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SELF-SIMILAR SOLUTIONS AND CRITICAL SPACES FOR
THE MODIFIED KORTEWEG-DE VRIES EQUATION

RAPHAEL COTE

ABSTRACT. We present some results obtained in collaboration with Simao Correia (University
of Lisbon) and Luis Vega (University of Bilbao), regarding the understanding of self-similar
solutions for the modified Korteweg-de Vries equation (mKdV). We obtain the description
of self-similar solutions in Fourier space, and we also prove a local well-posedness result in
a critical space where self-similar solutions live. As a consequence, we can study the flow
of (mKdV) around self-similar solutions: in particular, we give an asymptotic description of
small solutions as t — +00 and construct solutions with a prescribed blow up behavior as
t—0.

1. INTRODUCTION

1.1. Motivation. In this review paper, we give an account of our work in collaboration with
Simao Correia and Luis Vega [3, 4]. We are interested in the dynamics near self-similar
solutions of the modified Korteweg-de Vries equation:

(mKdv) du+d3 u+edw)=0, u:R,xR,—>R.

XXX

The signum ¢ € {£1} indicates whether the equation is focusing or defocusing. In our frame-
work, ¢ will play no major role.
The (mKdV) equation enjoys a natural scaling: if u is a solution then

u,(t,x):= AV3u(ae, AY3x)

is also a solution to (mKdV). As a consequence, the self-similar solutions, which preserve
their shape under scaling, are of special interest: they are solutions of the form

S(t,x)=t"Pv(tc3x) fort>0,x €R,

where V : R — R is the self-similar profile, so that S, = S. After an integration we see that
the profile V solves a Painlevé II-type equation

1) vV’ = %yV—sV3 +a.

for some a € R.

Self-similar solutions play an important role for the (mKdV) flow: they exhibit an explicit
blow up behavior, and they appear in the description of solutions for large time. Even for
small and smooth initial data, solutions display a modified scattering where self-similar so-
lutions naturally occur: we refer to the works by Hayashi and Naumkin [14, 13], which were
revisited by Germain, Pusateri and Rousset [8] and Harrop-Griffiths [11].

2010 Mathematics Subject Classification. 35Q53 (primary), 35C06, 45G05, 35B40, 34E10.
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Another example where self-similar solutions of the (mKdV) equation are relevant is in the
long time asymptotics of the so-called Intermediate Long Wave (ILW) equation. This equation
occurs in the propagation of waves in a one-dimensional stratified fluid in two limiting cases.
In the shallow water limit, the propagation reduces to the KdV equation, while in the deep
water limit, it reduces to the so-called Benjamin-Ono equation. In a recent work, Bernal-
Vilchis and Naumkin [2] study the large-time behavior of small solutions of the (modified)
ILW, and they prove that in the so-called self-similar region the solutions tend at infinity to
a self-similar solution of (mKdV).

Self-similar solutions and the (mKdV) flow are also relevant as a model for the behavior of
vortex filament in fluid dynamics. Goldstein and Petrich [9] proposed the following geomet-
ric flow for the description of the evolution of the boundary of a vortex patch in the plane
under the Euler equations:

0z = =0z + 0,2(9,2)%, 18212 =1,

where 2 = z(t,s) is complex valued and parametrize by its arc length s a plane curve which
evolves in time t. A direct computation shows that its curvature solves the focusing (mKdV)
(with ¢ = 1), and self-similar solutions with a profile V solution to (1) correspond to log-
arithmic spirals making a corner (of angle mw — 2a): this kind of spirals are observed in a
number of fluid dynamics phenomena. We refer to [19] and the references therein for more
details. Let us also mention that we were also motivated by works by Banica and Vega for
related questions, modeled by nonlinear Schrédinger type equations, see [1] for example.

1.2. Description in Fourier space. In the defocusing case ¢ = —1, equation (1) actually
corresponds to the Painlevé II equation, which has its own interest and was intensively stud-
ied. Very precise asymptotics where obtained for its solutions. For example (see [12]), in the
case ¢ = —1, a = 0, for any k € R, there exist a unique self similar solution V,. defined for
large enough y > 1 such that

__4 3/
(2) VK(y)=KAi(y)+O(y‘”4e Sﬁygz) as y — +00,

where Ai is the Airy function

Ai(y):=%J cos(§3+y§)d§.
0

Also, any solution to (1) which tends to 0 as y — +00 is one of the V,. If furthermore
Kk € (—1,1), V.. is defined on R and

2 3 —
Iy 2= Zplnlyl+6)+0(Iy*Inlyl) a5 y——oo

1 1 1
where pzﬁln(m) and 9:—3p(1n2+Zln3)+lnf(ip)+gsgnk—§.

25
@ wo)=gme(3

(" denotes the Gamma function). Recall for comparison the asymptotics of the Airy function:

. 1 __2 .3/2 _ __2 ,3/2

M) = e 50 oy ot Y too,
1 2 T

Ai(y) = cos 3/2——)+O —5/41n as — —00,

)=z s (52 =5 ) +0 (v mlyl) y
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One can actually have a full asymptotic expansion (at £00) for the functions above.

If |k| = 1, V,. is still global but is no longer oscillatory as y — —oo (it is equivalent to 4/|y|/2
and has a full asymptotic expansion); when |k| > 1, V is no longer defined on R (it has an
infinite number of poles).

We refer to the works by Hastings and McLeod [12] and Deift and Zhou [5] and the reference
therein for the above results, and more (see also [6] and the book [7]).

In the work of Perelman and Vega [19], related results were obtained in the focusing case
¢ =1, using only ODE techniques. ((1) is scaled differently compared to the presentation in
those works, this accounts for the difference in the constants).

However, little is known on the Fourier side, and this ought to be relevant when studying the
(mKdV) flow, because dispersive properties are better captured in Fourier space. Our first
result give the leading terms of the Fourier transform of a self-similar profile V.

Theorem 1. Given c, a € R small enough, there exists unique a € R, A, B € C and a self-similar
solution S(t,x) = t Y3V (t7/3x) to (mKdV), where V satisfies

ial _:8¢3
@ forg>2, HETE) = Akl 4 g L
= 4, - gs )

s for [E1< 1, e EU(E) =0+ 2% sgn(8) +(9),

where z € WH°(R), 2(0) = 0 and for any k < 4/7, |z(E)|+|E2"(E)| = O(|E] %) as |E] — +oo.
The constant a and B are related to A by
6) Q=— AR, B=——S _am3y

4r 167+/2
Finally, the map (c, a) — Ais one-to-one onto an adequate neighbourhood of 0 € C, bi-Lipschitz,
and maps (0, 0) to 0.

First observe that the knowledge of V for positive frequencies & > 0 gives a complete de-

scription: for & < 0, V(&) = V(—¢&) and 2(&) = 2(—£).
In particular, V is continuous if and only if a = 0, and otherwise has a jump discontinuity of

.31 . . .
size —a at & = 0. Due to the control on the remainder z, the self-similar solution S generated
T

by V satisfies
7 S(t) —cdy+av.p.(1/x) ast—0", where c= J V(y)dy,

(and the mean c of V is well defined).

In the description of V, the term in B plays a role only in the expansion of the derivative:
even though it decays, its high oscillations mean that it is also a leading order term for the
derivative V', with decay 1/¢ like the term in A.

Let us also notice that the parameters A, B and a may vary, but the phase —8&3/9 in the term
in B is completely constrained. A is related to c, a by an integral expression which is explicit
but not very tractable (see (20) and (21)): it would be nice to have a more computable link.

As a consequence of the explicit Fourier expansion, we are able to link the profile constructed
in Theorem 3, with the V,. defined in (2).
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Proposition 2. Fix ¢ = —1 and a = 0. Then the solution V constructed in Theorem 3 coincides
with V,. defined in (2), where A and « are related via the relation

1—x2

€)) IA? = Zln( ), and ReA and k have same sign.

1.3. Well posedness of (mKdV) in a critical space. Now that self similar solutions are well
understood, we can start our study of the flow of (mKdV) around them.
We first need a few notations. We denote by G(t) the linear KdV group:

G(0)v(E) = eE'5(),

for any v € S’(R). Given a (space-time) function u, we denote i the function defined by

©) (t, £) = G(—u(t)(E) = e €'t &).

For v € 8'(R) such that ¥ € L NH?', and for t > 0, we define the norm (depending on t):

(10) IVllece) := 1G(=0)II ooy + 0113 G(—E)V Il 20,4 00))-

As before, the knowledge of frequencies & > 0 is enough to completely determine a solution
u(t), and in the above definition, the purpose of considering L?((0, +00)) is to allow a jump
at 0, as is exhibited in the self similar profiles V of Theorem 1 when a # 0.

Let us emphasize that the &(t) norm is scaling invariant, in the following sense:

lun (Ollsey = lu(AOs(re)-

In particular, self-similar solution have constant &(t) norm for t € (0, +00).
We define the functional space

&(1):={ueS'R): |lullgqy < +o0},
and for I C (0,+00),
EM)={u:1->8R):ue b, %,((0,+00))), ZATRS L°°(I,L3((0,+00)))},

endowed with the norm sup,; || - [l ;) (6, means continuous and bounded).
We can now state our results. The first is a local well-posedness result in the space &(I), for
initial data u; € &(1) at time t = 1 (in this setting, initial data at time O make little sense).

Theorem 3. Let u; € §(1). Then there exist T > 1 and a solution u € &([1/T, T]) to (mKdV)
such that u(1) = u;.

Furthermore, one has forward uniqueness. More precisely, let 0 < t; < t, and u and v be two
solutions to (mKdV) such that u,v € &([ty,t5]). If u(t;) = v(ty), then for all t € [tq,t5],

u(t) =v(t).

For small data in &(1), the solution is actually defined for large times, and one can describe
the asymptotic behavior. This is the content of our second result.

Theorem 4. There exists 6 > 0 small enough such that the following holds.
If lugllgry < O, the corresponding solution satisfies u € &([1,+00)). Furthermore, let S be the
self-similar solution such that

51,01 =1,(0") ecC.
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Then |Ju(t) —S(t)||lj0 S ||U1||g(1)t_5/67 and there exists a profile Uy, € 6,(R \ {0}, C), with
[Uoo (01 =1im,,_, o IS(1, p)| is well-defined, and

9]
N —1/12”“1“3(1)-

(p3t)

As a consequence, we infer the asymptotic for large times in the physical space.

w(t,p)— Uoo(p)exp(#woo(pnzlogt)

Corollary 5. We use the notations of Theorem 4, and let

Y= {\/—X/Bt, if x <0,

0, if x> 0.
One has, forall t 2 1 and x € R,
9]

£1/3 <x/t1/3>3/10.

In proving Theorem 3 and 4, we use a framework derived from the work of Hayashi and
Naumkin [13], improved so that only critically invariant quantities are involved. In partic-
ular, we use very similar multiplier identities and vector field estimates. An important new
difficulty though is that to perform such energy-type inequalities, the precise algebraic struc-
ture of the problem has to be respected (for example, when performing integration by parts):
the method truly requires nonlinear solutions. It thus seems that one cannot use a perturba-
tive argument like fixed point. On the other hand, the rigorous derivation of such inequalities
at our level of regularity is quite nontrivial.

This problem does not appear in [13] as the authors work in a (weighted) subspace of H',
for which a nice local (and global) well-posedness result hold ((mKdV) is actually well-
posed in H® for s = 1/4, see [16]). However, no nontrivial self-similar solution belongs to
these spaces (even without jump). Let us also mention the work by Griinrock and Vega [10],
where local well-posedness is proved in

11) <

1 X i
ut, )~ (5 ) Uoo (y)exp(gwoo(yn%ogt)

= {ues®): || (pfal, <+oo) forl<r<z s> %— %
This framework is not suitable for our purpose: self-similar belong to H' (1) but not better. When
finding a remedy for this, due to the jump at frequency O for self-similar solutions (5), we
must take extra care on the choice of the functional setting. In particular, smooth functions
are not dense in & spaces (and they can not approximate self-similar solutions).
In a nutshell, we face antagonist problems coming low and high frequencies, and we were
fortunate enough to find an amenable approximate problem which take care of both simul-
taneously, and for which it is possible to derive uniform estimates in the spirit of [13]: we
will give further details in Section 3.
At this point, we pass to the limit in n (Section 5), and a delicate but standard compactness
argument allow to prove the existence part of Theorem 3 and Theorem 4. The description
for large time (the second part of Theorem 4 and Corollary 5) is then a byproduct of the
above analysis.
For the forward uniqueness, we look at the L2 norm of the difference of two solutions. Of
course, this does not make sense a priori, we don’t have enough integrability., The point is
to use the pointwise decay for functions in &(t), for x > 1 (a taste of the decay of the Airy
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function on the right). For x < —1, the decay is too slow (like the Airy function, again), and
we use a cut-off function to get rid of it. When computing the variation in (forward) time of
the L? norm, this cut-off make a wild boundary term appear; but fortunately it comes with
the right sign. This is related to a monotonicity property first observed and used by Kato
[15], and a key feature in the study of the dynamics of solitons by Martel and Merle [18].
Backward uniqueness in Theorem 3 is open, although we would be surprised if it weren’t
the case. One can recover it under some extra decay information, namely that u; € L2(R)
(of course this is no longer a critical space), see [3, Proposition 4].

1.4. A few further consequences. The stability of self-similar solutions at blow-up time
t = 0, or more generally the behavior of solutions with initial data in £(1) near t =0 is a
challenging question. In this direction, let us state two results.

As a byproduct of our analysis, we can construct solutions to (mKdV) with a given self-similar
blow up profile as t — 0%, as shown below.

Proposition 6 (Blow-up solutions with a given profile). For § sufficiently small, given g, €
&(1) with ||goll (1) < 6, there exists a solution u € £((0, +00)) of (mKdV) such that

(12) Ve>o0, e 3u(t, t1/3x)—§5(x)HH_1(R) < 518,

In fact, even the description of the effects of small and smooth perturbations of self-similar
solutions for small time is not trivial. For example, consider the toy problem of the linearized
equation
3V + Opyyv + 0, (K*v) = 0.

near the fundamental solution K(t,x) = t Y3 Ai(t"/3x) of the linear Korteweg-de Vries
equation (which is, in some sense, the self-similar solution to the linear problem). The most
natural move is to use the estimates of Kenig, Ponce and Vega [17], which allows to recover
the loss of a derivative:

Wllzeor2 S 1Oz + [K>Vlly2.
Now one can essentially only use Holder estimate:

I3z < IKIZ, oIVl
but due to the slow decay for x < —1, K(t) ¢ Li for any t, and the argument can not be
closed.

As a first step, we however prove a stability result of self-similar solutions at blow-up time,
for low frequency perturbations. Given a > 0 and a sequence (ai)rey C R* satisfying

ag,a; =1, andforallk=0, a; < adsi,
let us define the norm for the remainder:

1/2
(13) IVl = (SUPakllafVIIfz) :

k=0

Then we have:

Proposition 7 (Stability of the self-similar blow-up under £ ,-perturbations). There exists
0 > 0 sufficiently small such that, if w; € &, and S is a self-similar solution with

w1113, +allS(DIIZ, <6,
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then the solution u of (mKdV) with initial data u; = S(1) + w; is defined on (0, 1] and

sup ||u(t)—S(t)||éza < 26.
te(0,1)

Obviously, we shrank considerably the critical space by taking smooth perturbations of self-
similar solutions, but the above result still shows some kind of stability of self-similar blow
up; observe in particular that the blow up time is not affected by the perturbation.

In what follows, we will give some insight of the main steps and of the main ideas of the
proofs of Theorems 1, 3 and 4. Proposition 2, Corollary 5, Proposition 6 and Proposition 7
follow easily from the analysis developed for the theorems: we will not give further details
on these matters and rather refer directly to [3, 4].

2. OUTLINE OF THE PROOF OF THEOREM 1

We took a truly PDE perspective to prove Theorem 1. Although one could probably proceed
using directly the asymptotics of self-similar solutions and performing adequate stationary
phase estimates, we believe that PDE techniques would be useful when considering per-
turbation of self-similar solutions under the (mKdV) flow. Another reason is that the full
asymptotic description is only known for the Painlevé II equation (with ¢ = —1), and we
are motivated by vortex filament dynamics, which is related to the focusing ¢ = 1 (mKdV)
equation.

In Fourier space, equation (1) takes the form
—E?’ =&V —em + i(15 —o-
3 o o0

(The choice of the nonlinearity |V|?V is by pure convenience: its allows for complex valued V,
with no extra cost on the computations). Denote v(§) = e_i§3V(§ ). Then

e _ s 3i
V' = e € (V= 3i827) = —3ige i [V|2V + ﬁa(sgzo.

—

If we integrate, and write |V|2V in integral form, we see that we are looking for a fixed point
3 3ie °

(14) v=¥(v), with ¥(WV)(&)=c+—a—— I(v)(n)dn for & >0,
27 4n2 |,

(and ¥(v)(&) =¥ (v)(—&) for £ < 0) and I(v) =I(v,v,v), where [ is the trilinear operator:

(15) 1(f, g, h)(E) = e f f ) £ (1) g (o)h(—n3)dn dn,.
N1+n2+n3=¢&

We will consider our fixed point to be of the form
v=W+zg,

where W is our ansatz and z is small in some adequate functional space.
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2.1. Choosing a correct ansatz. To find a good ansatz W, we proceed by iteration, in a
way quite analogous to the Picard scheme. First we considered W(1), because constants
for v correspond to the Airy function for V, which is a solution to the linear part

v 1 :

Al" = 3 y Al
of the Painlevé equation (1). In fact, the leading term of (1) presents slow oscillations, of
the form e'@¢l for large & (this can be seen by computing the leading term of I(1).
Then we compute the leading term of W(e!?™I€]): at least formally and for a correct choice
of a, it is e!®™ & jtself!
The computations essentially rely on stationary phase type arguments. One of the main dif-
ficulties in completing this program is to obtain a correct estimation of the remainder terms.
In the integrals involved in I, we see that the phases are quadratic (or cubic), which naturally
leads to stationary phase estimates. This means a rather slow decay, and also the need to de-
velop efficient bounds on the errors on the stationary phase. This should be done preferably
in L°° based spaces: indeed, we have pointwise estimates on the main order terms, and the
problem is critical in some sense (the ansatz has no decay at infinity for example), so that
we can not afford to lose information.
This is in sharp contrast with the analogous problem for the nonlinear Schrodinger equation:
the phases appearing in the integrals in that case are linear, thus are never stationary, and
the analysis is much simpler.
We mainly use the following elementary lemma to bound the errors:

Lemma 8. For any & # 0, and function g € WH*°(R),

(16)

/
J8“%MMn— T im0 g |  8lloo , 18" loo
] HE

Furthermore, if there exists R > 0 such that suppg C [—&R, ER], then for some C = C(R),

iEn2 T i%gon In
Jd“gmMn—\Ef”g@%m) <l

<SC—lg Ml oo
€]

Lemma 8 is very thrifty regarding the number of derivatives it needs, but it still requires one.

Now, when we consider the derivatives J;1 (el*I€h) we see another term at leading order:

(17)

—i8&3/9

£3
This second term can not be avoided: it contributes O(|&|™!) to the derivative, even if it has
high decay (it is highly oscillating). Also, it requires that we do a distinct analysis for low
and high frequencies. Fortunately, the introduction of this second term in the ansatz does

not lead to a different asymptotic development for ¥(S) and we are able to complete the
proof with the two terms ansatz given by

: e
631a1n|§|

. . —i8g3/9
(18) VE>0, W(E):= y(&)elnll (A+Be2“11nl€leT)’

with constants A,B € C and a € R to be chosen.
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After all these computations are performed (with careful control on the error), one needs to
adjust the constants A, B, a to get a consistent ansatz indeed. For this, we match the asymp-
totic of (W) at 0 and oo: this gives the condition (6). Hence the only remaining freedom
in the ansatz W is now A, and we denote it W,. These (lenghty) computations can be sum-
marized in the following statement on the derivative of W(W,).

Proposition 9. Let v € (6/7,1). One has
3
(19) VEER, —ﬁI(WA)(g) ~w/(&)| $ min(1, |E[2772).

Taking care of the constants is more delicate, because the fixed point is of the form W, + z:
although the small remainder z will not affect the oscillating terms, it does affect the con-
stants ¢ and a, and so the function ¥ =¥, ,: see (14), we now need to make the dependence
explicit.

In other words, given ¢, a € R, our goal is to find A € C and a function z such that

U, (Wy+2) =W, +z.
Matching the constants in the asymptotic for W, + z and for ¥, ,(W, + z) yields

3
cr Lo L(31195(A,z) —A)=0 where
21 472

0 eialnl'r]l
(I(WA +2)(n)— nlAIZAm—l) dm.

Taking real and imaginary part in the above relation, we are led to solve the system

1
(20) H(A,z2) = J I(Wy +2)(m)dn + f
0

1

3 2
21 c =—£ReA——81mI(A,z) and 0L=—E ImA+ iReﬂ(A,z),
4m2 3 27
(and \IIC,OL(WA + Z) = WA + Z).
2.2. Finding the fixed point. First, we assume A € C is given, and we construct a fixed
point for the function
(22) Tyt 2 Ueiaz),aaz)(Wa+2)— W,y
where ¥, , is defined in (14) and c(4,z) and a(A, z) are defined by (21).
We work in weighted W% -type spaces: define the ZX norm by
(23)
121126 := 12(E)(L + 1EI ooy + 112/ (1 + 1EIFF D oo 0,400) + 12'(1 + [E[F D] oo (—00,0)-
The key point are multilinear estimates.
Lemma 10. Fix k € (%, ;) Let z,w,uc ZX and A€ C, |A| < 1. Then
(1) (Linear estimate)
1(, S, SA)(E)] S |AP]|2| 2« min{1, |£] 7}
(2) (Quadratic estimate)
1(S 4,2, w)(E)| S |Alllz]| zellwll 2 min{1, [}
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(3) (Cubic estimate)

LGz, w, )(E S Nzl ze Wl zelull 7 min{1, |E] 7).

The proofs of these estimates are actually a byproduct of the computations performed in de-
termining the leading term in the ansatz S,. Also, I is not symmetric, but has weaker form of
symmetry, and the above estimates are enough for our purposes: they allow to show that the
map (A,z) — (c(4,2), a4, 2)) is locally Lipschitz (essentially, it is cubic). As a consequence,
a standard argument yields a fixed point for W,, as stated below.

Proposition 11. For A € C, |A| < &, sufficiently small, the map ¥, admits a (unique) fixed
point which we denote z, € Z¥, and such that

< 3lA|.
L>(ne(0,1))

llzallz« +

N
A (c(A, ) + —a(A, zA)) !
27

(The second term on the left hand side is required to close the fixed point argument, we do
need a better control on the low frequencies than what is provided by the Z* norm).

Second, we prove that the map A — (c(A, 24), a(A, 24)) is bijective locally around O (heuristi-
cally, it is because .#(A, z) is cubic in A, z). Given ¢ and a, its inverse provides the amplitude A
to define the ansatz, and thus desired self-similar profile.

The key point for this is to get a Lipschitz continuity of the the function Z(4, z), and more
precisely, the statement below:

Lemma 12. Fix k € (%, ‘—;) For any €,6 > 0 sufficiently small, the following holds true. Let
A1,A, € C with |Aq],|A,] < €, and z,w € Z¥ such that ||z|| s, |||« < 3¢ then

(24) |.#(A1,2) — F(Ay, w)| < Ce*(JA; — Ayl + ||z — W 41),
<

(25) ll24, — 24, llz1-5 < C(8)€*|A; — Ay,

where T is as in (20) and C(&) only depends on 6.

When computing the difference to prove the above result, one sees that there is a logarithmic
loss In |&[: it us due to the oscillating phase in e!®™™/¢! in view of the expression of a in terms
of A (luckily, the phase in the highly oscillating term e 819 does not depend on A, this is
crucial!). This loss can be compensated by decreasing slightly the parameter k to absorb the
log loss — this is the purpose of introducing & > 0. Then we recover Lipschitz continuity for
the maps we are interested in.

This 6 loss is not problematic, because we are now only interested in the finite dimensional
map

A (c(A 24), a(A, 24)).

With Lemma 12 in hand, one easily sees that this maps is a Lipschitz perturbation (with
Lipschitz constant O(|A|?)) of an invertible R-linear map C — R?, and so is invertible near
A= 0. This concludes the proof of Theorem 1.
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Exp. n®IV— Self-similar solutions and critical spaces for the modified Korteweg-de Vries equation

3. OUTLINE OF THE PROOF OF THEOREM 3 AND 4

If one takes the Fourier transform (in space) of (mKdV), we see that this equation writes

26) 8,(t, ) = —#N[u](a £),

where the nonlinearity is
27)

NTul(t, &) = ig? f f e PE A== (¢t £y Vit Eo)(t, Ens)dmydn,.
Mmt+ny+ns=1

3.1. The leading term in the nonlinearity. An important computation is a stationary phase
lemma for ATu].

Lemma 13 (Asymptotics of the nonlinearity on the Fourier side). Let u € &(I). One has the
following asymptotic development for N'{u]: forall t €I and & > 0,

3 1 .3
i~ 2~ _ -~ _-8itp°/9:3
(l|u(r, OPir,p) - —=e 1 (t,g/S))+R[u](r,5)

p
where the remainder R satisfies the bound

8 A= 5

_ P,
= (£3t)5/6 (£3¢)1/*

Similar statements may be found in [13, Lemma 2.4] and [8]. The specificity of our result is
that we have limited spatial decay (we emphasize that we work in a critical space), and so
computations and the estimations of the errors have to be performed very carefully, with as
few integration by parts as possible.

In the same spirit, we have pointwise decay estimates, which somehow transcribe the decay
of the Airy function.

(29) IR[u](t,&)

Lemma 14 (Decay estimates). Let I C (0,+00) be a time interval, and u € 6(I,S’) such that
llull gy < +00. Then there hold u € 6€(I, L2 (R)) and more precisely, for t € I and x € R, one
has

1
(30) lu(t, x)| S lu(®)llsce),
t1/3<|x|/t1/3>1/4
1 1/4
(1) |9cu(t, x)| S m<|x|/tl/3> ()l e,
. 1
(32) and if x = 13, |u(t,x)| < Wﬂu(f)ug(r)-

3.2. The approximate problem. This approximate problem is actually a variant of the
Friedrichs scheme where we filter out high frequency via a cut-off function y,, in Fourier
space. We solve this approximate problem using a fixed point argument: the cut-off takes
care of the lack of decay for large frequency, but again, smooth functions are not dense in
the space X,, where the fixed point is found (X, is a version of & where high frequencies are
tamed). Finally, in order to obtain uniform estimates, it turns out that, due to the absence
of decay for large frequencies of self-similar solutions, boundary terms cannot be neglected
unless the cut-off function y,, is chosen in a very particular way.
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Let us now be more specific. One can convince oneself that there exists a sequence of even
decreasing functions (y,),ey € S(R) such that

e forallneN,0< y, <1, xi/z € S(R),

o 1a()=1for [g] <n.

o sup|E(x /%) (&) > 0asn— +oo.
£eR

(The third condition is most delicate). We consider the approximate problem

{atu+8xxxu+l'[n3x(u3) =0, —

IT,-mKd I u:= y,u.
( n V) u(l):Hnu1, n Xn

where u; € &(1) is given. Define the norm

(33) lulx, o 1= 160z Mz + |0 @(=00u) ;2

L2((0,400))
and the space

X () :={ue6U,SR): Ty, € €, 6,((0,+0))), d,lix, " /* € €(I,L*((0,+00)))}.
We emphasize that functions in X,(I) are allowed to have a Fourier transform with a jump
at 0, in particular, they are not Schwartz class. Observe that if u € &(1), then

”Hnullan(l) < ||U1||g(1)-
The first step is the following existence result for the approximate problem.

Proposition 15. Given any u; € &(1), there exists T_, < 1, T, , > 1 and a unique u, €
X,((T_ p, Ty ) maximal solution of (I1,-mKdV). Moreover; if T, , < 00, then

lim ||u(t)||Xn(t) = +0Q.
=T, 4

(A similar statement holds at T_ ;). In particular; u, € &((T_ , T4 ;).

This is done by a standard fixed point argument. Then we need to show some uniform bounds
on u,. This is done by considering the multiplier operator

— N 3it . . o 3t
Tu(t, &) = i8:4(t, &) — 73tu(t,p) = jeitP’ (apu— Eﬁtu) .

It corresponds to the formal dilation operator

X
X+ StJ o,dx’,

—0Q

which was already used by Hayashi and Naumkin (but in a setting where its formulation in
physical space was well defined). The operator 7 is very convenient because

e it enjoys nice commutation relation with the linear KdV operator &; + 9,

e it interacts well with the nonlinearity of (mKdV), (because it is “first order”).

e Tu relates nicely to J:u.
We furthermore observed that Z behaves well with the approximate problem (II,,-mKdV)
too, provided that the cut-off y, is chosen as above, with errors term which can be controlled.
As a consequence, we obtain uniform bounds on Zu,, related quantities. This is summarized
below.
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Lemma 16 (H'! bound for (I1,,-mKdV)). There exist k > 0 such that the following holds. Given
u; € (1), the corresponding solution u, of (I1,-mKdV) is defined on [T_ ,, T, ,] and satisfies

Tu, € 6 ([T_p, Ty, L2((0,+00), y1dD)).

and

VEelL Tl (07 2 liaosro0n < ITun(D) 2y iz, roopt o0
(34) + on(Dllunlif ey t°

Ve elT 1] IZun()1; 2l iz(orro0) < ITtn (1) Y2l 2o oopt M et
(35) + 0, (Dl g 19yt

&([t,1])

This lemma is the crux of the proof of Theorem 3 and 4. Here, the third condition on y,, is
crucially needed, and we also rely on a nice cancellation.

Using the relation between Zu and J,u, we see that the above control can be bootstrapped
to a control of &(t), and we get uniform bound on a uniform interval:

Proposition 17 (Uniform local existence for large data). There exist a function C : R, — R,
such that the following holds. Given u, € &(1), there exists T_(u;) < 1 and T,(u;) > 1 such
that, for large n, the corresponding solution u, of (II,-mKdV) is defined on [T_(uy), T, (uy)]
and

lunlleqr .t w)p S CUMullgy)-

Surprisingly, the proof of this proposition goes by contradiction, because our estimates give
bounds but no uniform continuity: this is one of the side effect of working in critical space. If
we furthermore assume that [[u; || ;) is small, a similar statement holds with T, (u;) = +00.

3.3. Construction of the solution and forward uniqueness. Proposition 17 is what is
needed to develop a somewhat standard compactness argument, which yields the existence
part in Theorems 3 and 4.

It remains the forward uniqueness property which we consider now. It proceeds via a com-
pletely different and independent argument. Without loss of generality, we can assume that
t; = 1. As mentioned in the introduction, given two solutions u and v which coincide at
t =1, we consider the difference w = u—v. Then w satisfies

(3t+axxx)W:((W+V)3_V3)x’ w(1)=0

We consider a cut-off function ¢ € C°°(R), non-decreasing and such that ¢(x) =0forx <0
and ¢(x)=1for x >—1, and for n = 1, let ¢,,(x) = ¢ (1 + x/n), so that

¢n(x) =1, [18exPnllr = 0.

Via a regularization by mollification, we can establish an identity for the (localized L?) norm
of w:
(36)

1

> f wdndx = f J (—§(3XW)28x¢n — (WO, W)y + B((W+v)° — V3)W¢n) dxds
2 . 2
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This takes advantage of the pointwise decays obtained in Lemma 14, which show (among
other things) that

we LX(¢p,dx), d.we L*(8,¢,dx).

Now, as ¢ is chosen to be non-decreasing, the first term of right-hand side of (36) is negative,
and so we get that for t = 1,

%J w(t)*ppdx < f (IlwaxWIILoo l[0xx Pallrr +f Oe((w+v)° _VB)Wd)ndx) ds
1

lullZ +v|2
([t1,t2]) &([t1,t5])
S I, o 1ex ®allz: log e + = L f w(t)*pndx

&([ty, t

We are in a position to apply a Gronwall argument. Letting n — 4+ 00, we get that for t > 1,
|lw(t)|l;= =0, and the proof is complete.

Actually, from there, we can give some partial continuity for J:u. A little further work with
(34) and (35) gives continuity at t = 1. For t; # 1, we consider the solution v constructed as
before with given data at t; (instead of 1), and v(t;) = u(t;). As we just saw, v is continuous
at t;, and, using forward uniqueness, u and v coincide for t = t;: hence the map [1/T,T] —
L%, t— O:U is continuous to the right.

Backward uniqueness would similarly yield continuity to the left, and so the full continuity
d:ie6([1/T,T],L?).
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