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1-D CUBIC NLS WITH SEVERAL DIRAC MASSES AS INITIAL DATA

AND CONSEQUENCES

VALERIA BANICA

Abstract. In this proceedings article we present a result on the 1-D cubic nonlinear Schrödinger
equation with a sum of Dirac masses as initial data. We shall give a sketch of the proof. By
using this result we show how to construct the evolution in time of a polygonal line through
the binormal flow. This equation is a geometric flow for curves in R3 and it is used as a
model for the evolution of a vortex filament in fluid mechanics. These results were obtained
in collaboration with Luis Vega in [4].

In the first section we shall present the 1-D cubic nonlinear Schrödinger equation (NLS)
result and sketch its proof in the second section. In the last section we state the binormal
flow result and describe the steps of its proof.

1. 1-D cubic NLS with several Dirac masses as initial data

The nonlinear Schrödinger equation with cubic power on R:

iψt + ψxx ± |ψ|2ψ = 0,

is known to be well-posed in Hs for s ≥ 0 ([15], [9]). If s < 0 the equation is ill-posed
as uniqueness is lost ([27]) and norm-inflation phenomena occur ([11]). We note that the

threshold obtained by the rescaled λψ(λ2t, λx) solutions is Ḣ−1/2. For s ≤ −1
2 norm inflating

phenomena appear with loss of regularity ([8], [24], [33]). For −1
2 < s < 0 a control of the

growth of Sobolev norms of Schwartz solutions has been obtained for the equation posed on
the line or the circle ([22], [25]). Besides the Sobolev spaces, well-posedness was proved to
hold for data with Fourier transform in Lp spaces, p < +∞ ([39], [17], [10]). Actually a
natural space to be considered would be of data with Fourier transform in L∞, as this space
F(L∞) is also invariant under the above scaling.

We shall focus now on the case of initial data of Dirac mass type. Note that the Dirac
mass is borderline for Ḣ−1/2 and that it belongs to F(L∞). For δ0 as initial data, the 1-D
cubic NLS is ill-posed: when looking for a (unique) solution, by using Galilean invariance,

one obtains ei log teix
2/4t/
√

4πit and we don’t recover the initial data ([27]). A natural change
to do is to consider the perturbed cubic 1DNLS

iψt + ψxx ±
(
|ψ|2 − 1

4πt

)
ψ = 0,

and get as an explicit solution eix
2/4t/
√

4πit = eit∆δ0(x). The problem is however ill-posed,

as it was proved in [2] that small smooth perturbations of the solution eix
2/4t/
√

4πit at time
t = 1 behave near t = 0 as ei log tf(x) for some regular function f . However, there is a natural
geometric way to decide what to choose as a solution after time t = 0: it is a solution that
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behaves near t = 0 as ei log |t|f(−x)e2i log |2x| ([3]).

We consider now distributions

u0 =
∑

k∈Z
αkδk.

Their Fourier transform on R writes

û0(ξ) =
∑

k∈Z
αke

−ikξ,

and in particular û0 is 2π−periodic. Imposing {αk} ∈ l2,s:

‖{αk}‖2l2,s :=
∑

k∈Z
(1 + |k|)2s|αk|2 <∞,

translates into û0 ∈ Hs(0, 2π) and in particular

{‖û0‖Hs((2πj,2π(j+1))}j∈Z ∈ l∞.

The NLS equation with subcritical nonlinearities |u|pu with p < 3 and such data was solved
in [24]. Our first result is the following.

Theorem 1.1 (Solutions of 1-D cubic NLS linked to several Dirac masses as initial data).
Let s > 1

2 , 0 < γ < 1 and {αk} ∈ l2,s. We consider the 1-D cubic NLS equation:

i∂tu+ ∆u±
(
|u|2 − M

2πt

)
u = 0,

with M =
∑

k∈Z |αk|2. There exists T > 0 and a unique solution on (0, T ) of the form

u(t, x) =
∑

k∈Z
e∓i

|αk|2
4π

log t(αk +Rk(t))e
it∆δk(x),

with

sup
0<t<T

t−γ‖{Rk(t)}‖l2,s + t ‖{∂tRk(t)}‖l2,s < C.

Moreover, considering as initial data a finite sum of N Dirac masses

u0 =
∑

k∈Z
αkδk,

with coefficients of equal modulus |αk| = a, and the equation renormalized with M = (N− 1
2)a2,

we have a unique solution on (−T, T )

u(t) = eit∆u0 ± ieit∆
∫ t

0
e−iτ∆

((
|u(τ)|2 − M

2πτ

)
u(τ)

)
dτ,

such that ̂e−it∆u(t) ∈ C1((−T, T ), Hs(0, 2π)) with

‖e−it∆u(t)− u(0)‖Hs
pF
≤ Ctγ , ∀t ∈ (−T, T ).

Moreover, if s ≥ 1 then the solution is global in time.
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2. Sketch of the proof

We denote N (u) = |u|2u. Plugging u(t) =
∑

k∈ZAk(t)e
it∆δk into the equation we get

∑

k∈Z
i∂tAk(t)e

it∆δk = ∓N (
∑

j∈Z
Aj(t)e

it∆δj)±
M

2πt
(
∑

k∈Z
Ak(t)e

it∆δk).

The family eit∆δk(x) = ei(x−k)2/4t/
√

4πit is an orthonormal family of L2(0, 4πt), so by taking
the scalar product of L2(0, 4πt) with eit∆δk we obtain

i∂tAk(t) = ∓
∫ 4πt

0
N (
∑

j∈Z
Aj(t)

ei
(x−j)2

4t√
4πit

)
−ei (x−k)

2

4t√
4πit

dx± M

2πt
Ak(t).

Note that {Aj} ∈ l2,s ⊂ l1 and we develop the cubic power to get the discrete system

i∂tAk(t) = ∓ 1

4πt

∑

k−j1+j2−j3=0

e−i
k2−j21+j22−j

3
3

4t Aj1(t)Aj2(t)Aj3(t)± M

2πt
Ak(t).

This system conserves the mass:

∂t
∑

k

|Ak(t)|2 = ∓ 1

4πt
=

∑

k−j1+j2−j3=0

e−i
k2−j21+j22−j

2
3

4t Aj1(t)Aj2(t)Aj3(t)Ak(t)

= ∓ 1

8πti


 ∑

k−j1+j2−j3=0

e−i
k2−j21+j22−j

2
3

4t Aj1(t)Aj2(t)Aj3(t)Ak(t)

−
∑

j3−j2+j1−k=0

e−i
j23−j

2
2+j21−k

2

4t Aj2(t)Aj1(t)Ak(t)Aj3(t)


 = 0.

We split the summation indices into the following two sets:

NRk = {(j1, j2, j3) ∈ Z3, k − j1 + j2 − j3 = 0, k2 − j2
1 + j2

2 − j2
3 6= 0},

Resk = {(j1, j2, j3) ∈ Z3, k − j1 + j2 − j3 = 0, k2 − j2
1 + j2

2 − j2
3 = 0}.

As we are in one dimension, the second set is simply

Resk = {(k, j, j), (j, j, k), j ∈ Z}.
Finally the system writes

i∂tAk(t) = ∓
∑

(j1,j2,j3)∈NRk

e−i
k2−j21+j22−j

3
3

4t

4πt
Aj1(t)Aj2(t)Aj3(t)

∓ Ak(t)

4πt
(2
∑

j

|Aj(t)|2 − |Ak(t)|2 − 2M).

As M =
∑

j |αj |2, finding a solution for t > 0 satisfying

lim
t→0
|Aj(t)| = |αj |,
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is equivalent to finding a solution for t > 0 satisfying also this limit, for the following also
mass-conserving system:

i∂tAk(t) = ∓
∑

(j1,j2,j3)∈NRk

e−i
k2−j21+j22−j

3
3

4t

4πt
Aj1(t)Aj2(t)Aj3(t)± 1

4πt
|Ak(t)|2Ak(t).

By doing a change of phase Ak(t) = ei
|αk|2
4π

log tÃk(t) we get as a system

i∂tÃk(t) = ∓fk(t)±
1

4πt
(|Ãk(t)|2 − |αk|2)Ãk(t),

where

fk(t) =
1

4πt

∑

(j1,j2,j3)∈NRk
e−i

k2−j21+j22−j
3
3

4t e−i
|αk|2−|αj1 |

2+|αj2 |
2−|αj3 |

2

4π
log tÃj1(t)Ãj2(t)Ãj3(t).

As a solution of this system satisfies

∂t|Ak(t)|2 = ∓2=(fk(t)Ãk(t)),

obtaining a solution for t > 0 with

lim
t→0
|Ãk(t)| = |αk|,

is equivalent to obtaining a solution for t > 0 also satisfying the limit conditions, for the
following system, that also enjoys the above mass evolution:

i∂tÃk(t) = ∓fk(t)−
1

2πt

∫ t

0
=(fk(τ)Ãk(τ))dτ Ãk(t).

Recall that we want to obtain the existence of Ak(t) = e∓i
|αk|2
4π

log t(αk +Rk(t)), with

{Rk} ∈ Xγ := {{fk} ∈ C1((0, T ); l2,s), ‖{fk}‖Xγ

:= sup
0<t<T

t−γ‖{fk(t)}‖l2,s + t ‖{∂tfk(t)}‖l2,s <∞}.

We prove this by a fixed point argument for the operator Φ : {Rk} → {Φk({Rj})} defined as

Φk({Rj})(t) := ∓i
∫ t

0
gk(τ)dτ − i

∫ t

0

∫ τ

0
=(gk(s)(αk +Rk(s)))ds (αk +Rk(τ))

dτ

4πτ
,

where

gk(t) =
1

4πt

∑

(j1,j2,j3)∈NRk
e−i

k2−j21+j22−j
2
3

4t e−i
|αk|2−|αj1 |

2+|αj2 |
2−|αj3 |

2

4π
log t

×(αj1 +Rj1(t))(αj2 +Rj2(t))(αj3 +Rj3(t)),

in a ball of Xγ of radius δ, chosen in terms of ‖{αj}‖l2,s , and T small with respect ‖{αj}‖l2,s
and γ.
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For getting bounds on the operator Φ we perform integrations by parts to get integrability
in time. We consider here for instance the free term:

Ik(t) := i

∫ t

0

∑

(j1,j2,j3)∈NRk

e−i
k2−j21+j22−j

2
3

4τ e−i
|αk|2−|αj1 |

2+|αj2 |
2−|αj3 |

2

4π
log tαj1αj2αj3

4πτ
dτ

= t
∑

(j1,j2,j3)∈NRk

e−i
k2−j21+j22−j

2
3

4t e−i
|αk|2−|αj1 |

2+|αj2 |
2−|αj3 |

2

4π
log tαj1αj2αj3

π(k2 − j2
1 + j2

2 − j2
3)

−
∫ t

0

∑

(j1,j2,j3)∈NRk

e−i
k2−j21+j22−j

2
3

4τ e−i
|αk|2−|αj1 |

2+|αj2 |
2−|αj3 |

2

4π
log ταj1αj2αj3

π(k2 − j2
1 + j2

2 − j2
3)

dτ.

On the non-resonant set 1 ≤ |k2 − j2
1 + j2

2 − j2
3 |, so

‖Ik(t)‖l2,s ≤ Ct‖{αj}‖3l2,s ,
where we used the following weighted Young discrete inequality:

‖{Mj} ? {Nj} ? {Pj}‖l2,s ≤ C‖{Mj}‖l2,s‖{Nj}‖l2,s‖{Pj}‖l2,s .
The other terms can be estimated similarly. Moreover, the regularity imposed on {αk} can
be lowered by taking in account in the discrete summations the decay |k2 − j2

1 + j2
2 − j2

3 |−1.
Finally, for s > 1 the extension in time is obtained by getting a control on the growth of
‖{αj +Rj(t)}‖L∞(0,T )l2,1 .

3. Evolution of polygonal lines through the binormal flow

A vortex filament in 3-D fluids appears when vorticity is large and concentrated in a thin
tube around a curve χ(t) in R3. A classical model for the dynamics of one vortex filament is
the binormal flow (BF), named also LIA from Local Induction Approximation or VFE from
Vortex Filament equation. It is a geometric flow of curves χ(t) in R3 described by

χt = χx ∧ χxx.
Here x stands for the arclength parameter of the curve χ(t). This was derived as formal
asymptotics by L. da Rios in 1906 in its PhD advised by Levi-Civita ([12]), by Arms and
Hama in 1965 ([1]), and also in Navier-Stokes matched asymptotics ([7], see also [31],[36],[35]).
The only rigorous result is [20]: with less hypothesis on the persistence of concentration of
vorticity, BF is derived rigorously, moreover for curves not necessarily smooth.

If one considers the filament function

ψ(t, x) = c(t, x)ei
∫ x
0 τ(t,s)ds,

it is easy to check that it satisfies the NLS equation

iψt + ψxx +
1

2

(
|ψ|2 −A(t)

)
ψ = 0,

where A(t) is in terms of the curvature and torsion (c, τ)(t, 0). This important remark has
been made by Hasimoto in 1972 and it has allowed the transfer of informations from NLS to
BF ([19]). The Hasimoto transform can be seen as an inverse of the Madelung transform that
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connects the Gross-Pitaevskii equation to Euler equation with quantum pressure. Actually
also here, the system satisfied by the curvature and torsion is a Euler-Korteweg one.

In order to avoid issues related to vanishing curvature, Bishop parallel frames ([5]) were
used as follows in [26]. Let (T, e1, e2) by another frame than the Frenet frame (T, n, b),
governed by 


T
e1

e2



x

=




0 α β
−α 0 0
−β 0 0






T
e1

e2


 .

If we denote N = e1 + ie2 and if T (t) is the tangent vector of a curve χ(t) solution of BF,
then one can compute

Tx = <(ψN), Nx = −ψT, Tt = =ψxN, Nt = −iψxT + i(|ψ|2 −A(t))N,

and verify that

ψ(t, x) = α(t, x) + iβ(t, x)

is a NLS solution with A(t) = α2(t, 0) + β2(t, 0). Such a frame can be obtained by a rotation

of the Frenet frame, N(t, x) = (n+ ib)(t, x)ei
∫ x
0 τ(t,s)ds.

Conversely, given a NLS solution ψ, (e0, e1, e2) an orthonormal basis of R3 and P a point
of R3, one might construct a solution of BF in the following way. First, (T,N)(t, x) can be
constructed by imposing (T,N)(t0, x0) = (e0, e1 + ie2) and the above evolutions laws. Then
χ(t, x) defined as

χ(t, x) = P +

∫ t

t0

(T ∧ Tx)(τ, x0)dτ +

∫ x

x0

T (t, s)ds,

is a solution of BF, as T solves the Schrödinger map Tt = T ∧Txx = (T ∧Tx)x. Summarizing,
this recipe can be used to construct solutions of BF starting from solutions of NLS. However,
recovering the geometric properties of the solution of BF is not obvious at all.

Existence results for BF for regular curves have been obtained by various methods [12],
[19], [32], [38]. Recently the less regular case of currents has been considered in a weak for-
mulation of the equation [21].

We shall focus now on curves developing a corner in finite time. We start with some facts
on the self-similar solutions of BF, that is solutions of the type

χ(t, x) =
√
tG

(
x√
t

)
.

We recall that since the 70’s the BF and its self-similar solutions were considered in works
on vortex dynamics in superfluids [37, 6, 30], in ferromagnetism [29, 28], in aortic heart valve
leaflet miocardic modeling [34], [40].

In [29] it was shown that self-similar solutions form a family {χa}a∈R+∗ caracterized by

the explicit curvature and torsion (ca, τa)(t, x) =
(
a√
t
, x2t

)
. Numerical computations on this

formation of a singularity in finite time were given in [6]. In [18] this was proved rigorously.
More precisely, it was shown that a corner appear at time t = 0:

∣∣χa(t, x)− x(A+
a I[0,∞)(x) +A−a I(−∞,0](x))

∣∣ ≤ 2a
√
t,
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with A±a ∈ S2 distincts, non-opposite and

sin
( ̂A+

a ,−A−a )

2
= e−a

2/2.

In particular, any corner can be obtained in finite time from a rotated and translated self-
similar solution.

The phenomenon of the formation and instantaneous disappearance of one corner has been
well understood through the self-similar solutions, and through the study in [3] of the evolution
of non-closed curves with one corner and curvature in weighted space. On the other hand, a
planar regular polygon with M sides is expected to evolve through the binormal flow to skew
polygons with Mq sides at times of type p/q (numerical simulations [16], [21] and integration
of the Frenet frame at rational times [13]).

In the present paper we place ourselves in the framework of initial data being polygonal
lines. The results presented below are an important step forward to fill the gap between the
case of one corner and the much more delicate issue of the polygon.

Theorem 3.1 (Evolution of polygonal lines through the binormal flow). Let χ0 be an ar-
clength parametrized polygonal line with corners located at x ∈ Z, with the sequence of angles
θn ∈ (0, π) such that the sequence defined by

√
− 2

π
log (sin (θn/2)),

belongs to l2,3. Then there exists χ(t), smooth solution of the binormal flow on R∗ and solution
in the weak sense on R, with

|χ(t, x)− χ0(x)| ≤ C
√
t, ∀x ∈ R, |t| ≤ 1.

Remark 3.2. Under suitable conditions on the initial data χ0, we show that the evolution
can have an intermittent behaviour: at times tp,q = 1

2π
p
q the curvature of χ(t) displays con-

centrations near the locations x such that x ∈ 1
qZ, and χ(t) is almost a straight segment in

between. We prove this result by displaying a Talbot effect for some solutions of Theorem 1.1.

The main steps of the proof of Theorem 3.1 are the following:

• we define αk = α̃ke
iγk , with γk designed in terms of the curvature angles and torsion

angles of the polygonal line in some specific way that arises at the end of the proof,
• via Theorem 1.1 get a NLS solution u(t), smooth for t > 0,
• consider the BF solution χ(t) obtained from u(t),
• get a trace χ(0) for χ(t) as t goes to zero; the goal is now to show that it is χ0,

• for x ∈ R obtain a limit as t goes to zero for T (t, x), with a self-similar decay
√
t

d(x,Z)

for x /∈ Z,
• prove that the vectors T (0, x) are constant for k < x < k + 1, so χ(0) is a polygonal

line,

• recover a self-similar BF profile χ|αk| on self-similar paths: for instance ∃tn n→∞→ 0, ∃Θk

rotation s.t.

lim
n→∞

T (tn, k + x
√
tn) = Θk(T|αk|(x)),

• recover the curvature angles of χ0 by the following succesive links, for |x| and n large
enough:
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T (0, k±) T (0, k + x
√
tn) T (tn, k + x

√
tn) ΘkA

±
|αk|,

• recover the torsion angles of χ0 by using also a similar analysis for modulated normal

vectors Ñ(t, x) = e
i
∑
j |αj |2 log x−j√

t N(t, x),
• recover χ0 after a translation and a rotation,
• extend to negative time by using the time reversibility of BF so by solving BF for pos-

itive times with data χ0(−s), which is also a polygonal line that enters the framework
above.
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