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THE SUB-LEADING COEFFICIENT OF THE L-FUNCTION OF AN
ELLIPTIC CURVE

by

Christian Wuthrich

Abstract. — We show that there is a relation between the leading term at s = 1 of an L-
function of an elliptic curve defined over an number field and the term that follows.

Résumé. — On montre une relation entre le terme dominant de la série L en s = 1 d’une
courbe elliptique définie sur un corps de nombre et le terme suivant.

Let E be an elliptic curve defined over a number field K. We will assume that the L-function
L(E, s) admits an analytic continuation to s = 1 and that it satisfies the functional equation.
By modularity [1], we know that this holds when K = Q. The conjecture of Birch and
Swinnerton-Dyer predicts that the behaviour at s = 1 is linked to arithmetic information.
More precisely, if

L(E, s) = ar (s− 1)r + ar+1 (s− 1)r+1 + · · ·
is the Taylor expansion at s = 1 with ar 6= 0, then r should be the rank of the Mordell-
Weil group E(K) and the leading term ar is equal to a precise formula involving the Tate-
Shafarevich group of E. It seems to have passed unnoticed that the sub-leading coefficient
ar+1 is also determined by the following formula.

Theorem 1. — With the above assumption, we have the equality

(1) ar+1 =
(
[K : Q] · (γ + log(2π))− 1

2 log(N)− log |∆K |
)
· ar

where γ = 0.577216 . . . is Euler’s constant, N is the absolute norm of the conductor ideal of
E/K and ∆K is the absolute discriminant of K/Q.

In particular, the conjecture of Birch and Swinnerton-Dyer also predicts completely what the
sub-leading coefficient ar+1 should be. One consequence for K = Q is that for all curves with
conductor N > 125, and this is all but 404 isomorphism classes of curves, the sign of ar+1 is
the opposite of ar. Of course, it is believed that ar is positive for all E/Q.
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Proof. — Set f(s) = Bs · Γ(s)n with n = [K : Q] and B =
√
N · |∆K |/(2π)n. Then Λ(s) =

f(s) · L(E, s) is the completed L-function, which satisfies the functional equation Λ(s) =
(−1)r · Λ(2 − s), see [3]. For i ≡ r + 1 (mod 2) it follows that di

dsi Λ(s)
∣∣
s=1 = 0. Hence for

i = r + 1, we obtain that

(r + 1) · f ′(s) · d
r

dsr
L(E, s) + f(s) · d

r+1

dsr+1L(E, s)

is zero at s = 1. Therefore (r + 1) f ′(1) r! ar + f(1) (r + 1)! ar+1 = 0. It remains to note that
f(1) = B and f ′(1) = B ·

(
log(B) + n · Γ′(1)

)
together with Γ′(1) = −γ. �

Obviously a similar formula holds for the L-function of a modular form of weight 2 for Γ0(N).
More generally, for any L-function with a functional equation there is a relation between the
leading and the sub-leading coefficient of the Taylor expansion of the L-function at the central
point.
Sub-leading coefficients of Dirichlet L-functions have been investigated; for instance Colmez [2]
makes a conjecture, which is partially known. However these concern the much harder case
when s is not at the centre but the boundary of the critical strip of the L-function.
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