Corrigendum to the paper

"On some new congruences between generalized Bernoulli numbers, II"

(Publ. Math. Fac. Sci. Besançon (Théorie des Nombres) Années 1989/90 - 1990/91)

Corrigendum to the paper "On some new congruences between generalized Bernoulli numbers, II"

(Publ. Math. Fac. Sci. Besançon (théorie des nombres), Années 198**9**/90–1990/91)

Jerzy Urbanowicz
Institute of Mathematics
Polish Academy of Sciences
ul. Śniadeckich 8
00-950 Warszawa, Poland

The end of the proof of Lemma 6 should be corrected. Lines from 13 to the end of page 17 should read:

"Thus in view of

$$S_1 + S_4 = \begin{cases} t_0(d/4), & \text{if } 4 \parallel d, \\ 2t_0(d/4, a \equiv \pm 3 \pmod{8}) & \text{if } 8 \mid d, \end{cases}$$

and

(*)
$$S_2 + S_3 = \begin{cases} -t_0(d/4), & \text{if } 4 \parallel d, \\ -2t_0(d/4, a \equiv \pm 1 \pmod{8}), & \text{if } 8 \mid d, \end{cases}$$

we obtain

$$(**) t_0(\delta, a \equiv \pm 3 \pmod{8}) = 0.$$

Therefore (3.27) implies

$$t_k \equiv \frac{k}{2} t_2 \pmod{2^{\operatorname{ord}_2 k + 6}},$$

and by Lemma 2, the lemma follows."

As for details, (*) follows from

$$\left(\frac{d}{\delta/2+a}\right) = \left(\frac{d}{\delta/2-a}\right) = -\left(\frac{d}{a}\right)$$

(which holds for $0 \le a \le \delta/4$ in all the cases), and (**) is a consequence of

$$t_0(d/4, a \equiv \pm 3 \pmod{8}) = t_0(d/4, a \equiv \pm 1 \pmod{8}) = t_0(d/8, a \equiv -\delta^* \pmod{4})$$
 (which holds for $d = \pm 8d^*$).