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In this article, all rings are assumed to have identity elements preserved
by ring homomorphisms, and all modules are left modules. For a ring A,
let lgld A and wd A denote the left global dimension of A and the weak
dimension of A, respectively. For a A-module X, we denote the injective,
projective and flat dimensions of X by idy X, pd, X and fda X, respectively.
The left finitistic injective, projective and flat dimensions of A are denoted
and defined as follows:
IFID A = sup{idy M | M is a A-module with idy M < oo},
IFPD A = sup{pd, M | M is a A-module with pdy M < oo},
IFFD A = sup{fdy M | M is a A-module with fdy M < oo}.

Consider a commutative square of rings and ring homomorphisms

R'—i}-—)Rl

lig ljl (1)

R, —“» R,

where R is the pullback (also called fibre product) of R; and R; over R/, that
is, given r; € R; and r; € Ry with j;(r1) = ja(re), there is a unique element
r € R such that i;(r) = r; and i2(r) = ro. We assume that i; is a surjection.

In the present paper we continue our study of homological dimensions of
pullbacks started in [1]. Our purpose is to give upper bounds for the finitistic
dimensions of R (Theorems 1, 2 and 3). We also provide two simple examples
of pullbacks where we use these results to calculate homological dimensions,
and show that our conditions are essential. In the first example, a pullback
of two hereditary rings has finite finitistic dimensions though its global and
weak dimensions are infinite. Therefore, it is impossible to estimate the
global and weak dimensions of a pullback if only that of the component rings
are given. The second example demonstrates that our estimates would not
be true if we dropped the assumption that ¢; is surjective.
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Theorem 1. Let n be a non-negative integer. Suppose that for every R-
module M of finite injective dimension we have that

idg, (Exte(Re, M)) <n—1 for 1=0,1,...,n and k=1, 2.
Then IFID R < n.

Proof. Let M be an R-module of finite injective dimension.
From [1, Proposition 5] it follows that idgM < n. Therefore
IFID R = sup{idg M | idg M < oo} < n.

Similarly, [1, Propositions 6 and 7] allow us to prove analogous bounds
for finitistic projective and flat dimensions.

Theorem 2. Let n be a non-negative integer. Suppose that for every R-
module M of finite projective dimension we have that

pdg, (Torf(Re, M)) <n—1 for 1=0,1,...,n and k=1,2.
Then IFPD R < n.

Theorem 3. Let n be a non-negative integer. Suppose that for every R-
module M of finite flat dimension we have that

fdp, (Torf(Ri, M)) <n~1 for 1=0,1,...,n and k=1,2.

Then IFFD R < n.

Example 1. Let s > 2, R' = Z/sZ, Ry = Ry = Z, R = {(m1,m3) € Ry X
Rz |my = my (mod s) }. Then in the commutative square (1) with canonical
surjections i; and j; the ring R is the pullback of R; and R, over R'. There
exist the periodic free resolutions of the R-modules Rj,

O g gl p iR s, 2)
Ry -RCL - RCLU - N Ny - NN} (3)

where the syzygies are the submodules sZ x 0 ~ R; and 0 x sZ ~ Ry. It is
easily seen that the short exact sequences '

0— 0xsZ~ R R, —0,
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0—sZx0— R R —0

do not split. Hence the R-modules Rj are not projective. By [2, Theorem
3.2.7], they are not flat either. It follows that pdg Ry = fdg Ry = oo and
lgld R = wd R = oo. At the same time, lgld R, = wd Ry, = 1. We see that it
is impossible to estimate Igld R and wd R with only lgld R;, and wd Ry, given.

Let M be an R-module of finite projective dimension with a projective
resolution

i. —30—>0—P,—...— B —M-—0. (4)

Since Igld By = 1, we have pdp, (TorZ(Ry, M)) < 1. Applying [2, Exercise
2.4.3] to the projective resolutions (2), (3) and (4), we obtain for a sufficiently

large t
Tor®(Ry, M) =~ Torf ,,(Re, M) ~ Tori(Ry, 0) = 0.

Consequently, pdp, (Tors(Ri, M)) = pdg, 0 = 0. Theorem 2 now yields that
IFPD R < 1. In the same manner we can use Theorems 1 and 3 to show that
IFIDR<1and IFFDR K 1.

Consider the following projective resolution of the R-module R/(s,s)R :

0— R R, Ri(s,8)R — 0.

Since this short exact sequence does not split, we have pdg(R/(s,s)R) =
fdr(R/(s,s)R) = 1. This clearly forces IFPDR =1FFDR = 1.

The subgroup R of the free Abelian group Z x Z is a free Abelian group
also, therefore, applying the functor Homz(R, —) to the short exact sequence
0—Z— Q— Q/Z — 0, we obtain a short exact sequence of R-modules

0 — Homgz(R,Z) — Homgz(R, Q) — Homgz(R,Q/Z) — 0.

This sequence does not split and, by [2, Corollary 2.3.11}, it is an injective
resolution of the R-module Homz(R, Z). It follows that idg(Homz(R, Z)) =
1, and hence that IFID R = 1.

Example 2. Let F be a field. Define R' = F(z,y), Ry = F(z)[y], Rz =
F(y)[z], R = R1 N Ry = Flz,y]. Then the ring R is the pullback of R; and
R, over R’ in the commutative square (1) with inclusions s and j none of
which is surjective. We claim that in this case our results are not true.

By [2, Proposition 4.1.5, Corollary 4.3.8], we have wd R = IgldR = 2
and wd R, = Igld Ry = 1. Since these dimensions are finite, we have that
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IFFDR = IFPDR = IFIDR = 2 and IFFD R, = IFPD R}, = IFID Ry = 1.
It is easy to check that the R-modules R, are flat. So the assumptions of
Theorems 2 and 3 hold for n = 1, but their conclusions are false. The same
observation can be made about the estimates [1, Proposition 5, 6 and 7,
Theorems 9 and 10, Corollaries 12 and 13], which are not true in this case
either.

It can be explained by the fact that the surjectivity condition cannot be
dropped in the basic result [1, Theorem 1]. Indeed, we see at once that the
R-module M = R/(zR + yR) is neither projective nor flat, whilst the Rj-
modules Ry @, M = 0 are projective and flat. From [2, Proposition 3.2.4]
we conclude that the R-module X = Homg(M, Q/Z) is not injective, though
the Ri-modules Hompg(Ry, X) ~ Homz (R, @y M,Q/Z) = 0 are injective.
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