On the homological dimensions of pullbacks. II

On the homological dimensions of pullbacks. II

Nikolai Kosmatov

In this article, all rings are assumed to have identity elements preserved by ring homomorphisms, and all modules are left modules. For a ring Λ, let $\operatorname{lgld} \Lambda$ and $w d$ denote the left global dimension of Λ and the weak dimension of Λ, respectively. For a Λ-module X, we denote the injective, projective and flat dimensions of X by $\mathrm{id}_{\Lambda} X, \mathrm{pd}_{\Lambda} X$ and $\mathrm{fd}_{\Lambda} X$, respectively. The left finitistic injective, projective and flat dimensions of Λ are denoted and defined as follows:
$\operatorname{lFID} \Lambda=\sup \left\{\operatorname{id}_{\Lambda} M \mid M\right.$ is a Λ-module with $\left.\operatorname{id}_{\Lambda} M<\infty\right\}$,
$\operatorname{lFPD} \Lambda=\sup \left\{\operatorname{pd}_{\Lambda} M \mid M\right.$ is a Λ-module with $\left.\operatorname{pd}_{\Lambda} M<\infty\right\}$,
$\operatorname{lFFD} \Lambda=\sup \left\{\mathrm{fd}_{\Lambda} M \mid M\right.$ is a Λ-module with $\left.\operatorname{fd}_{\Lambda} M<\infty\right\}$.
Consider a commutative square of rings and ring homomorphisms

where R is the pullback (also called fibre product) of R_{1} and R_{2} over R^{\prime}, that is, given $r_{1} \in R_{1}$ and $r_{2} \in R_{2}$ with $j_{1}\left(r_{1}\right)=j_{2}\left(r_{2}\right)$, there is a unique element $r \in R$ such that $i_{1}(r)=r_{1}$ and $i_{2}(r)=r_{2}$. We assume that i_{1} is a surjection.

In the present paper we continue our study of homological dimensions of pullbacks started in [1]. Our purpose is to give upper bounds for the finitistic dimensions of R (Theorems 1,2 and 3). We also provide two simple examples of pullbacks where we use these results to calculate homological dimensions, and show that our conditions are essential. In the first example, a pullback of two hereditary rings has finite finitistic dimensions though its global and weak dimensions are infinite. Therefore, it is impossible to estimate the global and weak dimensions of a pullback if only that of the component rings are given. The second example demonstrates that our estimates would not be true if we dropped the assumption that i_{1} is surjective.

Theorem 1. Let n be a non-negative integer. Suppose that for every R module M of finite injective dimension we have that

$$
\operatorname{id}_{R_{k}}\left(\operatorname{Ext}_{R}^{l}\left(R_{k}, M\right)\right) \leqslant n-l \text { for } l=0,1, \ldots, n \text { and } k=1,2
$$

Then IFID $R \leqslant n$.
Proof. Let M be an R-module of finite injective dimension. From [1, Proposition 5] it follows that $\operatorname{id}_{R} M \leqslant n$. Therefore $\operatorname{lFID} R=\sup \left\{\operatorname{id}_{R} M \mid \operatorname{id}_{R} M<\infty\right\} \leqslant n$.

Similarly, [1, Propositions 6 and 7] allow us to prove analogous bounds for finitistic projective and flat dimensions.

Theorem 2. Let n be a non-negative integer. Suppose that for every R module M of finite projective dimension we have that

$$
\operatorname{pd}_{R_{k}}\left(\operatorname{Tor}_{l}^{R}\left(R_{k}, M\right)\right) \leqslant n-l \text { for } l=0,1, \ldots, n \text { and } k=1,2
$$

Then IFPD $R \leqslant n$.
Theorem 3. Let n be a non-negative integer. Suppose that for every R module M of finite flat dimension we have that

$$
\operatorname{fd}_{R_{k}}\left(\operatorname{Tor}_{l}^{R}\left(R_{k}, M\right)\right) \leqslant n-l \text { for } l=0,1, \ldots, n \text { and } k=1,2 .
$$

Then $\operatorname{IFFD} R \leqslant n$.
Example 1. Let $s \geqslant 2, R^{\prime}=\mathbb{Z} / s \mathbb{Z}, R_{1}=R_{2}=\mathbb{Z}, R=\left\{\left(m_{1}, m_{2}\right) \in R_{1} \times\right.$ $\left.R_{2} \mid m_{1} \equiv m_{2}(\bmod s)\right\}$. Then in the commutative square (1) with canonical surjections i_{k} and j_{k} the ring R is the pullback of R_{1} and R_{2} over R^{\prime}. There exist the periodic free resolutions of the R-modules R_{k}

$$
\begin{align*}
& \ldots \xrightarrow{(0, s)} R \xrightarrow{(s, 0)} R \xrightarrow{(0, s)} R \xrightarrow{i_{1}} R_{1} \longrightarrow 0, \tag{2}\\
& \ldots \xrightarrow{(s, 0)} R \xrightarrow{(0, s)} R \xrightarrow{(s, 0)} R \xrightarrow{i_{2}} R_{2} \longrightarrow 0, \tag{3}
\end{align*}
$$

where the syzygies are the submodules $s \mathbb{Z} \times 0 \simeq R_{1}$ and $0 \times s \mathbb{Z} \simeq R_{2}$. It is easily seen that the short exact sequences

$$
0 \longrightarrow 0 \times s \mathbb{Z} \hookrightarrow R \xrightarrow{i_{1}} R_{1} \longrightarrow 0,
$$

$$
0 \longrightarrow s \mathbb{Z} \times 0 \hookrightarrow R \xrightarrow{i_{2}} R_{2} \longrightarrow 0
$$

do not split. Hence the R-modules R_{k} are not projective. By [2, Theorem 3.2.7], they are not flat either. It follows that $\mathrm{pd}_{R} R_{k}=\mathrm{fd}_{R} R_{k}=\infty$ and $\operatorname{lgld} R=\mathrm{wd} R=\infty$. At the same time, $\operatorname{lgld} R_{k}=\mathrm{wd} R_{k}=1$. We see that it is impossible to estimate $\operatorname{lgld} R$ and wd R with only $\operatorname{lgld} R_{k}$ and wd R_{k} given.

Let M be an R-module of finite projective dimension with a projective resolution

$$
\begin{equation*}
\ldots \longrightarrow 0 \longrightarrow 0 \longrightarrow P_{n} \longrightarrow \ldots \longrightarrow P_{0} \longrightarrow M \longrightarrow 0 \tag{4}
\end{equation*}
$$

Since $\operatorname{lgld} R_{k}=1$, we have $\operatorname{pd}_{R_{k}}\left(\operatorname{Tor}_{0}^{R}\left(R_{k}, M\right)\right) \leqslant 1$. Applying [2, Exercise 2.4.3] to the projective resolutions (2), (3) and (4), we obtain for a sufficiently large t

$$
\operatorname{Tor}_{1}^{R}\left(R_{k}, M\right) \simeq \operatorname{Tor}_{1+2 t}^{R}\left(R_{k}, M\right) \simeq \operatorname{Tor}_{1}^{R}\left(R_{k}, 0\right)=0
$$

Consequently, $\operatorname{pd}_{R_{k}}\left(\operatorname{Tor}_{1}^{R}\left(R_{k}, M\right)\right)=\operatorname{pd}_{R_{k}} 0=0$. Theorem 2 now yields that IFPD $R \leqslant 1$. In the same manner we can use Theorems 1 and 3 to show that IFID $R \leqslant 1$ and lFFD $R \leqslant 1$.

Consider the following projective resolution of the R-module $R /(s, s) R$:

$$
0 \longrightarrow R \xrightarrow{(s, s)} R \xrightarrow{\text { pr }} R /(s, s) R \longrightarrow 0 .
$$

Since this short exact sequence does not split, we have $\operatorname{pd}_{R}(R /(s, s) R)=$ $\mathrm{fd}_{R}(R /(s, s) R)=1$. This clearly forces 1 FPD $R=1$ FFD $R=1$.

The subgroup R of the free Abelian group $\mathbb{Z} \times \mathbb{Z}$ is a free Abelian group also, therefore, applying the functor $\operatorname{Hom}_{\mathbb{Z}}(R,-)$ to the short exact sequence $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Q} \rightarrow \mathbb{Q} / \mathbb{Z} \rightarrow 0$, we obtain a short exact sequence of R-modules

$$
0 \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(R, \mathbb{Z}) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(R, \mathbb{Q}) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(R, \mathbb{Q} / \mathbb{Z}) \longrightarrow 0
$$

This sequence does not split and, by [2, Corollary 2.3.11], it is an injective resolution of the R-module $\operatorname{Hom}_{\mathbb{Z}}(R, \mathbb{Z})$. It follows that $\operatorname{id}_{R}\left(\operatorname{Hom}_{\mathbb{Z}}(R, \mathbb{Z})\right)=$ 1 , and hence that lFID $R=1$.
Example 2. Let F be a field. Define $R^{\prime}=F(x, y), R_{1}=F(x)[y], R_{2}=$ $F(y)[x], R=R_{1} \cap R_{2}=F[x, y]$. Then the ring R is the pullback of R_{1} and R_{2} over R^{\prime} in the commutative square (1) with inclusions i_{k} and j_{k} none of which is surjective. We claim that in this case our results are not true.

By [2, Proposition 4.1.5, Corollary 4.3.8], we have wd $R=\operatorname{lgld} R=2$ and wd $R_{k}=\operatorname{lgld} R_{k}=1$. Since these dimensions are finite, we have that
$\operatorname{lFFD} R=\operatorname{lFPD} R=\operatorname{lFID} R=2$ and $\operatorname{lFFD} R_{k}=\operatorname{lFPD} R_{k}=\operatorname{IFID} R_{k}=1$. It is easy to check that the R-modules R_{k} are flat. So the assumptions of Theorems 2 and 3 hold for $n=1$, but their conclusions are false. The same observation can be made about the estimates [1, Proposition 5, 6 and 7, Theorems 9 and 10, Corollaries 12 and 13], which are not true in this case either.

It can be explained by the fact that the surjectivity condition cannot be dropped in the basic result [1, Theorem 1]. Indeed, we see at once that the R-module $M=R /(x R+y R)$ is neither projective nor flat, whilst the R_{k} modules $R_{k} \bigotimes_{R} M=0$ are projective and flat. From [2, Proposition 3.2.4] we conclude that the R-module $X=\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q} / \mathbb{Z})$ is not injective, though the R_{k}-modules $\operatorname{Hom}_{R}\left(R_{k}, X\right) \simeq \operatorname{Hom}_{\mathbb{Z}}\left(R_{k} \bigotimes_{R} M, \mathbb{Q} / \mathbb{Z}\right)=0$ are injective.

Acknowledgement. The author would like to thank Professor A. I. Generalov for suggesting the problem and guidance.

References

[1] N. Kosmatov. On the global and weak dimensions of pullbacks of non-commutative rings. Publications Mathématiques de l'UFR Sciences et Techniques de Besançon, Théorie des Nombres, Années 1996/971997/98, 1-7 (Univ. de Franche-Comté, Besançon, 1999).
[2] C. A. Weibel. An introduction to homological algebra. Cambridge, Cambridge Univ. Press, 1994.

Equipe de Mathématiques
Université de Franche-Comté
16, route de Gray
25030 Besançon Cedex France
Department of Mathematics and Mechanics
Saint-Petersburg State University
Bibliotechnaya pl. 2
Saint-Petersburg, 198904, Russia
E-Mail: koko@nk1442.spb.edu

