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SOME PROPERTIES OF A DISSIMILARITY MEASURE FOR
LABELED GRAPHS

by

Nicolas Wicker, Canh Hao Nguyen and Hiroshi Mamitsuka

Abstract. — We investigate the problem of comparing different graphs on the same set of
vertices. It is a problem arising when using different biological networks to elucidate cellular
processes. We wish to see their similarity and difference via connectivity-aware graph dissimi-
larity for graphs with the same node set. We extend a previous result and present some results
concerning the orders of magnitude of the dissimilarity as the graphs’ sizes grow to infinity.
We find that removing an edge playing a very important role in graph connectivity, such as a
bridge between two fully connected subgraphs, can have a dramatic effect on the dissimilarity
compared to the removal of any "ordinary" edge.

Résumé. — Nous nous intéressons au problème de la comparaison de graphes sur un même
ensemble de sommets. C’est un problème apparaissant dans l’étude de réseaux biologiques lors-
qu’on veut comprendre le fonctionnement de processus cellulaires. L’objectif est de lier leur
similarité ou différence, par une mesure consciente de la connectivité du graphe sur un même
ensemble de sommets. Nous étendons un résultat antérieur et présentons de nouveaux résultats
sur l’ordre de grandeur de la dissimilarité lorsque la taille des graphes tend vers l’infini. En
particulier, nous montrons que la suppression d’une arête qui joue une grande importance dans
la connectivité d’un graphe, comme un pont, peut avoir un effet dramatique sur la dissimilarité
par rapport à la suppression d’une arête « ordinaire ».

1. Introduction

Biological networks are a major source of information for understanding complex biological
processes [8]. One of the ways to elucidate the cellular machinery and to predict interaction
and function is to study the similarity and difference in networks of different species or on
different conditions. Many statistical models and computational methods have been devel-
oped to compare graphs [3, 4, 6]. However, the key idea is that properties of networks are
determined by its motifs such as paths, subgraphs and graphlets. It is not possible to use
these methods to compare networks for their global property such as network connectivity
and robustness.

Mathematical subject classification (2010). — 05C50,15A18.
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86 Some properties of a dissimilarity measure for labeled graphs

We consider the problem of comparing networks taking into account global connectivity [9, 5].
This would be useful for various biological tasks. For example, the two networks would be
considered similar in robustness if they are both not robust in the sense that there exist small
changes (such as the removal of one edge) that can result in large network topological changes
(such as disconnectivity). Two networks would be considered similar in modularity if they
share many common well-connected subnetworks and bottlenecks. This is the case of biological
networks sharing many modules. These kinds of information reflect global connectivity of the
networks. To the best of our knowledge, the method in [9] is the first attempt in this direction.
The problem setting is as follows. Given graphs Gi = (X,Ei) that all share the vertex set X
with different edge set Ei, we want to compare them using the graph normalized Laplacians
Li, given for Gi by:

Li(u, v) =


1 if u = v and dv 6= 0,

− 1√
dudv

if u and v are adjacent,
0 otherwise

where dv stands for the degree of vertex v. Then, the dissimilarity measure we study has the
following form:

d(G1, G2) =
∑
i,j

(λi − µj)2

(λi + µj)α
〈ui, vj〉2 with α ∈ [0, 2),

where L1 =
∑
i λiuiu

T
i and L2 =

∑
i µiviv

T
i are eigendecompositions of the graph normalized

Laplacians. The dissimilarity measure in [9] is a special case with α = 1. In the special case
of α = 1, d is the dissimilarity measure of graphs taking into account global information of
graphs such as clusters and bottlenecks [9, 5].
The main purpose is to see the change of d on large graphs in order to quantify the significance
of the differences among large graphs, as the case of biological networks. While deriving
formulas for d for all pair of graphs would be difficult, we selected here some canonical cases
to show formally how d change, to roughly estimate the differences between graphs under
this measure.
The setting of our simulation is as follows. We study two cases. Limiting ourselves to com-
paring graphs with minimum difference of only one edge, the worst case is that the edge
makes the most topological change in the graph. It is the case of a bridge between two fully
connected subgraphs as follows. Define two graphs U and Ub where U is the union of two
complete graphs Kn and Kn and Ub is equal to U with an additional edge (bridge) connect-
ing the two complete subgraphs. In the literature, Ub is sometimes called a barbell graph [2].
Without loss of generality, we suppose that this edge is between the nth node and the n+ 1th
node, where 2n is the size of the graphs. To compare with the worst case, we design another
case of graph Ur which is obtained by removing one edge (not the bridge) from U .
In this paper, we generalize the dissimilarity measure found in [9] and motivate this general-
ization by theorem 1, then we compare the magnitudes of d(U,Ub) and d(U,Ur) as a function
of n in Theorems 2 and 3.
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N. Wicker and C. H. Nguyen and H. Mamitsuka 87

2. Results

First, let us show that adding a parameter α makes sense and essentially can help avoiding
all graphs without isolated vertices to be equidistant to the graph with only isolated vertices.
The theorem stands as follows:

Theorem 1. — Let G1 be the graph with only isolated vertices, then the most distant graph
to it is the bipartite graph with n/2 disconnected edges if α < 1, the set of all graphs without
any isolated vertices if α = 1 and the complete graph is α > 1.

Proof. — If G2 is any graph, then the dissimilarity can be rewritten:

d(G1, G2) =
∑
i,j

µ2
j

µαj
〈ui, vj〉2 =

n∑
i=1

µ2−α
i

as all eigenvalues of G1 are equal to 0. If we use α = 1 as in [9], then as
∑n
i=1 µi = n is constant

all graphs have the same distance to G1. We can thus consider the problem of maximising
the distance d(G1, G2) with a given α, rephrasing it in terms of β = 2 − α we obtain the
following maximisation problem:

max
n∑
i=1

µβi subject to
n∑
i=1

µi = n, 2 ≥ µi ≥ 0 and µ1 = 0.

The constraint 2 ≥ µi ≥ 0 is necessary as µ1, . . . , µn are eigenvalues of a normalized Lapla-
cian [1]. The Lagrangian is then

L(µ, λ, η, ξ) =
n∑
i=1

µβi + λ

(
n∑
i=1

µi − n
)

+
n∑
i=1

ηi(µi − 2)− ξiµi where λ, ηi and ξi

are Lagrange multipliers.

Deriving leads to
∂L
∂µi

= βµβ−1
i + λ+ ηi − ξi.

Let us consider an eigenvalue µi 6∈ {0, 2} then βµβ−1
i + λ = 0. This shows that eigenvalues

different from 0 and 2 can only take one unique value which will be denoted z.
Then, n = 2x + yz where x is the number of eigenvalues equal to 2 and y the number of
eigenvalues equal to an eigenvalue different from 0 and 2. The function to optimize becomes
then

n∑
i=1

µβi = x2β + yzβ

with constraints 2x+ yz = n and x+ y ≤ n− 1 as one eigenvalue is equal to 0. We can then
consider two cases, either β > 1 or β < 1.
If β > 1, 2β > zβ as z < 2. The optimum is then obtained for x = n/2 and y = 0. This
corresponds to the simple bipartite graph containing n/2 disconnected edges.
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88 Some properties of a dissimilarity measure for labeled graphs

If β < 1, by concavity of function f(w) = wβ, if we consider that: x+ y = k with k ≤ n− 1:

x2β + yzβ =k
(
x

k
2β + y

k
zβ
)

≤ k
(2x+ yz

k

)β
≤ k

(
n

k

)β
as 2x+ yz = n.

This upper bound can be obtained by taking x = 0, y = k and z = n
k . Besides, the bound is

maximized for k = n− 1. This corresponds to the spectrum of Kn the complete graph of size
n. If we summarize this in terms of α, if α = 1 all graphs are equally distant to G1. If α > 1
the most distant graph to G1 is the complete graph, and if α < 1 the most distant graph is
the bipartite graph with n/2 disconnected edges. Interestingly, this shows that the farthest
graph from G1 can be very different depending upon the value of α with a kind of transition
phase at α = 1. �

Now, we can notice that the dissimilarity behaves nicely when two graphs are concatenated
i.e. when we keep all the vertices and edges of the two graphs. Namely, we have the following
lemma.

Lemma 1. — When two graphs G1 and H1 of equal size and G2 and H2 two other graphs
of equal size are concatenated, then d(G1 ∪G2, H1 ∪H2) = d(G1, H1) + d(G2, H2)

Proof. — Let us denote by u1
1, . . . , u

1
n and λ1

1, . . . , λ
1
n the eigenvectors and eigenvalues ofG1 by

u2
1, . . . , u

2
m and λ2

1, . . . , λ
2
m the eigenvectors and eigenvalues of G2. Similarly, the eigenvectors

and eigenvalues of H1 and H2 are given respectively by: v1
1, . . . , v

1
m and µ1

1, . . . , µ
1
m, and

v2
1, . . . , v

2
n and µ2

1, . . . , µ
2
n.

Then, the eigenvalues of L(G1 ∪ G2) are given by 0, 0, λ1
2, . . . , λ

1
n, λ

2
2, . . . , λ

2
m, as 0 is always

the eigenvalue of a Laplacian and as G1 and G2 are disconnected. Similarly, the eigenvalues
of L(H1 ∪ H2) are given by 0, 0, µ1

2, . . . , µ
1
n, µ

2
2, . . . , µ

2
m. The eigenvectors of L(G1 ∪ G2) are

denoted x1, . . . , xn+m and those of L(H1 ∪ H2) by y1, . . . , yn+m. The eigenvectors after the
first two ones are the eigenvectors of L(G1), L(G2), L(H1) and L(H2), completed with m or
n 0 respectively. For example, x3 = (u2, 0, . . . , 0).

d(G1 ∪G2, H1 ∪H2) =
∑

1≤i,j≤n

(λ1
i − µ1

j )2

(λ1
i + µ1

j )α
〈xi, yj〉2 +

∑
1≤i≤n

n+1≤j≤n+m

(λ1
i − µ2

j )2

(λ1
i + µ2

j )α
〈xi, yj〉2+

∑
n+1≤i,j≤n+m

(λ2
i − µ2

j )2

(λ2
i + µ2

j )α
〈xi, yj〉2 +

∑
n+1≤i≤n+m

1≤j≤n

(λ2
i − µ1

j )2

(λ2
i + µ1

j )α
〈xi, yj〉2

=
∑

1≤i,j≤n

(λ1
i − µ1

j )2

(λ1
i + µ1

j )α
〈u1
i , v

1
j 〉2 +

∑
n+1≤i,j≤n+m

(λ2
i − µ2

j )2

(λ2
i + µ2

j )α
〈u2
i , v

2
j 〉2

= d(G1, H1) + d(G2, H2).

�
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N. Wicker and C. H. Nguyen and H. Mamitsuka 89

This result is shared by the edit distance [7] defined by:

ed(G1, G2) = |E1 \ E2 ∪ E2 \ E1|

where G1 = (V,E1) and G2 = (V,E2). However, if one considers the normalized edit distance,
i.e the edit distance divided by the maximum number of edges, this is no more true. Indeed,
if d1 and d2 are the edit distances between G1 and H1 and G2 and H2 respectively. Then,
the normalized distances are ned(G1, H1) = 2d1

n(n−1) , ned(G2, H2) = 2d2
m(m−1) and ned(G1 ∪

G2, H1 ∪H2) = 2d1+2d2
(n+m)(n+m−1) which in general is not equal to: ned(G1, H1) + ned(G2, H2) =

2d1
n(n−1) + 2d2

m(m−1) .

Theorem 2. — The dissimilarity D(U,Ub) =
(

2
n2

)2−α
+ 21−α

n2 + o(n−2).

The normalized Laplacians L1 and L2 of U and Ub respectively are given by:

L1 =
(
Ann 0
0 Ann

)
and L2 =


An−1
n B 0 0
BT 1 −n−1 0
0 −n−1 1 B
0 0 BT An−1

n



with Amn =


1 −(n− 1)−1 . . . −(n− 1)−1

−(n− 1)−1 . . . . . . ...
... . . . . . . −(n− 1)−1

−(n− 1)−1 . . . −(n− 1)−1 1

 ,

and BT =
(

−1√
n(n− 1)

, . . . ,
−1√

n(n− 1)

)
.

with m is the matrix size.
Spectral analysis of L1. — Eigenvalues are λ1 = λ2 = 0 and λ3 = · · · = λ2n = n/(n− 1).
The first two eigenvectors are: u1 = 1√

2n(1, . . . , 1) and u2 = 1√
2n(1, . . . , 1,−1, . . . ,−1). Eigen-

value n/(n − 1) has multiplicity 2n − 2 as the following vectors are linearly independent
eigenvectors for it: u∗3 =

(
1, −1

n−1 , . . . ,
−1
n−1 , 0, . . . , 0

)
, u∗4 =

(
−1
n−1 , 1,

−1
n−1 , . . . ,

−1
n−1 , 0, . . . , 0

)
,

u∗n+1 =
(
−1
n−1 , . . . ,

−1
n−1 , 1,−

1
n−1 , 0, . . . , 0

)
, u∗n+2 =

(
0, . . . , 0, 1, −1

n−1 , . . . ,
−1
n−1

)
, . . . , u∗2n =(

0, . . . , 0, −1
n−1 , . . . ,

−1
n−1 , 1,

−1
n−1

)
. The orthonormal vectors u3, . . . , u2n are not needed explicitly

in the proof.
Spectral analysis of L2. — (computation of µ1, µ2, v1 and v2) The smallest eigenvalue is
0 with eigenvector:

v1 = 1√
2(n− 1)2 + 2n

(
√
n− 1, . . . ,

√
n− 1,

√
n,
√
n,
√
n− 1, . . . ,

√
n− 1).

Looking for a similar eigenvector, we find

v2 = 1√
2(n− 1)

√
n− 1 + 1

n

(1, . . . , 1, −(n− 1)
3
2

√
n

,
−(n− 1)

3
2

√
n

, 1, . . . , 1, )
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90 Some properties of a dissimilarity measure for labeled graphs

for eigenvalue 1 + 1
n(n−1) . Eigenvalue n/(n − 1) has multiplicity 2n − 4 as the following

vectors are linearly independent eigenvectors for it: v∗5 =
(
1, −1

n−2 , . . . ,
−1
n−2 , 0 . . . , 0

)
, v∗6 =(

−1
n−2 , 1,

−1
n−2 , . . . ,

−1
n−2

)
, v∗n+2 =

(
−1
n−2 , . . . , 1,

−1
n−2 , 0, . . . , 0

)
, v∗n+3 =

(
0, . . . , 0, 1, −1

n−2 , . . . ,
−1
n−2

)
,

v∗n+4 =
(
0, . . . , 0, −1

n−2 , 1,
−1
n−2 , . . . ,

−1
n−2

)
, v∗2n =

(
0, . . . , 0, −1

n−2 , . . . ,
−1
n−2 , 1,

−1
n−2

)
where each

time n + 1 values are equal to 0. Concerning the rest of the spectrum, lemma 2 tells us
what v3, v4, µ̃3 and µ̃4 are equal to. Before going to the proof of theorem 2, the following
lemma is needed.

Lemma 2. — There are two eigenvectors v3 and v4 of L2 having the form v3 = (1 +
4x3(2n)−1/2 + 2x2

3)−1/2(u2 + x3en − x3en+1) and v4 = (1 + 4x4(2n)−1/2 + 2x2
4)−1/2(u2 +

x4en − x4en+1) where e1, . . . , e2n is the canonical basis of R2n, x3 = −3n−
3
2

2
√

2 + o(n−3/2) and

x4 = −
√
n√
2 −

3
2
√

2n + o(n−1/2). The corresponding eigenvalues are µ3 = 2
n2 + o(n−2) and

µ4 = 1 + 2n−1
n(n−1) − µ3.

Proof. — We will show that there exists x3 that makes v3 an eigenvector satisfying the
lemma.
Solving the equation L2 v3 = µv3 gives respectively for the first n− 1 lines and the nth line:

1√
2n −

n−2√
2n(n−1) −

(2n)−1/2+x3√
(n−1)n√

1 + 4x3(2n)−1/2 + 2x2
3

= µ2(2n)−1/2√
1 + 4x3(2n)−1/2 + 2x2

3

and

− n−1√
(n−1)n

√
2n

+
(
(2n)−1/2 + x3

) (
1 + 1

n

)
√

1 + 4x3(2n)−1/2 + 2x2
3

=
µ2
(
(2n)−1/2 + x3

)
√

1 + 4x3(2n)−1/2 + 2x2
3

.

The last n lines are not considered for symmetry reasons. These equations can be rewritten:
1

n− 1 −
1 + x3

√
2n√

(n− 1)n
= µ;(1)

−
√
n− 1√
n

+ (1 + x3
√

2n)(1 + 1/n) = µ(1 + x3
√

2n).(2)

The two above equations are equivalent to:

x3
√

2n =
√
n√

n− 1
−
√

(n− 1)nµ− 1 and µ = −
√
n− 1√
n

1
1 + x3

√
2n

+ 1 + 1
n
.

Then, µ = − n−1
n−(n−1)nµ + 1 + 1

n ⇔ n(n− 1)µ2− (n2 +n− 1)µ+ 2 = 0 and taking the smallest
solution yields:

µ3 = n2 + n− 1−
√

(n2 + n− 1)2 − 8n(n− 1)
2n(n− 1) = 2

n2 + o(n−2)

and x3 = 1√
2(n−1)

−
√
n−1√

2 µ3 − 1√
2n = −3n−

3
2

2
√

2 + o(n−
3
2 ). Consequently, µ4 = 1 + 2n−1

n(n−1) − µ3

and x4 = −
√
n√
2 −

3
2
√

2n + o(n−1/2). �
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Finally, we can conclude with the proof of Theorem 2.

Proof of Theorem 2. —

D(U,Ub) =
2n∑
i≥3

2n∑
j≥5

0〈ui, vj〉2 +
2∑
i=1

4∑
j=1

(λi − µj)2

(λi + µj)α
〈ui, vj〉2+

2∑
i=1

2n∑
j≥5

µ2−α
j 〈ui, vj〉2 +

2n∑
i≥3

4∑
j=1

(λi − µj)2

(λi + µj)α
〈ui, vj〉2

=
4∑
j=2

µ2−α
j 〈u2, vj〉2 + µ2−α

2 〈u1, v2〉2 +
2n∑
i≥3

(
n

n− 1

)2−α
〈ui, v1〉2+

2n∑
i≥3

(
n
n−1 − µ2

)2

( n
n−1 + µ2)α 〈ui, v2〉2 +

2n∑
i≥3

(
n
n−1 − µ3

)2

( n
n−1 + µ3)α 〈ui, v3〉2 +

2n∑
i≥3

(
n
n−1 − µ4

)2

( n
n−1 + µ4)α 〈ui, v4〉2

= µ2−α
2 〈u2, v2〉2 + µ2−α

3 〈u2, v3〉2 + µ2−α
4 〈u2, v4〉2 + µ2−α

2 〈u1, v2〉2+(
n

n− 1

)2−α
(1− 〈u1, v1〉2 − 〈u2, v1〉2) +

(
n
n−1 − µ2

)2(
n
n−1 + µ2

)α (1− 〈u1, v2〉2 − 〈u2, v2〉2
)

+

(
n
n−1 − µ3

)2(
n
n−1 + µ3

)α (1− 〈u1, v3〉2 − 〈u2, v3〉2
)

+

(
n
n−1 − µ4

)2(
n
n−1 + µ4

)α (1− 〈u1, v4〉2 − 〈u2, v4〉2
)

Computing the scalar products gives: 〈u1, v1〉2 = [2(n−1)
√
n−1+2

√
n]2

4n[(n−1)2+n] = 1 +O(n−3),

〈u1, v2〉2 = 1
4n(n−1)(n−1+1/n)

(
2n− 2− 2 (n−1)

3
2√

n

)2
= o(n−2), 〈u1, v3〉2 = 0, 〈u1, v4〉2 = 0,

〈u2, v1〉2 = 0, 〈u2, v2〉2 = 0, 〈u2, v3〉2 =

(
1+
√

2x3√
n

)2

1+4x3(2n)−1/2+2x2
3

= 1 + O(n−3) and 〈u2, v4〉2 =(
1+
√

2x4√
n

)2

1+4x4(2n)−1/2+2x2
4

= O(n−3). Besides, ( n
n−1−µ2)2

( n
n−1 +µ2)α = 1

2αn2 + o(n−2), ( n
n−1−µ3)2

( n
n−1 +µ3)α = 1 + o(1) and

( n
n−1−µ4)2

( n
n−1 +µ4)α = 1

2αn2 + o(n−2).
Thus, gathering the above results, we obtain that:

D(U,Ub) =µ2−α
3 + 21−α

n2 + o(n−2)

=
( 2
n2

)2−α
+ 21−α

n2 + o(n−2).

�

Now let us consider what happens if an edge is taken away from U , this gives Ur. Let us
denote by K−1

n the complete graph of size n with edge between vertices 1 and 2 taken away.
Then, Ur = K−1

n ∪Kn.

Theorem 3. — The dissimilarity D(U,Ur) = 21−α

n2 + o(n−2).
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92 Some properties of a dissimilarity measure for labeled graphs

Proof. — The eigenvectors of Kn are similar to those found in Theorem 2, that is: λ1 =
0, λ2 = · · · = λn = n

n−1 , u1 = 1√
n

(1, . . . , 1), u∗2 = (1, −1
n−1 , . . . ,

−1
n−1), u∗2 = ( −1

n−1 , 1,
−1
n−1 , . . . ,

−1
n−1)

and u∗n = ( −1
n−1 , . . . ,

−1
n−1 , 1,

−1
n−1). Then,

L(K−n ) =

 1 0 CT

0 1
C An−2

n



with

CT =
(
−
√

(n− 2)(n− 1)−1
. . . −

√
(n− 2)(n− 1)−1

−
√

(n− 2)(n− 1)−1
. . . −

√
(n− 2)(n− 1)−1

)
.

We remark for L(K−1
n ) that 0 is the eigenvalue associated to the eigenvector

v1 = 1√
(n+ 1)(n− 2)

(
√
n− 2,

√
n− 2,

√
n− 1, . . . ,

√
n− 1),

that 1 is the eigenvalue for the eigenvector

v2 = 1√
2

(1,−1, 0, . . . , 0),

that n+1
n−1 is the eigenvalue for the eigenvector

v3 = 1√
2n+1
n−1

(1, 1, −2√
(n− 1)(n− 2)

, . . . ,
−2√

(n− 1)(n− 2)
)

and that n/(n− 1) for eigenvectors

v∗4 = (0, 0, 1, −1
n− 3 , . . . ,

−1
n− 3),

v∗5 = (0, 0, −1
n− 3 , 1,

−1
n− 3 , . . . ,

−1
n− 3),

...
v∗n = (0, 0, −1

n− 3 , . . . ,
−1
n− 3 , 1,

−1
n− 3).
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Then

d(Kn,K
−
n ) =

∑
1≤i,j≤n

(λi − µj)2

(λi + µj)α
〈ui, vj〉2

=
n∑
j=2

(λ1 − µj)2

(λ1 + µj)α
〈u1, vj〉2 +

n∑
i=2

(λi − µ1)2

(λi + µ1)α 〈ui, v1〉2 +
n∑
i=2

(λi − µ2)2

(λi + µ2)α 〈ui, v2〉2+

n∑
i=2

(λi − µ3)2

(λi + µ3)α 〈ui, v3〉2 +
∑

2≤i,4≤j

(λi − µj)2

(λi + µj)α
〈ui, vj〉2

=µ2−α
3 〈u1, v3〉2 +

(
n

n− 1

)2−α
(1− 〈u1, v1〉2) +

(
n
n−1 − 1

)2(
n
n−1 + 1

)α (1− 〈u1, v2〉2)+

(
n
n−1 −

n+1
n−1

)2(
n
n−1 + n+1

n−1

)α (1− 〈u1, v3〉2).

Computing the scalar products gives: 〈u1, v1〉2 = 1 + O(n−3), 〈u1, v2〉2 = 0 and finally

〈u1, v3〉2 = O(n−3). Besides, ( n
n−1−1)2

( n
n−1 +1)α = 1

2αn2 + o(n−2) and ( n
n−1−

n+1
n−1 )2

( n
n−1 +n+1

n−1 )α = 1
2αn2 + o(n−2)

so that:

(3) d(Kn,K
−
n ) = 21−α

n2 + o(n−2).

Finally,

d(U,Ur) =d(Kn ∪Kn,K
−1
n ∪Kn)

=d(Kn,K
−1
n ) + d(Kn,Kn) (by Lemma 1)

=21−α

n2 + o(n−2) (using Equation 3).(4)

�

3. Conclusion

Taken together, the three theorems of this article show that it is very different to add an
edge between two well connected graphs (complete graphs), and to delete one edge inside
one of the complete graphs if α is greater than 1. Indeed, adding an edge that way builds
a bridge and thus modifies the first eigencomponents which have the more impact on the
dissimilarity as was shown empirically in our first work [9] and here formally. This property
is interesting when one looks at graphs from the points of view of flows. If one keeps in mind
that for α = 0 we get the Bregman divergence, this means that α = 1 is the smallest value
to have our dissimilarity behave differently from Bregman divergence. A greater value of α
would enhance this difference. This is confirmed by Theorem 1 showing that the farthest
graph becomes the complete graph which is perfectly connected. Nevertheless, α = 2 is to
be avoided as in that case there is a continuity problem in expression (λ−µ)2

(λ+µ)2 when both
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eigenvalues tend to 0. Further work on dissimilarities between graphs would involve working
on unlabeled graphs, coloured graph and multigraphs.
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