}{2}\right)+1\right) t_{1}(\delta / 4)+2\left(\frac{d}{2}\right) t_{1}(\delta / 8)\right]- \\
& -\delta\left[-\left(1+\left(\frac{d}{2}\right)\right) t_{0}(\delta / 4)+\left(\frac{d}{2}\right) t_{0}(\delta / 8)\right]
\end{aligned}
$$

$$
\begin{aligned}
t_{1}(\delta, a \equiv \delta+4(\bmod 8))= & -4\left[t_{1}(\delta / 4)-2\left(\frac{d}{2}\right) t_{1}(\delta / 4)\right]+ \\
& +\delta\left[t_{0}(\delta / 4)-\left(\frac{d}{2}\right) t_{0}(\delta / 8)\right] \\
t_{1}(\delta, a \equiv \delta+6(\bmod 8))= & 8\left(\frac{d}{2}\right)\left[t_{1}(\delta / 4)-t_{1}(\delta / 8)\right]-\left(\frac{d}{2}\right) \delta\left[t_{0}(\delta / 4)-t_{0}(\delta / 8)\right]
\end{aligned}
$$

(ii) If $d<0$ then

$$
\begin{aligned}
t_{1}(\delta, a \equiv \delta(\bmod 8))= & \left(\frac{d}{2}\right)\left[8 t_{1}(\delta / 8)-\delta t_{0}(\delta / 8)\right] \\
t_{1}(\delta, a \equiv \delta+2(\bmod 8))= & 8\left(\frac{d}{2}\right)\left[t_{1}(\delta / 4)-t_{1}(\delta / 8)\right]-\left(\frac{d}{2}\right) \delta\left[t_{0}(\delta / 4)-t_{0}(\delta / 8)\right] \\
t_{1}(\delta, a \equiv \delta+4(\bmod 8))= & 4\left[t_{1}(\delta / 4)-2\left(\frac{d}{2}\right) t_{1}(\delta / 8)\right]+ \\
& +\delta\left[-t_{0}(\delta / 4)+\left(\frac{d}{2}\right) t_{0}(\delta / 8)\right] \\
t_{1}(\delta, a \equiv \delta+6(\bmod 8))= & 4\left[t_{1}(\delta / 2)-\left(2\left(\frac{d}{2}\right)+1\right) t_{1}(\delta / 4)+2\left(\frac{d}{2}\right) t_{1}(\delta / 8)\right]- \\
& -\delta\left[t_{0}(\delta / 2)-\left(1+\left(\frac{d}{2}\right)\right) t_{0}(\delta / 4)+\left(\frac{d}{2}\right) t_{0}(\delta / 8)\right]
\end{aligned}
$$

Proof. First, let us notice that by (2.1a,b) [3] we have

$$
\begin{aligned}
& t_{1}(\delta / 2, a \equiv \delta(\bmod 4))=-\left(\frac{d}{-1}\right) \sum_{\substack{0 \leq a \leq \delta / 2, a \equiv \delta \\
(\bmod 4)}}\left(\frac{d}{\delta-a}\right)(\delta-a)+\delta t_{0}(\delta / 2, a \equiv \delta(\bmod 4)) \\
& \left.=-\left(\frac{d}{-1}\right) \sum_{\delta / 2 \leq a \leq \delta,}^{\substack{4}} \right\rvert\, \\
&\left(\frac{d}{a}\right) a+\delta t_{0}(\delta / 2, a \equiv \delta(\bmod 4)) \\
&=-\left(\frac{d}{-1}\right)\left[t_{1}(\delta, 4 \mid a)-t_{1}(\delta / 2,4 \mid a)\right]+\delta t_{0}(\delta / 2, a \equiv \delta(\bmod 4)) \\
&=-4\left(\frac{d}{-1}\right)\left[t_{1}(\delta / 4)-t_{1}(\delta / 8)\right]+\delta\left(\frac{d}{-1}\right)\left[t_{0}(\delta / 4)-t_{0}(\delta / 8)\right]
\end{aligned}
$$

and similarly

$$
\begin{aligned}
t_{1}(\delta / 2, a \equiv \delta+2(\bmod 4))= & -\left(\frac{d}{-1}\right) \sum_{\substack{\delta / 2 \leq a \leq \delta, a \equiv 2(\bmod 4)}}\left(\frac{d}{a}\right) a+\delta t_{0}(\delta / 2, a \equiv \delta+2(\bmod 4)) \\
= & -\left(\frac{d}{-1}\right)\left[t_{1}(\delta, 2 \mid a)-t_{1}(\delta, 4 \mid a)-t_{1}(\delta / 2,2 \mid a)+\right. \\
& \left.+t_{1}(\delta / 2,4 \mid a)\right]+\delta t_{0}(\delta / 2, a \equiv \delta+2(\bmod 4)) \\
= & -2\left(\frac{d}{-1}\right)\left[\left(\frac{d}{2}\right) t_{1}(\delta / 2)-\left(2+\left(\frac{d}{2}\right)\right) t_{1}(\delta / 4)+2 t_{1}(\delta / 8)\right]+ \\
& +\delta\left(\frac{d}{-1}\right)\left[\left(\frac{d}{2}\right) t_{0}(\delta / 2)-\left(1+\left(\frac{d}{2}\right)\right) t_{0}(\delta / 4)+t_{0}(\delta / 8)\right] .
\end{aligned}
$$

Applying the above and Lemma 1 [3] gives the lemma because

$$
\begin{aligned}
t_{1}(\delta, a \equiv \delta(\bmod 8)) & =-\left(\frac{d}{-1}\right) t_{1}(\delta, 8 \mid a)+\delta t_{0}(\delta, a \equiv \delta(\bmod 8)) \\
& =-8\left(\frac{d}{-1}\right)\left(\frac{d}{2}\right) t_{1}(\delta / 8)+\delta t_{0}(\delta, a \equiv \delta(\bmod 8))
\end{aligned}
$$

$$
\begin{aligned}
t_{1}(\delta, a \equiv \delta+2(\bmod 8))= & -\left(\frac{d}{-1}\right) t_{1}(\delta, a \equiv-2(\bmod 8))+\delta t_{0}(\delta, a \equiv \delta+2(\bmod 8)) \\
= & -2\left(\frac{d}{-1}\right)\left(\frac{d}{2}\right) t_{1}(\delta / 2, a \equiv 3(\bmod 4))+ \\
& +\delta t_{0}(\delta, a \equiv \delta+2(\bmod 8)), \\
t_{1}(\delta, a \equiv \delta+4(\bmod 8))= & -\left(\frac{d}{-1}\right) t_{1}(\delta, a \equiv 4(\bmod 8))+\delta t_{0}(\delta, a \equiv \delta+4(\bmod 8)) \\
= & -\left(\frac{d}{-1}\right)\left[t_{1}(\delta, 4 \mid a)-t_{1}(\delta, 8 \mid a)\right]+\delta t_{0}(\delta, a \equiv \delta+4(\bmod 8)) \\
= & -4\left(\frac{d}{-1}\right)\left[t_{1}(\delta / 4)-2\left(\frac{d}{2}\right) t_{1}(\delta / 8)\right]+ \\
& +\delta t_{0}(\delta, a \equiv \delta+4(\bmod 8)), \\
t_{1}(\delta, a \equiv \delta+6(\bmod 8))= & -\left(\frac{d}{-1}\right) t_{1}(\delta, a \equiv 2(\bmod 8))+\delta t_{0}(\delta, a \equiv \delta+6(\bmod 8)) \\
= & -2\left(\frac{d}{-1}\right)\left(\frac{d}{2}\right) t_{1}(\delta / 2, a \equiv 1(\bmod 4))+ \\
& +\delta t_{0}(\delta, a \equiv \delta+6(\bmod 8)) .
\end{aligned}
$$

Lemma 2. Let d be the discriminant of a real quadratic field. Then we have:

$$
\begin{equation*}
t_{0}^{\prime}=0 \tag{i}
\end{equation*}
$$

(ii)

$$
t_{1}^{\prime}=\frac{1}{2}\left(\frac{d}{2}\right)\left(4-\left(\frac{d}{2}\right)\right) k_{2}(d) \beta(d)
$$

(iii)

$$
t_{2}^{\prime}= \begin{cases}2 d\left(\frac{d}{2}\right) k_{2}(d) \beta(d), & \text { if } 2 \nmid d, \\ d k_{2}(d) \rho(d), & \text { if } 2 \mid d\end{cases}
$$

$$
\begin{equation*}
t_{3}^{\prime}=\frac{3}{2} d^{2} k_{2}(d) \rho(d), \quad \text { if } 2 \mid d \tag{iv}
\end{equation*}
$$

$$
\begin{equation*}
t_{3}^{\prime} \equiv \frac{3}{2} C(d) k_{2}(d) \beta(d)+2 d h(-4 d)(\bmod 64), \quad \text { if } 2 \nmid d, \tag{v}
\end{equation*}
$$

where

$$
C(d):=2 d-4+\left(\frac{d}{2}\right)
$$

Proof. Since $t_{0}=0$, and for $d>0$

$$
t_{0}(d / 2)=0
$$

(i) of the lemma follows easily.

For any d and i we have

$$
\begin{equation*}
t_{i}^{\prime}=t_{i}-2^{i}\left(\frac{d}{2}\right) t_{i}(\delta / 2) \tag{3.1}
\end{equation*}
$$

Therefore (ii) follows from $t_{1}=0$ and (2.12) [3] immediately.

On the other hand for $d>0$ we have

$$
\begin{equation*}
t_{2}=d k_{2}(d) \eta(d) . \tag{3.2}
\end{equation*}
$$

Therefore to prove (iii) of the lemma it suffices to note that

$$
t_{2}=2 t_{2}(\delta / 2)-2 d t_{1}(\delta / 2)
$$

and to use (2.12) [3] and (3.1). Then we have

$$
t_{2}(d / 2)=-\frac{1}{4} d\left(2-\left(\frac{d}{2}\right)\right) k_{2}(d) \eta(d)
$$

and

$$
t_{2}^{\prime}=\left[1+2\left(\frac{d}{2}\right)-\left(\frac{d}{2}\right)^{2}\right] d k_{2}(d) \eta(d)
$$

Now we prove (iv) and (v) of the lemma. If $d>0$ then by (1.1) we deduce that

$$
B_{3,\left(\frac{d}{2}\right)}=0 .
$$

Consequently for $d>0$ from the formula (3.1) of [3] (with $F=d$) we get

$$
\begin{equation*}
t_{3}=\frac{3}{2} d^{2} k_{2}(d) \eta(d) \tag{3.3}
\end{equation*}
$$

This gives (iv). We now turn to (v). For any d we have

$$
t_{3}(\delta / 2) \equiv t_{1}(\delta / 2,2 \nmid a)=t_{1}(\delta / 2)-2\left(\frac{d}{2}\right) t_{1}(\delta / 4)(\bmod 8)
$$

Hence and from $(2.12,13)[3]$ for $d>0,2 \nmid d$ we obtain

$$
t_{3}(d / 2) \equiv-\frac{3}{8}\left(2-3\left(\frac{d}{2}\right)\right) k_{2}(d) \beta(d)-\frac{1}{4} d\left(\frac{d}{2}\right) h(-4 d)(\bmod 8) .
$$

Thus (v) follows from (3.1) and (3.3). This completes the proof of the lemma.
Similarly as in [3], combining the above lemma with Corollary to Lemma 3 of [3] yields:

Lemma 3. Let d be the discriminant of a real quadratic field. Then we have:
(i) If $i \geq 2$ then

$$
t_{2 i} \equiv \begin{cases}2\left[i d\left(\frac{d}{2}\right)-2^{2 i-3}\right] k_{2}(d) \beta(d)(\bmod 64), & \text { if } 2 \nmid d \\ i d k_{2}(d) \rho(d)(\bmod 64), & \text { if } 2 \mid d\end{cases}
$$

(ii) if $i \geq 1$ then

$$
t_{2 i+1} \equiv \begin{cases}\frac{1}{4} A_{1}(d, i) k_{2}(d) \beta(d)+2\left(i-2^{2 i-2}\right) d h(-4 d)(\bmod 64), & \text { if } 2 \nmid d, \\ \frac{3}{2} i d^{2} k_{2}(d) \rho(d)(\bmod 64), & \text { if } 2 \mid d\end{cases}
$$

where

$$
A_{1}(d, i):=3 \cdot 2^{2 i}\left(3-2\left(\frac{d}{2}\right)\right)-4 i(d+2)+2\left(4\left(\frac{d}{2}\right)-1\right) .
$$

Proof. As in the proof of Lemma 4 of [3], let us note that if $2 \mid d$ then $t_{i}=t_{i}^{\prime}$, and if $2 \nmid d$ and $i \geq 3$ then

$$
\begin{equation*}
t_{i} \equiv 2^{i}\left(\frac{d}{2}\right) t_{\sigma}(d / 2,2 \nmid a)+t_{i}^{\prime}(\bmod 64) \tag{3.4}
\end{equation*}
$$

where $i \equiv \sigma(\bmod 2), \sigma \in\{0,1\}$.
Since $t_{0}(d / 2)=t_{0}^{\prime}=0$, applying Cor. to Lem. 3 [3] to (3.4) for $i \geq 2$ we get

$$
\begin{equation*}
t_{2 i} \equiv 2^{2 i}\left(\frac{d}{2}\right) t_{0}(d / 2,2 \nmid a)+t_{2 i}^{\prime} \equiv-2^{2 i}\left(\frac{d}{2}\right)^{2} t_{0}(d / 4)+i t_{2}^{\prime}(\bmod 64) \tag{3.5}
\end{equation*}
$$

Hence and from Lemma 1 (iii), (i) of the lemma for $2 \mid d$ follows immediately. In order to prove (i) in complete, it remains to consider the case $2 \nmid d$. Then in view of (2.10) [3], (3.5) and Lemma 1 (iii) imply

$$
t_{2 i} \equiv-2^{2 i-1} h(-4 d)+2 i d\left(\frac{d}{2}\right) k_{2}(d) \beta(d)(\bmod 64)
$$

Consequently (i) of the lemma for $2 \nmid d$ follows by Cor. 1 (i) to Thm. 1 [3] that implies the congruence

$$
\begin{equation*}
k_{2}(d) \beta(d) \equiv 2 h(-4 d)(\bmod 16) . \tag{3.6}
\end{equation*}
$$

We now turn to (ii) of the lemma. From (3.4) and Cor. to Lem. 3 [4] for $i \geq 1$ we get

$$
\begin{align*}
t_{2 i+1} & \equiv 2^{2 i+1}\left(\frac{d}{2}\right) t_{1}(d / 2,2 \nmid a)+t_{2 i+1}^{\prime} \\
& \equiv 2^{2 i+1}\left(\frac{d}{2}\right)\left[t_{1}(d / 2)-2\left(\frac{d}{2}\right) t_{1}(d / 4)\right]+i t_{3}^{\prime}-(i-1) t_{1}^{\prime}(\bmod 64) \tag{3.7}
\end{align*}
$$

Hence and from Lemma 1 (ii), (iv), (ii) of the lemma for $2 \mid d$ follows easily. If $2 \nmid d$ then by Lemma 1 (ii), (v) and (2.12,13) of [3], and (3.6), (3.7), an easy computation shows that (ii) of the lemma follows. Thus the lemma is proved.

We next prove the following:
Lemma 4. Let X be a subset of the set of the odd natural numbers. Put $X(r):=\{a \in$ $X \mid a \equiv r(\bmod 8)\}$. Then for any $x \geq 0, d$ and even k we have:

$$
\begin{aligned}
t_{k}(x, a \in X) \equiv \frac{k}{2} t_{2}(x, a \in X)+ & \left(1-\frac{k}{2}\right) t_{0}(x, a \in X(\pm 1))+ \\
& +9\left(3^{k-2}-\frac{k}{2}\right) t_{0}(x, a \in X(\pm 3))\left(\bmod 2^{\operatorname{ord}_{2} k+6}\right)
\end{aligned}
$$

Proof. First, let us notice that for any natural k the congruence $a \equiv r(\bmod 8)$ implies

$$
\begin{aligned}
& a^{k}=(a-r+r)^{k}=\sum_{i=0}^{k}\binom{k}{i}(a-r)^{i} r^{k-i} \equiv r^{k}+k(a-r) r^{k-1}+ \\
&+\binom{k}{2}(a-r)^{2} r^{k-2}+(a-r)^{k}\left(\bmod 2^{\operatorname{ord}_{2} k+6}\right)
\end{aligned}
$$

because for $i \geq 3$

$$
\operatorname{ord}_{2} \frac{(a-r)^{i}}{i!} \geq \operatorname{ord}_{2} \frac{2^{3 i}}{i!}>2 i \geq 6
$$

Consequently in the case even $k, k \geq 4$ the congruence $a \equiv r(\bmod 8)$ with odd r leads to

$$
a^{k} \equiv r^{k}+k(a-r) r+\frac{k}{2}(a-r)^{2}\left(\bmod 2^{\operatorname{ord}_{2} k+6}\right)
$$

because for $k \geq 3$ we have

$$
\operatorname{ord}_{2}(a-r)^{k} \geq 3 k \geq \operatorname{ord}_{2} k+6 .
$$

Thus for even $k \geq 4$ and odd r we get the congruence

$$
a^{k} \equiv r^{k}-\frac{k}{2} r^{2}+\frac{k}{2} a^{2}\left(\bmod 2^{\operatorname{ord}_{2} k+6}\right)
$$

if $a \equiv r(\bmod 8)$. Hence the lemma follows immediately. Indeed we have

$$
\begin{aligned}
& t_{k}(x, a \in X)=\sum_{r= \pm 1, \pm 3} t_{k}\left(x, a \in X_{r}\right) \equiv \frac{k}{2} t_{2}(x, a \in X)+ \\
&+\sum_{r= \pm 1, \pm 3} r^{2}\left(r^{k-2}-\frac{k}{2}\right) t_{0}\left(x, a \in X_{r}\right)\left(\bmod 2^{\text {ord }_{2} k+6}\right)
\end{aligned}
$$

Corollary. For any d and even k we have:

$$
\begin{aligned}
t_{k}^{\prime} \equiv \frac{k}{2} t_{2}^{\prime}+\left(1-\frac{k}{2}\right) t_{0}(\delta, a & \equiv \pm 1(\bmod 8))+ \\
& +9\left(3^{k-2}-\frac{k}{2}\right) t_{0}(\delta, a \equiv \pm 3(\bmod 8))\left(\bmod 2^{\operatorname{ord}_{2} k+6}\right)
\end{aligned}
$$

Lemma 5. Let d and $k \geq 4$ be the discriminants of a real quadratic field and an even natural number respectively. Put λ_{k}, resp. $\pi_{k}:=1$, if $k \leq 8$, resp. $k=4$ and $\lambda_{k}, \pi_{k}:=0$, otherwise. Then we have:
(i) If $2 \nmid d$ then

$$
t_{k} \equiv \frac{1}{2}\left(1-3^{k}-\lambda_{k} 2^{k}+4 k\right) h(-4 d)+k d\left(\frac{d}{2}\right) k_{2}(d) \beta(d)\left(\bmod 2^{\operatorname{ord}_{2} k+6}\right)
$$

(ii) If $d=-4 d^{*}$, where d^{*} is the discriminant of an imaginary quadratic field then

$$
\begin{array}{r}
t_{k} \equiv \frac{3}{2}(3 k+5) k d k_{2}(d)+A_{2}(d, k) k d h\left(d^{*}\right) \alpha\left(d^{*}\right)-4(k-2) k d h(-2 d) \\
\left(\bmod 2^{\text {ord }_{2} k+6} d\right)
\end{array}
$$

where

$$
\begin{aligned}
A_{2}(d, k):=\left(2 d^{*}+15-\left(\frac{d^{*}}{2}\right)\right) k+2\left(d^{*}-3+2\left(\frac{d^{*}}{2}\right)\right) & \left(1+\left(\frac{-1}{k-1}\right)\right)+ \\
& +2\left(11+5\left(\frac{d^{*}}{2}\right)\right) .
\end{aligned}
$$

(iii) If $d= \pm 8 d^{*}$, where d^{*} is the discriminant of a quadratic field (i.e. $d \neq 8$) then

$$
t_{k} \equiv \begin{cases}\frac{k-1}{2} k d k_{2}(d)+\left[13(k-2)+16 \pi_{k}\right] k d h(-d) & \\ -4\left(\frac{d^{*}}{2}\right)(k-2) k d h\left(-4 d^{*}\right)\left(\bmod 2^{\operatorname{ord}_{2} k+6} d\right), & \text { if } d^{*}>0 \\ \frac{k-1}{2} k d k_{2}(d)+\left[\left(4\left(\frac{d^{*}}{2}\right)+1\right)(k-2)+16 \pi_{k}\right] k d h(-d)+ & \\ +8(k-2) k d h\left(d^{*}\right) \alpha\left(\delta^{*}\right)\left(\bmod 2^{\operatorname{ord}_{2} k+6} d\right), & \text { if } d^{*}<0\end{cases}
$$

Proof. We have

$$
t_{k}=2^{k}\left(\frac{d}{2}\right) t_{k}(d / 2)+t_{k}^{\prime},
$$

and

$$
2^{k} \equiv 0\left(\bmod 2^{\operatorname{ord}_{2} k+6}, 2^{\operatorname{ord}_{2} k+5}, \text { resp. } 2^{\operatorname{ord}_{2} k+2}\right)
$$

if $k \geq 10, k=8$ or 6 , resp. $k=4$.
Hence and from (2.10) [3] we get

$$
t_{k} \equiv t_{k}^{\prime}-2^{k-1} \lambda_{k} h(-4 d)\left(\bmod 2^{\operatorname{ord}_{2} k+6}\right)
$$

because by $t_{0}(d / 2)=0$ we have

$$
\begin{aligned}
t_{k}(d / 2) \equiv t_{0}(d / 2,2 \nmid a)=-\left(\frac{d}{2}\right) t_{0}(d / 4) & (\bmod 2) \\
& \text { or }(\bmod 16), \text { if } k=4 .
\end{aligned}
$$

On the other hand applying Lemma 1 (i) [4] gives

$$
t_{0}(d, a \equiv \pm 1(\bmod 8))=-t_{0}(d, a \equiv \pm 3(\bmod 8))=t_{0}(d / 4)
$$

Now to prove (i) of Lemma 5 it suffices to use Corollary to Lemma 4, (2.10) [3] and Lemma 2 (iii).

Our next concern will be the case $2 \mid d$. Then by (2.7a) [3] for $d>0$ and even k we obtain

$$
\begin{aligned}
t_{k}= & t_{k}(d / 4)-\sum_{i=0}^{k}\binom{k}{i}(d / 2)^{i}(-1)^{k-i} t_{k-i}(d / 4)+\sum_{i=0}^{k}\binom{k}{i} d^{i}(-1)^{k-i} t_{k-i}(d / 4)- \\
& -\sum_{i=0}^{k}\binom{k}{i}(d / 2)^{i} t_{k-i}(d / 4) \\
= & t_{k}(d / 4)-2 \sum_{\substack{0 \leq i \leq k, i \text { even }}}\binom{k}{i}(d / 2)^{i} t_{k-i}(d / 4)+\sum_{i=0}^{k}\binom{k}{i} d^{i}(-1)^{k-i} t_{k-i}(d / 4) .
\end{aligned}
$$

Therefore we have

$$
\begin{align*}
t_{k} \equiv & t_{k}(d / 4)-2 \sum_{\substack{0 \leq i \leq \tau_{1}, i \text { even }}}\binom{k}{i}(d / 2)^{i} t_{k-i}(d / 4)-2 \pi_{k}(d / 2)^{k} t_{0}(d / 4)+ \\
& +\sum_{i=0}^{\tau_{2}}\binom{k}{i} d^{i} i(-1)^{i} t_{k-i}(d / 4)+\pi_{k} d^{k} t_{0}(d / 4)\left(\bmod 2^{\text {ord }_{2} k+6} d\right), \tag{3.8}
\end{align*}
$$

where $\tau_{1}:=\min \left(k, 2\left(6-\operatorname{ord}_{2} d\right)\right), \tau_{2}:=2\left(4-\operatorname{ord}_{2} d\right), \pi_{k}:=1$, if $k=4$ and $8 \mid d$, and $\lambda_{k}:=0$, otherwise. Indeed, if $4 \| d$, resp. $8 \mid d$ then each of the following numbers: $\operatorname{ord}_{2}\left[2\binom{k}{i}(d / 2)^{i}\right]$ for even $i \geq 10$, resp. $i \geq 8$ and $\operatorname{ord}_{2}\left[\binom{k}{i} d^{i}\right]$ for $i \geq 5$, resp. $i \geq 3$ equals at least $\operatorname{ord}_{2} k+\operatorname{ord}_{2} d+6$. So do the numbers ord ${ }_{2}\left[2(d / 2)^{k}\right]$ for $k \geq 10$, resp. $k \geq 6$ and $\operatorname{ord}_{2}\left(d^{k}\right)$ for $k \geq 4$ because

$$
2^{k+1}, \operatorname{resp} .2^{2 k} \equiv 0\left(\bmod 2^{\text {ord }_{2} k+8}\right)
$$

for $k \geq 10$, resp. $k \geq 6$, and

$$
2^{2 k+1}, 2^{3 k} \equiv 0\left(\bmod 2^{\operatorname{ord}_{2} k+9}\right)
$$

for $k \geq 6$.

We need consider the cases. First, let $d=-4 d^{*}$, where d^{*} is the discriminant of an imaginary quadratic field. Then by (3.8) we have

$$
\begin{aligned}
t_{k} \equiv t_{k}(d / 4)-2 & \sum_{\substack{0 \leq i \leq \min (k, 8), i \text { even }}}\binom{k}{i}(d / 2)^{i} t_{k-i}(d / 4)+ \\
& +\sum_{i=0}^{4}\binom{k}{i} d^{i}(-1)^{i} t_{k-i}(d / 4)\left(\bmod 2^{\operatorname{ord}_{2} k+6} d\right)
\end{aligned}
$$

Therefore putting $\binom{k}{i}:=0$ for $i>k$ and $t_{s}(x):=0$ for $s<0$ we get

$$
\begin{aligned}
t_{k} & \equiv-k d t_{k-1}(d / 4)+\frac{1}{2} d^{2}\binom{k}{2} t_{k-2}(d / 4)-\binom{k}{3} d^{3} t_{k-3}(d / 4)+ \\
& +\frac{7}{8}\binom{k}{4} d^{4} t_{k-4}(d / 4)-\frac{1}{32}\binom{k}{6} d^{6} t_{k-6}(d / 4)-\frac{1}{128}\binom{k}{8} d^{8} t_{k-8}(d / 4)\left(\bmod 2^{\mathrm{ord}_{2} k+6} d\right)
\end{aligned}
$$

Hence, by Lemma 3 [3] (applied to the sums $t_{k-1}(d / 4), t_{k-2}(d / 4)$ and $t_{k-4}(d / 4)$) we find that

$$
\begin{aligned}
t_{k} \equiv & -k d\left[\frac{k-2}{2} t_{3}(d / 4)-\frac{k-4}{2} t_{1}(d / 4)\right]+ \\
& +\frac{1}{2} d^{2}\binom{k}{2}\left[\frac{k-2}{2} t_{2}(d / 4)-\frac{k-4}{2} t_{0}(d / 4)\right]-\binom{k}{3} d^{3} t_{1}(d / 4)+ \\
& +\frac{7}{8}\binom{k}{4} d^{4}\left[\frac{k-4}{2} t_{2}(d / 4)-\frac{k-6}{2} t_{0}(d / 4)\right]-\frac{1}{32}\binom{k}{6} d^{6} t_{0}(d / 4)- \\
& -\frac{1}{128}\binom{k}{8} d^{8} t_{0}(d / 4) \\
\equiv & -k d \frac{k-2}{2} t_{3}(d / 4)+G_{k}^{\prime}(d) t_{2}(d / 4)+\left[k d \frac{k-4}{2}-\binom{k}{3} d^{3}\right] t_{1}(d / 4)- \\
& -G_{k}^{\prime \prime}(d) t_{0}(d / 4)\left(\bmod 2^{\operatorname{ord}_{2} k+6} d\right),
\end{aligned}
$$

where

$$
G_{k}^{\prime}(d):=\frac{1}{2} d^{2}\binom{k}{2} \frac{k-2}{2}+\frac{7}{8}\binom{k}{4} d^{4} \frac{k-4}{2}
$$

and

$$
G_{k}^{\prime \prime}(d):=\frac{1}{2} d^{2}\binom{k}{2} \frac{k-4}{2}+\frac{7}{8}\binom{k}{4} d^{4} \frac{k-6}{2}+\frac{1}{32}\binom{k}{6} d^{6}+\frac{1}{128}\binom{k}{8} d^{8} .
$$

Consequently we get

$$
\begin{align*}
t_{k} \equiv-k d \frac{k-2}{2} t_{3}(d / 4)+G_{k}^{\prime \prime \prime}(d) k d t_{2}(d / 4)+ & \left(-15 \frac{k}{2}+14\right) k d t_{1}(d / 4)+ \\
& +G_{k}^{\mathrm{IV}}(d) k d t_{0}(d / 4)\left(\bmod 2^{\mathrm{ord}_{2} k+6} d\right) \tag{3.9}
\end{align*}
$$

where

$$
G_{k}^{\prime \prime \prime}(d):=-d^{*}\left[-\left(\frac{-1}{k-1}\right)\left(12+\left(\frac{-1}{k-1}\right)+8\left(\frac{d^{*}}{2}\right)\right) \frac{k}{2}+12\left(\frac{d^{*}}{2}\right)\left(\frac{-1}{k-1}\right)-4\left(\frac{d^{*}}{2}\right)+13\right]
$$

and

$$
G_{k}^{\mathrm{IV}}(d):=d^{*}\left[-\left(1+4\left(\frac{-1}{k-1}\right)\right) \frac{k}{2}+\left(-1+5\left(\frac{-1}{k-1}\right)\right)-7\left(1-\left(\frac{-1}{k-1}\right)\right) d^{* 2}\right] .
$$

Indeed we have

$$
(k-3)(k-5)(k-7)=k-5(\bmod 4),
$$

and

$$
k(k-2)(k-4)(k-6) \equiv 0\left(\bmod 2^{7}\right),
$$

and consequently we find that

$$
\begin{array}{rlr}
G_{k}^{\prime \prime}(d) \equiv & -\left[(k-4)+13 d^{* 2}(k-2)(k-3)(k-6)-\right. \\
& -4(k-2)(k-4)+2(k-2)(k-4)(k-6)] d d^{*}\binom{k}{2} \\
\equiv & -d d^{*}\binom{k}{2} \times \begin{cases}k^{2}+5 k+12+28 d^{* 2}\left(\bmod 2^{\operatorname{ord}_{2} k+6} d\right), & \\
-k^{2}+k\left(\bmod 2^{\operatorname{ord}_{2} k+6} d\right), & \\
- & \text { if } k \equiv 2(\bmod 4),\end{cases}
\end{array}
$$

Therefore we obtain

$$
G_{k}^{\prime \prime}(d) \equiv-k d G_{k}^{\mathrm{iv}}(d)\left(\bmod 2^{\operatorname{ord}_{2} k+6} d\right)
$$

Moreover we see that

$$
\begin{aligned}
G_{k}^{\prime}(d) & \equiv-d d^{*}(k-2)\binom{k}{2}\left[1+13 d^{* 2}(k-3)(k-4)\right] \\
& \equiv-k d d^{*} \times \begin{cases}\left(-13-8\left(\frac{d^{\prime}}{2}\right)\right)\left(\frac{k}{2}-1\right)\left(\bmod 2^{\operatorname{ord}_{2} k+6}\right), & \text { if } k \equiv 2(\bmod 4), \\
\left(11+8\left(\frac{d^{*}}{2}\right)\right)\left(\frac{k}{2}-1\right)+8\left(3-\left(\frac{d^{\prime}}{2}\right)\right) \\
\left(\bmod 2^{\operatorname{ord}_{2} k+6}\right), & \text { if } k \equiv 0(\bmod 4) .\end{cases}
\end{aligned}
$$

and consequently

$$
G_{k}^{\prime}(d) \equiv k d G_{k}^{\prime \prime \prime}(d)\left(\bmod 2^{\operatorname{ord}_{2} k+6} d\right)
$$

On the other hand we have

$$
\begin{equation*}
t_{i}(d / 4)=t_{i}^{*}\left(\delta^{*}, a \equiv 1(\bmod 4)\right)-t_{i}^{*}\left(\delta^{*}, a \equiv 3(\bmod 4)\right), \tag{3.10}
\end{equation*}
$$

and so by (2.1), (2.6) [3] (cf. (2.11) [3]) we deduce that

$$
\begin{align*}
t_{0}(d / 4) & =-t_{0}^{*}\left(\delta^{*}, a \equiv 2(\bmod 4)\right)+t_{0}^{*}\left(\delta^{*}, 4 \mid a\right) \\
& =\left[-\left(\frac{d^{*}}{2}\right) t_{0}^{*}\left(\delta^{*} / 2\right)+t_{0}^{*}\left(\delta^{*} / 4\right)\right]+t_{0}^{*}\left(\delta^{*} / 4\right) \\
& =2 t_{0}^{*}\left(\delta^{*} / 4\right)-\left(\frac{d^{d}}{2}\right) t_{0}^{*}\left(\delta^{*} / 2\right) \\
& =\left(2-\left(\frac{d^{*}}{2}\right)\right) h\left(d^{*}\right) \alpha\left(d^{*}\right), \tag{3.11}
\end{align*}
$$

and by $(2.1),(2.4),(2.6),(2.7)$ of [3] (cf. (2.11a) [3]) we find that

$$
\begin{align*}
t_{1}(d / 4)= & t_{1}^{*}\left(\delta^{*}, a \equiv 2(\bmod 4)\right)-t_{1}^{*}\left(d^{*}, 4 \mid a\right)-\delta^{*} t_{0}^{*}\left(\delta^{*}, a \equiv 2(\bmod 4)\right)+ \\
& +\delta^{*} t_{0}^{*}\left(\delta^{*}, 4 \mid a\right)=2\left(\frac{d^{\prime}}{2}\right) t_{1}^{*}\left(\delta^{*} / 2\right)-8 t_{1}^{*}\left(\delta^{*} / 4\right)+ \\
& -\left(\frac{d^{*}}{2}\right) \delta^{*} t_{0}^{*}\left(\delta^{*} / 2\right)+2 \delta^{*} t_{0}^{*}\left(\delta^{*} / 4\right) \\
= & -\frac{1}{2} k_{2}(d)+\left(\left(\frac{d^{2}}{2}\right)-2\right) d^{*} h\left(d^{*}\right) \alpha\left(d^{*}\right) . \tag{3.12}
\end{align*}
$$

Moreover by (2.10) and (2.14a) [3] we get

$$
\begin{align*}
t_{2}(d / 4) \equiv 2 t_{1}^{* \prime}-t_{0}^{* \prime}+16 t_{0}^{*}\left(\delta^{*}, a \equiv 5,7\right. & (\bmod 8))- \\
& -14 t_{0}^{*}\left(\delta^{*}, a \equiv 3,7(\bmod 8)\right)(\bmod 64) . \tag{3.13}
\end{align*}
$$

On the other hand in view of Lemma 1(ii) [3] we have

$$
\begin{align*}
16 t_{0}^{*}\left(\delta^{*}, a \equiv 5,7(\bmod 8)\right)-14 t_{0}^{*}\left(\delta^{*}, a\right. & \equiv 3,7(\bmod 8)) \\
& =8\left(1+\left(\frac{d^{2}}{2}\right)\right) t_{0}^{*}\left(\delta^{*} / 2\right)-18 t_{0}^{*}\left(\delta^{*} / 4\right) \tag{3.14}
\end{align*}
$$

and so (3.13) together with (2.1), (2.6) [3] and Lemma 2 (i), (ii) [3] imply the congruence

$$
\begin{equation*}
t_{2}(d / 4) \equiv\left(2\left(\frac{d^{\prime}}{2}\right) d^{*}+\left(\frac{d^{\prime}}{2}\right)-2\right) h\left(d^{*}\right) \alpha\left(d^{*}\right)(\bmod 64) \tag{3.15}
\end{equation*}
$$

We are left with the task of determining of $t_{3}(d / 4)$ modulo 64 . Since $a \equiv r(\bmod 8)$ yields the congruence

$$
\begin{equation*}
a^{3} \equiv 3 a r^{2}-2 r^{3}(\bmod 64) \tag{3.16}
\end{equation*}
$$

it may be concluded by (3.10) that

$$
\begin{align*}
t_{3}(d / 4) \equiv & 3 \sum_{r=1 \text { or } 5} r^{2} t_{1}^{*}\left(\delta^{*}, a \equiv r(\bmod 8)\right)-2 \sum_{r=1 \text { or } 5} r^{3} t_{0}^{*}\left(\delta^{*}, a \equiv r(\bmod 8)\right)- \\
& -3 \sum_{r=3 \text { or } 7} r^{2} t_{1}^{*}\left(\delta^{*}, a \equiv r(\bmod 8)\right)+2 \sum_{r=3 \text { or } 7} r^{3} t_{0}^{*}\left(\delta^{*}, a \equiv r(\bmod 8)\right) \\
\equiv & 3 t_{1}^{*}\left(\delta^{*}, a \equiv 1(\bmod 8)\right)+11 t_{1}^{*}\left(\delta^{*}, a \equiv 5(\bmod 8)\right)- \\
& -2 t_{0}^{*}\left(\delta^{*}, a \equiv 1(\bmod 8)\right)+6 t_{0}^{*}\left(\delta^{*}, a \equiv 5(\bmod 8)\right)- \\
& -27 t_{1}^{*}\left(\delta^{*}, a \equiv 3(\bmod 8)\right)-19 t_{1}^{*}\left(\delta^{*}, a \equiv 7(\bmod 8)\right)- \\
& -10 t_{0}^{*}\left(\delta^{*}, a \equiv 3(\bmod 8)\right)-18 t_{0}^{*}\left(\delta^{*}, a \equiv 7(\bmod 8)\right) \\
\equiv & 3 t_{1}^{* \prime}-2 t_{0}^{* \prime}-16 t_{0}^{*}\left(\delta^{*}, a \equiv 5,7(\bmod 8)\right)- \\
& -22 t_{1}^{*}\left(\delta^{*}, a \equiv 3(\bmod 4)\right)-32 t_{0}^{*}\left(\delta^{*}, a \equiv 3(\bmod 8)\right)(\bmod 64) . \tag{3.17}
\end{align*}
$$

But in virtue of Lemma 1 (ii) [3] we have

$$
t_{0}^{*}\left(\delta^{*}, a \equiv 5,7(\bmod 8)\right)=-2 t_{0}^{*}\left(\delta^{*} / 4\right)+\frac{1}{2}\left(1+\left(\frac{d^{*}}{2}\right)\right) t_{0}^{*}\left(\delta^{*} / 2\right)
$$

(cf. (3.14)), and

$$
t_{0}^{*}\left(\delta^{*}, a \equiv 3(\bmod 8)\right)=t_{0}^{*}\left(\delta^{*} / 4\right)-\frac{1}{2}\left(1+\left(\frac{d^{*}}{2}\right)\right) t_{0}^{*}\left(\delta^{*} / 4\right)
$$

Moreover we have

$$
t_{1}^{*}\left(\delta^{*}, a \equiv 3(\bmod 4)\right)=t_{1}^{*}\left(\delta^{*}, 4 \mid a\right)-\delta^{*} t_{0}^{*}\left(\delta^{*}, 4 \mid a\right)=4 t_{1}^{*}\left(\delta^{*} / 4\right)-\delta^{*} t_{0}^{*}\left(\delta^{*} / 4\right)
$$

Therefore (3.17) implies

$$
\begin{aligned}
t_{3}(d / 4) \equiv 3 t_{1}^{* \prime}-2 t_{0}^{* \prime} & +2\left(11 \delta^{*}+8\left(\frac{d^{\prime}}{2}\right)-8\right) t_{0}^{*}(\delta / 4)- \\
& -8\left(1+\left(\frac{d^{*}}{2}\right)\right) t_{0}^{*}\left(\delta^{*} / 2\right)-24 t_{1}^{*}\left(\delta^{*} / 4\right)-32 t_{0}^{*}\left(\delta^{*} / 8\right)(\bmod 64)
\end{aligned}
$$

Now it is sufficient to apply Lemma 1 (i), (ii) [3] and the formulas (2.6), (2.1), (2.7), (2.18) of [3]. Then we get

$$
\begin{aligned}
& t_{3}(d / 4) \equiv-\frac{3}{2} k_{2}(d)+\left[-\left(2+\left(\frac{d^{*}}{2}\right)\right) d^{*}+16\left(\frac{d^{*}}{2}\right)-14\right] h\left(d^{*}\right) \alpha\left(d^{*}\right)+ \\
&+8 h(-2 d)(\bmod 64)
\end{aligned}
$$

Applying the above congruence together with (3.11), (3.12) and (3.15) to (3.9) gives

$$
\begin{aligned}
t_{k} \equiv \frac{3}{2}(3 k+5) k d k_{2}(d)+A(d, k) k d h\left(d^{*}\right) \alpha(& \left.d^{*}\right)- \\
& -4(k-2) k d h(-2 d)\left(\bmod 2^{\circ^{\circ r d_{2}} k+6} d\right)
\end{aligned}
$$

where

$$
\begin{aligned}
A(d, k):= & -\frac{k-2}{2}\left[-\left(2+\left(\frac{d^{*}}{2}\right)\right) d^{*}+16\left(\frac{d^{*}}{2}\right)-14\right]+ \\
& +\left(2\left(\frac{d^{*}}{2}\right) d^{*}+\left(\frac{d^{*}}{2}\right)-2\right) G_{k}^{\prime \prime \prime}(d)+\left(-15 \frac{k}{2}+14\right)\left(\left(\frac{d^{*}}{2}\right)-2\right) d^{*}+ \\
& +G_{k}^{\mathrm{IV}}(d)\left(2-\left(\frac{d^{*}}{2}\right)\right) .
\end{aligned}
$$

Now the proof of Lemma 5 in the case $4 \| d$ will be completed as soon as we can prove that

$$
\begin{equation*}
A(d, k) \equiv A_{2}(d, k)(\bmod 64) \tag{3.18}
\end{equation*}
$$

Indeed putting $G_{k}^{\prime \prime \prime}=m^{\prime \prime \prime} \frac{k}{2}+n^{\prime \prime \prime}$ and $G_{k}^{\mathrm{IV}}=m^{\mathrm{IV}} \frac{k}{2}+n^{\mathrm{IV}}$, we have

$$
A(d, k)=A^{\prime}(d, k) \frac{k}{2}+A^{\prime \prime}(d, k)
$$

where

$$
\begin{aligned}
A^{\prime}(d, k)=\left[\left(2+\left(\frac{d^{*}}{2}\right)\right) d^{*}-16\left(\frac{d}{2}\right)+14\right]+ & \left(2\left(\frac{d^{*}}{2}\right) d^{*}+\left(\frac{d^{*}}{2}\right)-2\right) m^{\prime \prime \prime}+ \\
& +15\left(2-\left(\frac{d^{*}}{2}\right)\right) d^{*}+m^{\mathrm{IV}}\left(2-\left(\frac{d^{\mathrm{t}}}{2}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& A^{\prime \prime}(d, k)=\left[-\left(2+\left(\frac{d^{\prime}}{2}\right)\right) d^{*}+16\left(\frac{d^{*}}{2}\right)-14\right]+\left(2\left(\frac{d^{*}}{2}\right) d^{*}+\left(\frac{d^{\prime}}{2}\right)-2\right) n^{\prime \prime \prime}+ \\
&+14\left(\left(\frac{d^{*}}{2}\right)-2\right) d^{*}+n^{\mathrm{IV}}
\end{aligned}
$$

Thus in virtue of

$$
A^{\prime}(d, k) \equiv \begin{cases}4\left(d^{*}+3+4\left(\frac{-1}{k-1}\right)\right)(\bmod 64), & \text { if }\left(\frac{d^{*}}{2}\right)=1, \\ 4\left(d^{*}+8\right)(\bmod 64), & \text { if }\left(\frac{d^{*}}{2}\right)=-1,\end{cases}
$$

and

$$
A^{\prime \prime}(d, k) \equiv \begin{cases}2\left(d^{*}-1\right)\left(1+\left(\frac{-1}{k-1}\right)\right)+32(\bmod 64), & \text { if }\left(\frac{d^{*}}{2}\right)=1 \\ 2\left(d^{*}-5\right)\left(1+\left(\frac{-1}{k-1}\right)\right)+12(\bmod 64), & \text { if }\left(\frac{d^{*}}{2}\right)=-1\end{cases}
$$

(3.18) follows.

Similar arguments apply to the case $8 \mid d$. Then by (3.8) we have

$$
\begin{aligned}
t_{k} \equiv t_{k}(d / 4)-2 & \sum_{\substack{1 \leq i \leq \min (k, 6), i \text { even }}}\binom{k}{i}(d / 2)^{i} t_{k-i}(d / 4)-2 \pi_{k}(d / 2)^{k} t_{0}(d / 4)+ \\
& +\sum_{i=0}^{2}\binom{k}{i} d^{i}(-1)^{i} t_{k-i}(d / 4)+\pi_{k} d^{k} t_{0}(d / 4)\left(\bmod 2^{\operatorname{ord}_{2} k+6} d\right) .
\end{aligned}
$$

Therefore we get

$$
\begin{aligned}
& t_{k} \equiv-k d t_{k-1}(d / 4)+\frac{1}{2}\binom{k}{2} d^{2} t_{k-2}(d / 4)-k(k-2) d^{2} t_{0}(d / 4)- \\
&-8 \pi_{k} d^{2} t_{0}(d / 4)\left(\bmod 2^{\operatorname{ord}_{2} k+6} d\right)
\end{aligned}
$$

because

$$
\operatorname{ord}_{2} \frac{1}{32}\binom{k}{6} d^{5} \geq \operatorname{ord}_{2} k+9,
$$

and

$$
t_{k-4}(d / 4) \equiv t_{0}(d / 4)(\bmod 4) .
$$

Hence and by Lemma 3 [3] (applied for the sums t_{k-1} and t_{k-2}) we obtain

$$
\begin{aligned}
t_{k} \equiv-k d\left[\frac{k-2}{2} t_{3}(d / 4)-\frac{k-4}{2} t_{1}(d / 4)\right] & +\frac{1}{2}\binom{k}{2} d^{2}\left[\frac{k-2}{2} t_{2}(d / 4)-\frac{k-4}{2} t_{0}(d / 4)\right]+ \\
& +k(k-2) d^{2}\left(1-\pi_{k}\right) t_{0}(d / 4)\left(\bmod 2^{\text {ord }_{2} k+6} d\right) .
\end{aligned}
$$

Thus we have

$$
\begin{align*}
t_{k} \equiv-k d \frac{k-2}{2} t_{3}(d / 4)+\frac{1}{4}\binom{k}{2} & (k-2) d^{2} t_{2}(d / 4)+ \\
& +k d \frac{k-4}{2} t_{1}(d / 4)+\frac{d}{8} k d H_{k}^{\prime} t_{0}(d / 4)\left(\bmod 2^{\operatorname{ord}_{2} k+6} d\right) \tag{3.19}
\end{align*}
$$

where

$$
H_{k}^{\prime}=-(k-1)(k-4)+8(k-2)\left(1-\pi_{k}\right) .
$$

On the other hand putting $d= \pm 8 d^{*}$, from(2.25a) [3], by (2.10), (2.15) [3] in the case $d^{*}>0$ and by (2.18), (2.6), (2.1) [3] in the case $d^{*}<0$ it follows that

$$
\begin{equation*}
t_{0}(d / 4)=h(-d) . \tag{3.20}
\end{equation*}
$$

Moreover by (2.17a) [3] for $d>0$ we have

$$
\begin{aligned}
t_{1}(d / 4)= & 2\left(\frac{d^{*}}{-1}\right)\left[-t_{1}^{*}\left(\delta^{*}, a \equiv 3(\bmod 8)\right)+t_{1}^{*}\left(\delta^{*}, a \equiv-1(\bmod 8)\right)\right]+ \\
& +2 \delta^{*}\left[t_{0}^{*}\left(\delta^{*}, a \equiv 1(\bmod 8)\right)-t_{0}^{*}\left(\delta^{*}, a \equiv-3(\bmod 8)\right)+\right. \\
& \left.+\left(\frac{d^{*}}{-1}\right) t_{0}^{*}\left(\delta^{*}, a \equiv 3(\bmod 8)\right)-\left(\frac{d^{*}}{-1}\right) t_{0}^{*}\left(\delta^{*}, a \equiv-1(\bmod 8)\right)\right] .
\end{aligned}
$$

Therefore Lemma 1 and Lemma 1 [3] imply

$$
\begin{aligned}
t_{1}(d / 4)= & 2\left[-4\left(\frac{d^{*}}{2}\right) t_{1}^{*}\left(\delta^{*} / 2\right)+4\left(4+\left(\frac{d^{*}}{2}\right)\right) t_{1}^{*}\left(\delta^{*} / 4\right)-\right. \\
& \left.-16 t_{1}^{*}\left(\delta^{*} / 8\right)-\delta^{*}\left(2+\left(\frac{d^{*}}{2}\right)\right) t_{0}^{*}\left(\delta^{*} / 4\right)+2 \delta^{*} t_{0}^{*}\left(\delta^{*} / 8\right)\right]+ \\
& +2 \delta^{*}\left[-2\left(1+\left(\frac{d^{*}}{2}\right)\right) t_{0}^{*}\left(\delta^{*} / 4\right)+4 t_{0}^{*}\left(\delta^{*} / 8\right)\right] \\
= & -8\left(\frac{d^{*}}{2}\right) t_{1}^{*}\left(\delta^{*} / 2\right)+8\left(4+\left(\frac{d}{2}\right)\right) t_{1}^{*}\left(\delta^{*} / 4\right)-32 t_{1}^{*}\left(\delta^{*} / 8\right)- \\
& -2 \delta^{*}\left(3\left(\frac{d^{*}}{2}\right)+4\right) t_{0}^{*}\left(\delta^{*} / 4\right)+12 \delta^{*} t_{0}^{*}\left(\delta^{*} / 8\right),
\end{aligned}
$$

if $d^{*}>0$, and

$$
\begin{aligned}
t_{1}(d / 4)= & -2\left[-4\left(\frac{d^{*}}{2}\right) t_{1}^{*}\left(\delta^{*} / 4\right)+16 t_{1}^{*}\left(\delta^{*} / 8\right)+\delta^{*}\left(\frac{d^{d}}{2}\right) t_{0}^{*}\left(\delta^{*} / 4\right)-2 \delta^{*} t_{0}^{*}\left(\delta^{*} / 8\right)\right]+ \\
& +2 \delta^{*}\left[-\left(\frac{d^{*}}{2}\right) t_{0}^{*}\left(\delta^{*} / 2\right)+2\left(1+\left(\frac{d^{*}}{2}\right)\right) t_{0}^{*}\left(\delta^{*} / 4\right)-4 t_{0}^{*}\left(\delta^{*} / 8\right)\right] \\
= & 8\left(\frac{d^{*}}{2}\right) t_{1}^{*}\left(\delta^{*} / 4\right)-32 t_{1}^{*}\left(\delta^{*} / 8\right)-2 \delta^{*}\left(\frac{d^{*}}{2}\right) t_{0}^{*}\left(\delta^{*} / 2\right)+ \\
& +2 \delta^{*}\left(2+\left(\frac{d^{*}}{2}\right)\right) t_{0}^{*}\left(\delta^{*} / 4\right)-4 \delta^{*} t_{0}^{*}\left(\delta^{*} / 8\right),
\end{aligned}
$$

if $d^{*}<0$.
Thus since for $d>0,2 \nmid d$

$$
t_{1}(\delta / 8)=\frac{1}{64} k_{2}(8 d)-\frac{1}{64}\left(34-\left(\frac{d}{2}\right)\right) k_{2}(d) \beta(d)+\frac{1}{32} d\left[\left(\frac{d}{2}\right) h(-4 d)+h(-8 d)\right]
$$

and for $d<0,2 \nmid d$

$$
t_{1}(\delta / 8)=\frac{1}{64} k_{2}(-8 d)+\frac{1}{64}\left(\frac{d}{2}\right) k_{2}(-4 d)-\frac{1}{32} d\left[\left(1-\left(\frac{d}{2}\right)\right) h(d) \alpha(d)-h(8 d)\right]
$$

(see Thm. $1,2[2]$), in our case for $d \neq 8$ we conclude that

$$
\begin{equation*}
t_{1}(d / 4)=2 \delta^{*} h(-d)-\frac{1}{2} k_{2}(d) \tag{3.21}
\end{equation*}
$$

because of $(2.10),(2.12),(2.13),(2.15)$ of $[3]$ in the case $d^{*}>0$, and of $(2.1),(2.6),(2.7)$, (2.18) of [3] in the case $d^{*}<0$.

Now we shall prove the lemma as soon as we find $t_{2}(d / 4), t_{3}(d / 4)$ modulo 64 . But using Lemma 1 and (2.20a)[3] we get

$$
\begin{aligned}
t_{2}(d / 4) \equiv & 4 \delta^{*}\left[\left(1+\left(\frac{d^{*}}{-1}\right)\right)\left(\frac{d^{*}}{2}\right) t_{1}^{*}\left(\delta^{*} / 2\right)-4\left(\frac{d^{*}}{-1}\right) t_{1}^{*}\left(\delta^{*} / 4\right)\right]+ \\
& +2\left(2 \delta^{*}+2-5\left(\frac{d^{*}}{2}\right)\right) t_{0}^{*}\left(\delta^{*} / 2\right)+ \\
& +2\left(2 \delta^{*}-13\left(\frac{d^{*}}{-1}\right)\left(\frac{d^{*}}{2}\right)-3-11\left(\frac{d^{*}}{-1}\right)\right) t_{0}^{*}\left(\delta^{*} / 4\right)+ \\
& +4\left(\left(\frac{d^{*}}{-1}\right)-4\right) t_{0}^{*}\left(\delta^{*} / 8\right)(\bmod 64),
\end{aligned}
$$

because $t_{0}^{*}\left(\delta^{*} / 2\right)=0$, if $d^{*}>0$.
We now turn to the cases, again. Let $d=8 d^{*}, d^{*}>0, d \neq 8$. Then by (2.12), (2.13), (2.10) and (2.15) of [3] we obtain

$$
\begin{align*}
t_{2}(d / 4) \equiv & 8\left(2-\left(\frac{d^{*}}{2}\right)\right) t_{1}^{*}\left(\delta^{*} / 2\right)-16 t_{1}^{*}\left(\delta^{*} / 4\right)+ \\
& +2\left(2 \delta^{*}-13\left(\frac{d^{*}}{2}\right)-14\right) t_{0}^{*}\left(\delta^{*} / 4\right)-12 t_{0}^{*}\left(\delta^{*} / 8\right) \\
\equiv & \left(5-2\left(\frac{d^{*}}{2}\right)\right) k_{2}\left(d^{*}\right) \beta\left(d^{*}\right)-3 h(-d)+2 h\left(-4 d^{*}\right)(\bmod 64) \tag{3.22}
\end{align*}
$$

because $2 \mid h\left(-4 d^{*}\right)$ and $4 \mid k_{2}\left(d^{*}\right)$.
Likewise, if $d=-8 d^{*}, d^{*}<0$ then by (2.7), (2.1), (2.6) and (2.18) of [3] we deduce that

$$
\begin{align*}
t_{2}(d / 4) \equiv & -16 t_{1}^{*}\left(\delta^{*} / 4\right)+2\left(2 \delta^{*}+2-5\left(\frac{d}{2}\right)\right) t_{0}^{*}\left(\delta^{*} / 2\right)+ \\
& +2\left(2 \delta^{*}-11\right) t_{0}^{*}\left(\delta^{*} / 4\right)-20 t_{0}^{*}\left(\delta^{*} / 8\right) \\
\equiv & -k_{2}\left(-4 d^{*}\right)+5 h(-d)+2\left(1+3\left(\frac{d^{*}}{2}\right)\right) h\left(d^{*}\right) \alpha\left(d^{*}\right)(\bmod 64) \tag{3.23}
\end{align*}
$$

because $t_{0}^{*}\left(\delta^{*} / 4\right)=0$, if $\left(\frac{d^{*}}{2}\right)=-1, d^{*}<0$.

The same method goes for $t_{3}(d / 4)$. Then by (3.16) we have

$$
\begin{align*}
t_{3}(d / 4)= & \sum_{r= \pm 1, \pm 3} t_{3}(d / 4, a \equiv r(\bmod 8)) \\
\equiv & 3 \sum_{r= \pm 1, \pm 3} r^{2} t_{1}(d / 4, a \equiv r(\bmod 8))-2 \sum_{r= \pm 1, \pm 3} r^{3} t_{0}(d / 4, a \equiv r(\bmod 8)) \\
= & 3\left[t_{1}(d / 4, a \equiv \pm 1(\bmod 8))+9 t_{1}(d / 4, a \equiv \pm 3(\bmod 8))\right]- \\
& -2\left[-t_{0}(d / 4, a \equiv-1(\bmod 8))-27 t_{0}(d / 4, a \equiv-3(\bmod 8))+\right. \\
& \left.+t_{0}(d / 4, a \equiv 1(\bmod 8))+27 t_{0}(d / 4, a \equiv 3(\bmod 8))\right] \\
\equiv & 3 t_{1}(d / 4)+2 t_{0}(d / 4, a \equiv-1(\bmod 8))-2 t_{0}(d / 4, a \equiv 1(\bmod 8))- \\
& -18 t_{0}(d / 4, a \equiv-3(\bmod 8))+18 t_{0}(d / 4, a \equiv 3(\bmod 8)) \\
\equiv & 3 t_{1}(d / 4)-2 t_{0}(d / 4)+L(d)(\bmod 64) \tag{3.24}
\end{align*}
$$

where

$$
\begin{aligned}
L(d):=4 t_{0}(d / 4, a \equiv-1(\bmod 8))-16 t_{0}(d / 4, a \equiv-3(\bmod 8))+ & \\
& +20 t_{0}(d / 4, a \equiv 3(\bmod 8)) .
\end{aligned}
$$

But by the formula

$$
t_{0}(d / 4, a \equiv r(\bmod 8))=t_{0}\left(\delta^{*}, a \equiv r(\bmod 8)\right)-(-1)^{\frac{r+1}{2}} t_{0}\left(\delta^{*}, a \equiv 2 \delta^{*}-r(\bmod 8)\right)
$$

(cf. (2.17) [3]) we see that

$$
\begin{aligned}
L(d)= & 4\left[t_{0}\left(\delta^{*}, a \equiv-1(\bmod 8)\right)-t_{0}\left(\delta^{*}, a \equiv 2 \delta^{*}+1(\bmod 8)\right)\right]- \\
& -16\left[t_{0}\left(\delta^{*}, a \equiv-3(\bmod 8)\right)+t_{0}\left(\delta^{*}, a \equiv 2 \delta^{*}+3(\bmod 8)\right)\right]+ \\
& +20\left[t_{0}\left(\delta^{*}, a \equiv 3(\bmod 8)\right)-t_{0}\left(\delta^{*}, a \equiv 2 \delta^{*}-3(\bmod 8)\right)\right]
\end{aligned}
$$

and consequently for $d>0$ we have

$$
L(d)= \begin{cases}-16 t_{0}^{*}\left(\delta^{*}, a \equiv-1(\bmod 8)\right)-16 t_{0}^{*}\left(\delta^{*}, a \equiv 3(\bmod 8)\right)+ & \\ +32 t_{0}^{*}\left(\delta^{*}, a \equiv-3(\bmod 8)\right), & \text { if } d^{*}>0 \\ 16 t_{0}^{*}\left(\delta^{*}, a \equiv-3(\bmod 8)\right)-16 t_{0}^{*}\left(\delta^{*}, a \equiv 1(\bmod 8)\right), & \text { if } d^{*}<0\end{cases}
$$

Therefore by Lemma 1 [3] we obtain

$$
L(d) \equiv 16\left(\frac{d^{*}}{2}\right) t_{0}^{*}\left(\delta^{*} / 2\right)-16\left(\frac{d^{*}}{-1}\right)\left(\frac{d^{*}}{2}\right) t_{0}^{*}\left(\delta^{*} / 4\right)+32 t_{0}^{*}\left(\delta^{*} / 8\right)(\bmod 64)
$$

and consequently by (2.10), (2.15) of [3], if $d^{*}>0$, and by (2.1), (2.6), (2.18) of [3], if $d^{*}<0$ we conclude that

$$
L(d) \equiv 8\left(\frac{d^{d^{\prime}}}{-1}\right) h(-d)(\bmod 64)
$$

Thus (3.24) together with (3.20) and (3.21) implies the congruences

$$
\begin{equation*}
t_{3}(d / 4) \equiv-\frac{3}{2} k_{2}(d)+6\left(d^{*}+1\right) h(-d)(\bmod 64) \tag{3.25}
\end{equation*}
$$

if $d^{*}>0$, and

$$
\begin{equation*}
t_{3}(d / 4) \equiv-\frac{3}{2} k_{2}(d)+2\left(d^{*}+7\right) h(-d)(\bmod 64) \tag{3.26}
\end{equation*}
$$

if $d^{*}<0$.
Now to finish the proof of the lemma it remains to substitute (3.20), (3.21), (3.22) or (3.23), and (3.25) or (3.26) into (3.19).

If $d^{*}>0$ then we have

$$
\begin{aligned}
& t_{k} \equiv 3(k-1)(k-2) k_{2}\left(d^{*}\right) \beta\left(d^{*}\right) k d+H_{k}^{\prime \prime}(d) h(-d) k d+ \\
& \quad+\frac{k-1}{2} k_{2}(d) k d+2(k-1)(k-2) d^{*} h\left(-4 d^{*}\right) k d\left(\bmod 2^{\operatorname{ord}_{2} k+6} d\right),
\end{aligned}
$$

where

$$
\begin{aligned}
H_{k}^{\prime \prime}(d):=-3\left(d^{*}+1\right)(k-2)-3(k-1)(k-2) d^{*} & +(k-4) d^{*}+d^{*} H_{k}^{\prime} \\
& \equiv 9(k-2)+16 \pi_{k}(\bmod 32),
\end{aligned}
$$

because $4 \mid k_{2}\left(d^{*}\right)$ and $2 \mid h\left(-4 d^{*}\right)$.
Now to get the congruence of the lemma for $d^{*}>0$ it is sufficient to use Cor. 1 (ii) to Thm. 1 [2] i.e. the congruence

$$
k_{2}\left(d^{*}\right) \beta\left(d^{*}\right) \equiv 6 h\left(-4 d^{*}\right)-4\left(2-\left(\frac{d^{*}}{2}\right)\right) h(-d)(\bmod 32) .
$$

Indeed by the divisibilities $2 \mid h\left(-4 d^{*}\right), h(-d)$ and $4 \mid h(-d)$, if $\left(\frac{d^{*}}{2}\right)=1$, we find that

$$
\begin{aligned}
& 3(k-1)(k-2) k_{2}\left(d^{*}\right) \beta\left(d^{*}\right)+H^{\prime \prime}(d) h(-d)+2(k-1)(k-2) d^{*} h\left(-4 d^{*}\right) \\
& \quad \equiv 2(k-1)(k-2)\left(d^{*}+1\right) h\left(-4 d^{*}\right)+\left[4(k-2)+9(k-2)+16 \pi_{k}\right] h(-d) \\
& \quad \equiv-4\left(\frac{d^{*}}{2}\right)(k-2) h\left(-4 d^{*}\right)+\left[13(k-2)+16 \pi_{k}\right] h(-d)(\bmod 64) .
\end{aligned}
$$

We now turn to the case $d^{*}<0$. Then we have

$$
\begin{aligned}
t_{k} \equiv & (k-1)(k-2)\left(2\left(\frac{d^{\prime}}{2}\right)-1\right) k_{2}\left(-4 d^{*}\right) k d+H_{k}^{\prime \prime \prime}(d) h(-d) k d+ \\
& +\frac{k-1}{2} k_{2}(d) k d-2(k-1)(k-2)\left(5-\left(\frac{d^{*}}{2}\right)\right) h\left(d^{*}\right) \alpha\left(d^{*}\right) k d\left(\bmod 2^{\operatorname{ord}_{2} k+6} d\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& H_{k}^{\prime \prime \prime}(d):=-(k-2)\left(d^{*}+7\right)-5(k-1)(k-2) d^{*}-(k-4) d^{*}-d^{*} H_{k}^{\prime} \\
& \equiv k-2+16 \pi_{k}(\bmod 32)
\end{aligned}
$$

because $2 \mid h\left(-4 d^{*}\right), h(-d)$, and $4 \mid k_{2}\left(-4 d^{*}\right)$. Now to obtain the congruence of the lemma for $d^{*}<0$ it suffices to apply Cor. 1 (ii) to Thm. 2 [2] i.e. the congruence

$$
k_{2}\left(-4 d^{*}\right) \equiv 6\left(\frac{d^{*}}{2}\right)\left[7\left(\left(\frac{d^{*}}{2}\right)-1\right) h\left(d^{*}\right) \alpha\left(d^{*}\right)+2 h(-d)\right](\bmod 32)
$$

In fact by the divisibility $2 \mid h(-d)$ we conclude that

$$
\begin{aligned}
& (k-1)(k-2)\left(2\left(\frac{d^{*}}{2}\right)-1\right) k_{2}\left(-4 d^{*}\right)+H_{k}^{\prime \prime \prime}(d) h(-d)- \\
& -2(k-1)(k-2)\left(5-\left(\frac{d^{\prime}}{2}\right)\right) h\left(d^{*}\right) \alpha\left(d^{*}\right) \equiv\left[\left(4\left(\frac{d^{*}}{2}\right)+1\right)(k-2)+16 \pi_{k}\right] h(-d)+ \\
& +8(k-2) h\left(d^{*}\right) \alpha\left(d^{*}\right)(\bmod 64) .
\end{aligned}
$$

The proof of the lemma is complete.
Now we shall prove a weaker version of (ii), (iii) of the previous lemma.

Lemma 6. Let $d>0,2 \mid d$ be the discriminant of a quadratic field, and let $k \geq 4$ be an even natural number. Then we have:

$$
t_{k} \equiv \frac{1}{2} k d k_{2}(d) \rho(d)\left(\bmod 2^{\operatorname{ord}_{2} k+6}\right)
$$

Proof. By Lemma 4 for any d we get

$$
\begin{align*}
t_{k} & \equiv \frac{k}{2} t_{2}+\left(1-\frac{k}{2}\right) t_{0}(\delta, a \equiv \pm 1(\bmod 8))+9\left(3^{k-2}-\frac{k}{2}\right) t_{0}(\delta, a \equiv \pm 3(\bmod 8)) \\
& \equiv \frac{k}{2} t_{2}+\left(1-\frac{k}{2}\right) t_{0}+\left(3^{k}-4 k-1\right) t_{0}(\delta, a \equiv \pm 3(\bmod 8))\left(\bmod 2^{\operatorname{ord}_{2} k+6}\right) \tag{3.27}
\end{align*}
$$

On the other hand we have

$$
\begin{aligned}
t_{0}(\delta, a \equiv \pm 3(\bmod 8))= & t_{0}(\delta / 4, a \equiv \pm 3(\bmod 8))+\sum_{\substack{0 \leq a \leq \delta / 4, a \equiv \delta / 2 \pm 3(\bmod 8)}}\left(\frac{d}{\delta / 2-a}\right)+ \\
& +\sum_{\substack{0 \leq a \leq \delta / 4, a \equiv-\delta / 2 \pm 3(\bmod 8)}}\left(\frac{d}{\delta / 2+a}\right)+\sum_{\substack{0 \leq a \leq \delta / 4, a \equiv \delta \pm 3(\bmod 8)}}\left(\frac{d}{\delta-a}\right) \\
& =S_{1}+S_{2}+S_{3}+S_{4},
\end{aligned}
$$

where S_{i} denotes the i th sum (summand) of the left hand side of the above equality.
Thus in view of

$$
S_{1}+S_{4}= \begin{cases}t_{0}(d / 4), & \text { if } 4 \| d \\ 2 t_{0}(d / 4, a \equiv \pm 3(\bmod 8)), & \text { if } 8 \mid d\end{cases}
$$

and

$$
S_{2}+S_{3}= \begin{cases}t_{0}(d / 4), & \text { if } 4 \| d \\ 2 t_{0}(d / 4, a \equiv \pm 1(\bmod 8)), & \text { if } 8 \mid d\end{cases}
$$

we obtain

$$
t_{0}(\delta, a \equiv \pm 3(\bmod 8))=2 t_{0}(d / 4)
$$

Consequently (3.27) implies

$$
t_{k} \equiv \frac{k}{2} t_{2}+2\left(3^{k}-4 k-1\right) t_{0}(d / 4) \equiv \frac{k}{2} t_{2}\left(\bmod 2^{\circ \operatorname{ord}_{2} k+6}\right)
$$

because

$$
\begin{aligned}
3^{k}-4 k-1 \equiv & -2 k+4\binom{k}{2}+8\binom{k}{3}+16\binom{k}{4} \\
& \equiv-2 k+2 k(k-1)-4 k(k-1)(k-2)-2 k(k-1)(k-2)(k-3) \\
\equiv & -2 k+2 k(k-1)+4 k(k-2)-2 k^{2}(k-2)+ \\
& +2 k^{2}(k-2)-6 k(k-2) \equiv 0\left(\bmod 2^{\text {ord }_{2} k+5}\right) .
\end{aligned}
$$

Hence and from Lemma 2, the lemma follows.

4. Proof of Theorem 1.

We start with the formula (3.2) [3]. For $k \geq 2,2 \mid k$ and $\chi=\left(\frac{d}{\cdot}\right), d>0$ it states that

$$
\begin{equation*}
B_{k,\left(\frac{d}{1}\right)}=\sum_{i=0}^{\frac{k}{2}-1}\binom{k}{2 i} 2 B_{k-2 i}(2 d)^{k-2 i-1} t_{2 i}-k t_{k-1}+\frac{1}{d} t_{k} \tag{4.1}
\end{equation*}
$$

Thus by the von Staudt-Clausen theorem for $p=2$ and Lemma 3 we see that for any $d>0$ the numbers $B_{k,\left(\frac{d}{(}\right)}$ are 2 -integral and by Lemma 4 so are the numbers $b_{k}(d)$ because for $2 \nmid d$ we have

$$
\operatorname{ord}_{2}\left(1-3^{k}-\lambda_{k} 2^{k}\right) \geq \operatorname{ord}_{2} k
$$

and for $2 \mid d$ we have

$$
\operatorname{ord}_{2} t_{k} \geq \operatorname{ord}_{2} k+\operatorname{ord}_{2} d
$$

Let us use the formula (4.1) to the case $2 \nmid d$ and $k \geq 8$. Then we get

$$
d B_{k,\left(\frac{d}{l}\right)} \equiv \sum_{i=\frac{k}{2}-2}^{\frac{k}{2}-1}\binom{k}{2 i} 2 B_{k-2 i} 2^{k-2 i-1} d^{k-2 i} t_{2 i}-k d t_{k-1}+t_{k}\left(\bmod 2^{\operatorname{ord}_{2} k+6}\right)
$$

because in view of $8 \mid t_{2 i}$ for $i \geq 2$ and $4 \mid t_{2}$, and

$$
\operatorname{ord}_{2} \frac{2^{s}}{s} \geq 4
$$

for $s=k-2 i \geq 6$, we have

$$
\operatorname{ord}_{2}\left[\binom{k}{2 i} 2^{k-2 i-1} t_{2 i}\right], \text { resp. ord } \operatorname{ord}_{2}\left[\binom{k}{2} 2^{k-3}\right] \geq \operatorname{ord}_{2} k+6
$$

for $i \leq \frac{k}{2}-3$, resp. $k \geq 8$.
Hence for $k \geq 8$ we obtain the congruence

$$
d B_{k,\left(\frac{d}{1}\right)} \equiv-\frac{8}{15}\binom{k}{4} d^{4} t_{k-4}+\frac{2}{3}\binom{k}{2} d^{2} t_{k-2}-k d t_{k-1}+t_{k}\left(\bmod 2^{\operatorname{ord}_{2} k+6}\right)
$$

Therefore by Lemma 3 for $t_{k-4}, t_{k-2}, t_{k-1}$ and Lemma 4 (i) for t_{k} we deduce that

$$
\begin{aligned}
d B_{k,\left(\frac{d}{1}\right)} \equiv & -\frac{16}{15}\binom{k}{4} d^{4}\left[\frac{k-4}{2} d\left(\frac{d}{2}\right)-2^{k-7}\right] k_{2}(d) \beta(d)+ \\
& +\frac{4}{3}\binom{k}{2} d^{2}\left[\frac{k-2}{2} d\left(\frac{d}{2}\right)-2^{k-5}\right] k_{2}(d) \beta(d)- \\
& -k d\left[\frac{1}{4} A_{1}\left(d, \frac{k-2}{2}\right) k_{2}(d) \beta(d)+2\left(\frac{k-2}{2}-2^{k-4}\right) d h(-4 d)\right]+ \\
& +\frac{1}{2}\left(1-3^{k}-\lambda_{k} 2^{k}+4 k\right) h(-4 d)+k d\left(\frac{d}{2}\right) k_{2}(d) \beta(d)\left(\bmod 2^{\text {ord }_{2} k+6}\right) .
\end{aligned}
$$

Consequently by $2 \mid h(-4 d)$ and $4 \mid k_{2}(d)$ we find that

$$
\begin{aligned}
d B_{k,\left(\frac{d}{l}\right)} \equiv & {\left[(k-2)\left(k-4-2^{k-6}\right)+3(k-1)(k-2)\left(\frac{d}{2}\right)+\frac{1}{2}(k-2)(d+2)-\right.} \\
& \left.-\frac{1}{2}\left(2\left(\frac{d}{2}\right)-1\right)\right] k d k_{2}(d) \beta(d)+ \\
& +\left[-(k-2) d+\frac{1-3^{k}-\lambda_{2} 2^{k}+4 k}{2 k d}\right] k d h(-4 d)\left(\bmod 2^{\operatorname{ord}_{2} k+6}\right) .
\end{aligned}
$$

Hence by the divisibility $4 \mid h(-4 d)$, if $\left(\frac{d}{2}\right)=1$ we obtain the congruence

$$
\begin{align*}
b_{k}(d) \equiv H_{k}(d) k_{2}(d) \beta(d)-\frac{1}{2} & \left(2\left(\frac{d}{2}\right)-1\right) k_{2}(d) \beta(d)+ \\
& +\left[-k+20+9\left(\frac{1-3^{k}-\lambda_{k} 2^{k}}{2 k}\right)\right] d h(-4 d)(\bmod 64) \tag{4.2}
\end{align*}
$$

where

$$
H_{k}(d):=\left[2\left(1+\left(\frac{d}{2}\right)\right)+d+8 \lambda_{k}\right] \frac{k-2}{2},
$$

because for even k

$$
\operatorname{ord}_{2}\left(1-3^{k}\right)=\operatorname{ord}_{2} k+2,
$$

and for $k=8$

$$
\operatorname{ord}_{2} \frac{2^{k}}{k}=5
$$

Consequently, since for $k \geq 8$

$$
\begin{aligned}
\frac{1-3^{k}}{2 k} & =-\frac{1}{k} \sum_{i=1}^{k}\binom{k}{i} 2^{i-1} \equiv-\frac{1}{k} \sum_{\substack{1 \leq i \leq 8, i \neq 7}}\binom{k}{i} 2^{i-1} \\
\equiv & -k-\frac{2}{3}(k-1)(k-2)-\frac{1}{3}(k-1)(k-2)(k-3)- \\
& -4(k-2)(k-4)-(k-2)(k-4)(k-6) \\
\equiv & -k+5(k-1)^{2}(k-2)-(k-2)(k-4)(k-6) \\
\equiv & 2\left(2 k-1-4\left(\frac{-1}{k-1}\right)\right)(\bmod 32)
\end{aligned}
$$

and

$$
\begin{aligned}
& H_{k}(d) \equiv\left(1+\left(\frac{d}{2}\right)\right)(k-2)+\frac{d k}{2}-d+8 \lambda_{k} \equiv 5\left(\frac{k}{2}-1\right)+ \\
&+\frac{1}{2}\left(\left(\frac{-1}{k-1}\right)-1\right)\left(2\left(\frac{d}{2}\right)-3+d\right)+8 \lambda_{k}(\bmod 16)
\end{aligned}
$$

Theorem 1 for $k \geq 8$ follows from (4.2), the divisibilities $4\left|k_{2}(d), 2\right| h(-4 d)$ and the congruence (3.6). Indeed, by the mentioned congruence we have

$$
\begin{aligned}
8 \lambda_{k} k_{2}(d) \beta(d) & \equiv 16 \lambda_{k} d h(-4 d)(\bmod 128), \\
2(k-2) k_{2}(d) \beta(d) & \equiv 4(k-2) d h(-4 d)(\bmod 64), \\
\frac{1}{2} k(d-1) k_{2}(d) \beta(d) & \equiv k(d-1) d h(-4 d)(\bmod 64), \\
(1-d) k_{2}(d) \beta(d) & \equiv 2(1-d) h(-4 d)(\bmod 64) .
\end{aligned}
$$

Therefore we get

$$
\begin{aligned}
b_{k}(d) \equiv & \frac{1}{2}\left[\left(5 k-2\left(\frac{d}{2}\right)-9\right)+\left(\left(\frac{-1}{k-1}\right)-1\right)\left(2\left(\frac{d}{2}\right)-3+d\right)\right] k_{2}(d) \beta(d)+ \\
& +\left(3 k+2-8\left(\frac{-1}{k-1}\right)\right) d h(-4 d) \\
\equiv & \frac{1}{2}\left[\left(k-2\left(\frac{d}{2}\right)-1\right)+(k-2)\left(2\left(\frac{d}{2}\right)-3+d\right)\right] k_{2}(d) \beta(d)+ \\
& +(-k+2) d h(-4 d) \\
\equiv & \frac{1}{2}\left[-k-6\left(\frac{d}{2}\right)+3+2 k\left(\frac{d}{2}\right)\right] k_{2}(d) \beta(d)+(2-k) h(-4 d)(\bmod 64),
\end{aligned}
$$

and consequently Theorem 1 follows from (3.6), i.e. from the congruence

$$
k\left(\left(\frac{d}{2}\right)+1\right) k_{2}(d) \beta(d) \equiv 2 k\left(\left(\frac{d}{2}\right)+1\right) h(-4 d)(\bmod 64)
$$

Consequently we deduce that

$$
b_{4}(d) \equiv\left[d^{2}+d+5\left(\frac{d}{2}\right)-\frac{13}{2}\right] k_{2}(d) \beta(d)-\frac{10}{d} h(-4 d)(\bmod 64) .
$$

Hence Theorem 1 (i) for $k=4$ follows immediately.
If $k=6$ then from (4.1) we get

$$
d B_{6,\left(\frac{d}{1}\right)}=-8 d^{4} t_{2}+10 d^{2} t_{4}-6 d t_{5}+t_{6} .
$$

Therefore by (3.2), Lemma 3 (used for t_{4}, t_{5}) and Lemma 5 (i) (used for t_{6}) we find that

$$
d B_{6,(\underline{d})} \equiv 6 d\left[5\left(\frac{d}{2}\right)-\frac{1}{4} A_{1}(d, 2)\right] k_{2}(d) \beta(d)++24 d^{2} h(-4 d)\left(\bmod 2^{7} d\right)
$$

Hence Theorem 1 (i) for $k=6$ follows easily, and the proof of the theorem is complete.

5. Proofs of Theorems 2 and 3.

The proof starts with the formula (4.1). In the case $2 \mid d$ and $k \geq 4$ (in view of $2^{\mathrm{ord}_{2} d+2} \mid t_{2 i}$) it gives the congruence

$$
\begin{equation*}
d B_{k,\left(\frac{d}{!}\right)} \equiv-k d t_{k-1}+t_{k}\left(\bmod 2^{\operatorname{ord}_{2} k+6} d\right) \tag{5.1}
\end{equation*}
$$

because for $i \leq \frac{k}{2}-1$

$$
1+\operatorname{ord}_{2} \frac{(2 d)^{k-2 i}}{(k-2 i)!}>1+2(k-2 i) \geq 5
$$

But by Lemma 3 (ii) we have

$$
-t_{k-1} \equiv \begin{cases}4(k-2) k_{2}(d)(\bmod 64), & \text { if } 4 \| d \\ 0(\bmod 64), & \text { if } 8 \mid d\end{cases}
$$

and consequently by Lemma 5 (ii), (iii) the theorems follow at once.

6. Corollaries to Theorems.

Corollary 1. Let d and $k \geq 4$ be the discriminant of a real quadratic field and an even natural number respectively. Then we have:
(i) $\operatorname{ord}_{2} B_{k,\left(\frac{d}{l}\right)} \geq \operatorname{ord}_{2} k+1$, if $d \neq 8$, and $\operatorname{ord}_{2} B_{k,\left(\frac{d}{9}\right)}=\operatorname{ord}_{2} k$, if $d=8$.
(ii) $\operatorname{ord}_{2} B_{k,\left(\frac{d}{U}\right)}=\operatorname{ord}_{2} k+\nu, 1 \leq \nu \leq 3 \Longleftrightarrow 2^{\nu+1} \| k_{2}(d)$.

The next corollary is an immediate consequence of the previous one and Theorem 1.
Corollary 2. Let $d, 2 \nmid d$ and $k \geq 4$ be the discriminant of a real quadratic field and an even natural number respectively. Then we have:
(i) $\operatorname{ord}_{2} B_{k,(\underline{d})}=\operatorname{ord}_{2} k+4 \Longleftrightarrow 32 \| k_{2}(d)$ and $[k \equiv 2(\bmod 4)$ or $(k \equiv 0(\bmod 4)$ and $16 \mid h(-4 d))]$.
(ii) $\operatorname{ord}_{2} B_{k,\left(\frac{d}{!}\right)}=\operatorname{ord}_{2} k+5 \Longleftrightarrow\left[32 \| k_{2}(d)\right.$ and $k \equiv 0(\bmod 4)$ and $8 \| h(-4 d)$ and $\left.\frac{1}{8} h(-4 d) \not \equiv \frac{1}{32} k_{2}(d) \beta(d)(\bmod 4)\right]$ or $\left\{64 \| k_{2}(d)\right.$ and $[k \equiv 2(\bmod 8)$ or $(k \equiv-2$ $(\bmod 8)$ and $16 \mid h(-4 d))$ or $32 \mid h(-4 d)]\}$ or $\left\{128 \| k_{2}(d)\right.$ and $[(k \equiv 0(\bmod 4)$ and $16 \| h(-4 d))$ or $(k \equiv-2(\bmod 8)$ and $8 \| h(-4 d))]\}$, $\operatorname{ord}_{2} B_{k,(\underline{d})} \geq \operatorname{ord}_{2} k+6$, otherwise.

Corollary 3. Let $d=-4 d^{*}$, where d^{*} is the discriminant of an imaginary quadratic field, and let $k \geq 4$ be an even natural number. Then we have:
(i) $\operatorname{ord}_{2} B_{k,\left(\frac{d}{1}\right)}=\operatorname{ord}_{2} k+4 \Longleftrightarrow\left\{\left(\frac{d^{d}}{2}\right)=1\right.$ and $\left.32 \| k_{2}(d)\right\}$ or $\left\{\left(\frac{d^{+}}{2}\right)=-1\right.$ and $32 \| k_{2}(d)$ and $\left[8 \mid h\left(d^{*}\right)\right.$ or $\left(4 \| h\left(d^{*}\right)\right.$ and $\left.\left.\left.k \equiv 2(\bmod 4)\right)\right]\right\}$.
(ii) If $\left(\frac{d}{2}\right)=1$ then:
$\operatorname{ord}_{2} B_{k,\left(\frac{d}{!}\right)}=\operatorname{ord}_{2} k+5 \Longleftrightarrow\left\{64 \| k_{2}(d)\right.$ and $[k \equiv 2(\bmod 4)$ or $(k \equiv 0(\bmod 4)$ and $\left.\left.\left.2 \mid h\left(d^{*}\right)\right)\right]\right\}$ or $\left(128 \mid k_{2}(d)\right.$ and $k \equiv 0(\bmod 4)$ and $\left.2 \nmid h\left(d^{*}\right)\right)$, $\operatorname{ord}_{2} B_{k,\left(\frac{d}{d}\right)} \geq \operatorname{ord}_{2} k+6$, otherwise.
If $\left(\frac{d^{d}}{2}\right)=-1$ then:
$\operatorname{ord}_{2} B_{k,(\underline{d})}=\operatorname{ord}_{2} k+5 \Longleftrightarrow\left[32 \| k_{2}(d)\right.$ and $4 \| h\left(d^{*}\right)$ and $k \equiv 0(\bmod 4)$ and
$\left.\frac{1}{32} k_{2}(d) \equiv-\frac{1}{4}\left(\frac{2}{k-1}\right) h\left(d^{*}\right) \alpha\left(d^{*}\right)(\bmod 4)\right]$ or
$\left\{64 \| k_{2}(d)\right.$ and $[k \equiv 2(\bmod 8)$ or
$\left(k \equiv-2(\bmod 8)\right.$ and $\left.8 \mid h\left(d^{*}\right)\right)$ or
$\left(k \equiv 0(\bmod 4)\right.$ and $\left.\left.\left.16 \mid h\left(d^{*}\right)\right)\right]\right\}$ or
$\left\{128 \mid k_{2}(d)\right.$ and $\left[\left(k \equiv-2(\bmod 8)\right.\right.$ and $\left.4 \| h\left(d^{*}\right)\right)$
or $\left(k \equiv 0(\bmod 4)\right.$ and $\left.\left.\left.8 \| h\left(d^{*}\right)\right)\right]\right\}$.
$\operatorname{ord}_{2} B_{k,(\underline{d})} \geq \operatorname{ord}_{2} k+6$, otherwise.

Corollary 4. Let $d=-8 d^{*}$, where d^{*} is the discriminant of an imaginary quadratic field, and let $k \geq 4$ be an even natural number. Then we have:
(i) If $\left(\frac{d}{2}\right)=1$ then:

$$
\begin{aligned}
\operatorname{ord}_{2} B_{k,\left(\frac{d}{!}\right)}=\operatorname{ord}_{2} k+4 \Longleftrightarrow & \left\{3 2 \| k _ { 2 } (d) \text { and } \left[2 \mid h\left(d^{*}\right)\right.\right. \text { or } \\
& \left.\left.\left(2 \nmid h\left(d^{*}\right) \text { and } k \equiv 2(\bmod 4)\right)\right]\right\} \text { or } \\
& \left(64 \mid k_{2}(d) \text { and } 2 \nmid h\left(d^{*}\right) \text { and } k \equiv 0(\bmod 4)\right),
\end{aligned}
$$

$\operatorname{ord}_{2} B_{k,(\underline{d})}=\operatorname{ord}_{2} k+5 \Longleftrightarrow\left[32 \| k_{2}(d)\right.$ and $2 \mid h\left(d^{*}\right)$ and $k \equiv 0(\bmod 4)$ and

$$
\begin{aligned}
& \left.64 \| k_{2}(d)+4 h(-d)+32\left(\frac{2}{k-1}\right) h\left(d^{*}\right) \alpha\left(d^{*}\right)\right] \\
& \text { or }\left\{64 \| k_{2}(d) \text { and }[k \equiv 2(\bmod 8)\right. \\
& \text { or }\left(k \equiv-2(\bmod 8) \text { and } 2 \mid h\left(d^{*}\right)\right) \\
& \text { or }(k \equiv 0(\bmod 4) \text { and } \\
& \left.\left.\left.32 \mid h(-d)+8 h\left(d^{*}\right) \alpha\left(d^{*}\right)\right)\right]\right\} \text { or }\left\{128 \mid k_{2}(d)\right. \\
& \text { and }\left[\left(k \equiv-2(\bmod 8) \text { and } 2 \nmid h\left(d^{*}\right)\right)\right. \text { or } \\
& \left.\left.\left(k \equiv 0(\bmod 4) \text { and } 16 \| h(-d)+8 h\left(d^{*}\right) \alpha\left(d^{*}\right)\right)\right]\right\},
\end{aligned}
$$

$\operatorname{ord}_{2} B_{k,\left(\frac{d}{!}\right)} \geq \operatorname{ord}_{2} k+6$, otherwise.
(ii) If $\left(\frac{d}{2}\right)=-1$ then:

$$
\begin{aligned}
\operatorname{ord}_{2} B_{k,\left(\frac{d}{1}\right)}=\operatorname{ord}_{2} k+4 \Longleftrightarrow & \left\{32 \| k_{2}(d) \text { and }[16 \mid h(-d) \text { or }(8 \| h(-d) \text { and }\right. \\
& k \equiv 2(\bmod 4))]\} \text { or }\left[64 \mid k_{2}(d) \text { and } 8 \| h(-d)\right. \\
& \text { and } k \equiv 0(\bmod 4)],
\end{aligned}
$$

$\operatorname{ord}_{2} B_{k,\left(\frac{d}{!}\right)}=\operatorname{ord}_{2} k+5 \Longleftrightarrow\left[32 \| k_{2}(d)\right.$ and $8 \| h(-d)$ and $k \equiv 0(\bmod 4)$ and
$\left.\frac{1}{32} k_{2}(d) \equiv-\frac{1}{8}\left(\frac{2}{k-1}\right) h(-d)(\bmod 4)\right]$
or $\left\{64 \| k_{2}(d)\right.$ and $[k \equiv 2(\bmod 8)$
or $(k \equiv-2(\bmod 8)$ and $16 \mid h(-d))$
or $32 \mid h(-d)]\}$ or $\left\{128 \mid k_{2}(d)\right.$
$\operatorname{and}[(k \equiv 0(\bmod 4)$ and $16 \| d h(-d))$
or $(k \equiv-2(\bmod 8)$ and $8 \| h(-d))]\}$,
$\operatorname{ord}_{2} B_{k,(\underline{d})} \geq \operatorname{ord}_{2} k+6$, otherwise.
Corollary 5. Let $d=8 d^{*}$, where d^{*} is the discriminant of a real quadratic field, and let $k \geq 4$ be an even natural number. Then we have:
(i) $\operatorname{ord}_{2} B_{k,(\underline{d})}=\operatorname{ord}_{2} k+4 \Longleftrightarrow\left\{32 \| k_{2}(d)\right.$ and $[16 \mid h(-d)$ or $(8 \| h(-d)$ and $k \equiv 2$ $(\bmod 4))]\}$ or $\left(64 \mid k_{2}(d)\right.$ and $8 \| h(-d)$ and $\left.k \equiv 0(\bmod 4)\right)$.
(ii) $\operatorname{ord}_{2} B_{k,\left(\frac{d}{⿺}\right)}=\operatorname{ord}_{2} k+5 \Longleftrightarrow\left[32 \| k_{2}(d)\right.$ and $8 \| h(-d)$ and $k \equiv 0(\bmod 4)$ and $\left.\frac{1}{32} k_{2}(d) \equiv-\frac{1}{8}\left(\frac{2}{k-1}\right) h(-d)(\bmod 4)\right]$ or $\left\{64 \| k_{2}(d)\right.$ and $[k \equiv 2(\bmod 8)$ or
$(k \equiv-2(\bmod 8)$ and $16 \mid h(-d))$ or $32 \mid h(-d)]\}$ or $\left\{128 \mid k_{2}(d)\right.$ and $[(k \equiv-2$ $(\bmod 8)$ and $8 \| h(-d))$ or $(k \equiv 0(\bmod 4)$ and $16 \| h(-d))]\}$, $\operatorname{ord}_{2} B_{k,(\underline{d})} \geq \operatorname{ord}_{2} k+6$, otherwise.

7. Proofs of Corollaries.

Corollary 1 (i) for $2 \nmid d$ is an obvious consequence of Theorem 1 and the divisibilities $2|h(-4 d), 4| k_{2}(d)$, and for $2 \mid d$ of Theorem 4. In order to prove (ii) of this corollary for $2 \nmid d$ we use the congruence (3.6). In fact, in view of this congruence Theorem 1 implies

$$
b_{k}(d) \equiv\left[\left(k\left(\frac{d}{2}\right)+\frac{k}{2}+1\right) \mu+\frac{3}{2}\left(-k-2\left(\frac{d}{2}\right)+1\right) \vartheta\right] k_{2}(d) \beta(d)(\bmod 16),
$$

and consequently

$$
b_{k}(d) \equiv-\frac{1}{2}\left(3-2\left(\frac{d}{2}\right)\right) k_{2}(d) \beta(d)(\bmod 16)
$$

Hence Corollary 1 (ii) for $2 \nmid d$ follows immediately because μ, resp. $\vartheta \equiv 1(\bmod 4$, resp. 8$)$.
Corollary 1(ii) for $2 \mid d$ up to the case $\nu=3$ and $8 \mid d$ is an obvious consequence of Theorem 4. If $8 \mid d$ then we consider two cases. First, let $d^{*}>0$. Let us note that if $8 \mid h(-d)$, then we have $16 \mid \vartheta_{2} h(-d), \vartheta_{3} h\left(-4 d^{*}\right)$, and consequently Corollary 1 (ii) in the case $\nu=3, d^{*}>0$ follows from Cor. 2(iii) to Thm. 1 [2] that states that $16 \| k_{2}(d)$ if and only if $8 \| h(-d)$ and $8 \mid h\left(-4 d^{*}\right)$, or $16 \mid h(-d)$ and $4 \| h\left(-4 d^{*}\right)$. Now, let $d^{*}<0$. Then $16 \mid \mu_{3}$. If $\left(\frac{d}{2}\right)=1$ then by Cor. $2(\mathrm{i})$ to Thm. $2[2], 16 \| k_{2}(d)$ if and only if $8 \| h(-d)$, and consequently Corollary 1 (ii) for $d^{*}<0,\left(\frac{d^{*}}{2}\right)=1$ follows easily. If $\left(\frac{d^{*}}{2}\right)=-1$ then $16 \mid \mu_{2} h(-d), \mu_{3} h\left(d^{*}\right) \alpha\left(d^{*}\right)$ because in view of Cor. 2(ii) to Thm. $2[2], 16 \| k_{2}(d)$ if and only if $16 \mid h(-d)$ and $2 \| h\left(d^{*}\right)$, or $8 \| h(-d)$ and $4 \mid h\left(d^{*}\right)$. This completes the proof of Corollary 1.

Now we prove Corollary 3 . Let $d=-4 d^{*}$, where $d^{*}<0$. We consider two cases, again. If $\left(\frac{d^{*}}{2}\right)=1$ then $4 \mid h(-2 d)$, and $32 \mid \vartheta_{2}$, and so $32 \mid \vartheta_{2} h\left(d^{*}\right) \alpha\left(d^{*}\right)+\vartheta_{3} h(-2 d)$. Therefore Corollary 3 (i) for $\left(\frac{d}{2}\right)=1$ follows. Also, in the case $\left(\frac{d}{2}\right)=1$ the divisibility $32 \mid k_{2}(d)$ implies $8 \mid h(-2 d)$ (see Cor. 2(i) to Thm. 2 [2]). Consequently we get (ii) of Corollary 3 in this case easily. We turn to the case $\left(\frac{d^{i}}{2}\right)=-1$. Then by Cor. 2(iii) to Thm. $2[2], 32 \mid k_{2}(d)$ if and only if $4 \| h\left(d^{*}\right)$ and $4 \| h(-2 d)$, or $8 \mid h\left(d^{*}\right)$ and $8 \mid h(-2 d)$. Thus in both the cases we have $\vartheta_{2} h\left(d^{*}\right) \alpha\left(d^{*}\right)+\vartheta_{3} h(-2 d) \equiv 2(k-2) h\left(d^{*}\right) \alpha\left(d^{*}\right)(\bmod 32)$. This completes the proof of Corollary 3 (i). Likewise, by the used above arguments we get (ii) of the corollary and its proof is complete.

Now we consider the case $8 \mid d$. If $d^{*}<0$ and $\left(\frac{d^{*}}{2}\right)=1$ then by Cor. 2(i) to Thm. 2 [2], $32 \mid k_{2}(d)$ if and only if $16 \mid h(-d)$. Consequently we have $\mu_{2} h(-d)+\mu_{3} h\left(d^{*}\right) \alpha\left(d^{*}\right) \equiv$ 0 , resp. $16(\bmod 32)$ if and only if $2 \mid h\left(d^{*}\right)$, or $2 \nmid h\left(d^{*}\right)$ and $k \equiv 2(\bmod 4)$, resp. $2 \nmid h\left(d^{*}\right)$ and $2 \nmid h\left(d^{*}\right)$. This gives the first part and the beginning of the second one of Corollary 4(i). Similar considerations apply to the remaining one of the corollary. To prove (ii) of it let us note that in virtue of Cor. 2(iii) to Thm. 2 [2], $32 \mid k_{2}(d)$ if and only if $16 \mid h(-d)$ and $4 \mid h\left(d^{*}\right)$, or $8 \| h(-d)$ and $2 \| h\left(d^{*}\right)$. Thus $2 \mid h\left(d^{*}\right)$ and $\mu_{2} h(-d)+\mu_{3} h\left(d^{*}\right) \alpha\left(d^{*}\right) \equiv(k-2) h(-d) \equiv 0$, resp. $16(\bmod 32)$ if and only if $16 \mid h(-d)$, or $8 \| h(-d)$ and $k \equiv 2(\bmod 4)$, resp. $8 \| h(-d)$ and $k \equiv 0(\bmod 4)$. This gives the proof
of the first part of Corollary 4(ii) and the beginning of the second one of it. The remaining one may be handled in the similar way. It remains to prove Corollary 5 . Then by Cor. 2 to Thm. 1 [2], $32 \mid k_{2}(d)$ if and only if $8 \| h(-d)$ and $4 \| h\left(-4 d^{*}\right)$, or $16 \nmid h(-d)$ and $8 \dagger h\left(-4 d^{*}\right)$. Therefore $\vartheta_{2} h(-d)+\vartheta_{3} h\left(-4 d^{*}\right) \equiv(k-2) h(-d) \equiv 0$, resp. $16(\bmod 32)$ if and only if $16 \mid h(-d)$, or $8 \| h\left(d^{*}\right)$ and $k \equiv 2(\bmod 4)$, resp. $8 \| h(-d)$ and $k \equiv 0(\bmod 4)$. This establishes (i) and the beginning of (ii) of Corollary 5. The similar reasoning applies to the remaining part of the corollary, and Corollaries to Theorems are proved.

References

[1] B. C. Berndt: Classical theorems on quadratic residues, L'Enseign. Math. 22 (1976), 261-304.
[2] J. Urbanowicz: Connections between $B_{2, \chi}$ for even quadratic Dirichlet characters χ and class numbers of appropriate imaginary quadratic fields, I, Compositio Math. 75 (1990), 247-270.
[3] J. Urbanowicz: On some new congruences between generalized Bernoulli numbers, I.

