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Results on qualitative features of periodic

solutions of KdV

T. Kappeler∗, B. Schaad†, P. Topalov‡

Consider the Korteweg-de Vries equation (KdV)

∂tu = −∂3xu+ 6u∂xu (1)

on the circle T = R/Z. It is globally in time well-posed on the Sobolev spaces
HN ≡ HN (T,R) with N ≥ −1. The aim of this paper is to describe new
qualitative features of periodic solutions of KdV. First note that in contrast
to solutions on the real line, periodic solutions do not have a special profile
decomposition as t→ ±∞. Our main point of interest, related to the numerical
experiments of Fermi, Pasta, and Ulam of particle chains, is to know how the
distribution of energy among the Fourier modes evolves. A partial result in
this direction says that due to the integrals provided by the KdV hierarchy,
the Sobolev norms of smooth solutions stay bounded uniformly in time. In this
paper we make further contributions to the study of how the Fourier coefficients

ûn(t) =
∫ 1

0
u(t, x)e−2πinxdx of a solution u(t, x) of (1) evolve in time. Our first

result aims at describing dispersion phenomena for solutions of KdV by studying
how ûn(t) evolve for |n| large. More precisely, we want to investigate if ûn(t)
admits a WKB type expansion of the form

ûn(t) = eiwnt

(
an(t) +

bn(t)

n
+ . . .

)
(2)

where eiwnt is a strongly oscillating phase factor with frequency wn and the
coefficients an(t), bn(t), . . . vary more slowly and satisfy the estimates

∑
n2N |an(t)|2 <∞ and

∑
n2N |bn(t)|2 <∞.

To state our result more precisely, denote by ωn, n ≥ 1, the KdV frequencies of
u(t). Let us recall how they are defined. The KdV equation can be written as
a Hamiltonian PDE with phase space L2 and Poisson bracket

{F,G}(q) :=

∫ 1

0

∂F ∂x ∂Gdx (3)
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where F,G are C1-functionals on L2 and ∂F denotes the L2-gradient of F . Then
KdV takes the form ∂tu = ∂x∂uH where H is the KdV Hamiltonian

H(q) :=

∫ 1

0

(
1

2
(∂xq)

2 + q3
)
dx.

In terms of this set-up, the ωn’s are given by

ωn = ∂InH.

Here we use that H can be expressed as a real analytic function of the action
variables In, n ≥ 1, so that the partial derivatives ∂InH are well defined – see
below for more details. Alternatively, ωn can be viewed as a function of q,
which by a slight abuse of terminology, we also denote by ωn. Clearly, for any
n ≥ 1, ωn(u(t)) is independent of t and depends in a nonlinear fashion on u(0).
It is convenient to introduce

ω−n := −ωn ∀n ∈ Z≥1 and ω0 := 0

and to denote the KdV flow by St, i.e., St(u(0)) = u(t). In addition, let

Rt(u(0)) := St(u(0))−
∑

n∈Z
eiωntûn(0)e2πinx

where for any n ∈ Z, ωn = ωn(u(0)) .

Theorem 0.1. For q = u(0) ∈ HN , N ∈ Z≥0, the error Rt(q) of the approxi-
mation

∑
n∈Z e

iωntq̂ne
2πinx of the flow St(q) has the following properties:

(i) Rt : HN → HN+1 is continuous;

(ii) for any q ∈ HN , the curve {Rt(q)| t ∈ R} is relatively compact in HN+1;

(iii) for any M > 0, the set of curves {Rt(q)| t ∈ R, q ∈ HN , ‖q‖HN ≤ M} is
bounded in HN+1;

(iv) if in addition N ∈ Z≥1, then ∂tR
t : HN → HN−1 is continuous and

for any q ∈ HN , the orbit {∂tRt(q)| t ∈ R} is relatively compact in
HN−1. Moreover for any M > 0 the set of orbits {∂tRt(q)| t ∈ R, q ∈
HN , ‖q‖HN ≤M} is bounded in HN−1.

Remark 0.1. Actually, one can prove that for any c ∈ R, the restrictions of

Rt and ∂tR
t to the affine subspace HN

c = {q ∈ HN |
∫ 1

0
q(x)dx = c} are real

analytic.

Remark 0.2. In case u(0) is a finite gap potential, there are formulas, due
to Its-Matveev [3], for the frequencies ωn in terms of periods of an Abelian
differential, defined on the spectral curve associated to u(0). These formulas
can be extended to potentials in HN , N ≥ −1, – cf [12]. Alternative formulas
can be found in [7], Appendix F.
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Remark 0.3. Note that the frequencies ωn depend on the initial conditions
in a nonlinear way. The statement of Theorem 0.1 no longer holds if the KdV
frequencies ωn are replaced by their linearization at 0, i.e., by (2πn)3, confirming
the belief of experts in the field that solutions of KdV on the circle are not
approximated by linear evolution over a time interval of infinite length – see [1]
for results on linear approximations of solutions over finite time intervals.

In terms of the above WKB ansatz (2), Theorem 0.1 says that with wn := ωn
and an(t) := ûn(0), the remainder term

ρn(t) := bn(t) + · · · := n ·
(
e−iωntûn(t)− ûn(0)

)
= nR̂tn(u(0))e−iωnt

satisfies
∑
n2N |ρn(t)|2 <∞ and in case N ∈ Z≥1,

∑
n2(N−2)|∂tρn(t)|2 <∞. (4)

As the asymptotics of the KdV frequencies are given by ωn = 8π3n3 + O(n)
estimate (4) quantifies the assertion that (ρn(t))n∈Z varies more slowly than
(ûn(t))n∈Z.
The second result we would like to describe concerns the approximation of KdV
solutions by trigonometric polynomials. For any L ∈ Z≥1, denote by PL : L2 →
L2 the L2-orthogonal projection of L2 = H0(T,R) onto the 2L+ 1 dimensional
R-vector space generated by e2πinx, |n| ≤ L.

Theorem 0.2. Let N ∈ Z≥0 be arbitrary. Then for any M > 0 and ε > 0 there
exists Lε,M ≥ 1 such that for any u(0) ∈ HN , with ‖u(0)‖HN ≤ M , L ≥ Lε,M ,
and any t ∈ R

‖(Id− PL)u(0)‖HN − ε ≤ ‖(Id− PL)u(t)‖HN ≤ ‖(Id− PL)u(0)‖HN + ε.

In particular, if u(0) with ‖u(0)‖HN ≤ M is a trigonometric polynomial of
order L?, then for any L ≥ max(L?, Lε,M ), PLu(t) approximates u(t) uniformly
in t ∈ R up an error of size ε.

Remark 0.4. The proof of Theorem 0.2 shows that for any |n| > Lε,M and
‖u(0)‖HN ≤M ,

|ûn(0)| − ε ≤ |ûn(t)| ≤ |ûn(0)|+ ε ∀t ∈ R.

It means that for |n| sufficiently large, the amplitude of the n’th Fourier mode
is approximately constant, uniformly on bounded sets of HN .

Remark 0.5. It follows from the proof of Theorem 0.1 that corresponding re-
sults hold for the flow of any Hamiltonian in the Poisson algebra of KdV. In
particular, this is true for the flows of Hamiltonians in the KdV hierarchy.

Detailed proofs of Theorem 0.1 and Theorem 0.2 are presented in [10]. The
main ingredient of these proofs are new asymptotics of the Birkhoff map of KdV.
This map provides normal coordinates, allowing to solve KdV by quadrature.
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Let us recall its set-up. First note that the average of any solution u(t) ≡ u(t, x)
of KdV in HN is a conserved quantity. In particular, for any c ∈ R, KdV leaves
the subspaces HN

c ≡ HN
c (T,R) of HN invariant where

HN
c =

{
p(x) =

∑
p̂ne

2πinx | p̂0 = c; ‖p‖N <∞; p̂−n = p̂n ∀n ∈ Z
}

with

‖p‖N :=
(∑

|n|2N |p̂n|2
) 1

2

.

In the case N = 0, we often write L2
c for H0

c and ‖p‖ instead of ‖p‖0. To describe
the normal coordinates of KdV, let us introduce for any α ∈ R the R-subspace
hα of `2,α, given by

hα :=
{
z = (zn)n 6=0 ∈ `2,α| z−n = zn∀n ≥ 1

}

where
`2,α ≡ `2,α(Z0,C) := {z = (zn)n 6=0| ‖z‖α <∞} ,

Z0 := Z \ {0}, and

‖z‖α :=
(∑

n6=0

|n|2α|zn|2
) 1

2

.

The space hα is endowed with the standard Poisson bracket for which {zn, z−n} =
−{z−n, zn} = 2i for any n ≥ 1 whereas all other brackets between coordinate
functions vanish. Furthermore we denote by HN

0,C ≡ HN
0 (T,C), L2

0,C ≡ L2
0(T,C)

and hαC the complexification of the spaces HN
0 , L

2
0, and hα. Note that hαC =

`2,α(Z0,C). A detailed proof of the following result can be found in [7] – cf also
[6].

Theorem 0.3. There exist an open neighbourhood W of L2
0 in L2

0,C and a real

analytic map Φ : W → h
1/2
C with the following properties:

(BC1) For any N ∈ Z≥0, the restriction of Φ to HN
0 is a canonical, bianalytic

diffeomorphism onto hN+1/2.

(BC2) When expressed in the new coordinates, the KdV-Hamiltonian H ◦ Φ−1,
defined on h3/2, is a real analytic function of the action variables In =
(znz−n)/2, n ≥ 1, alone.

(BC3) The differential Φ0 ≡ d0Φ of Φ at 0 is the weighted Fourier transform,

Φ0(h) =

(
1√
|n|π

ĥn

)

n6=0

(5)

The coordinates zn, n 6= 0, are referred to as (complex) Birkhoff coordinates
whereas Φ is called Birkhoff map. Note that in [7] the Birkhoff map is defined
slightly differently by setting Φ(q) to be (xn, yn)n≥1 where xn = (zn + z−n)/2
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and yn = i(zn − z−n)/2. The fact that KdV admits globally defined Birkhoff
coordinates is a very special feature of KdV. In more physical terms it says
that KdV, when considered with periodic boundary conditions, is a system of
infinitely many coupled oscillators.

Remark 0.6. A result similar to the one of Theorem 0.3 holds for the defocusing
NLS equation. A detailed proof can be found in [2]. Cf also [17].

The key ingredient of the proofs of Theorem 0.1 and Theorem 0.2 is the
following result on the asymptotics of the Birkhoff map, positively answering a
question, raised by Kuksin and Perelman in [14].

Theorem 0.4. For N ∈ Z≥0, there exists an open neighbourhood WN of HN
0

in HN
0,C ∩W so that Φ−Φ0 maps WN into h

N+3/2
C and, as a map from WN to

h
N+3/2
C , is analytic. Here W is the neighbourhood of L2

0 in L2
0,C of Theorem 0.3.

Furthermore, the restriction A := (Φ − Φ0)|HN
0

: HN
0 → hN+3/2 is a bounded

map, i.e. it is bounded on bounded subsets of HN
0 .

Remark 0.7. In [19] a result similar to the one stated in Theorem 0.4 is proved
for the Birkhoff map of KdV constructed in [5], where the phase space is endowed
with the Poisson bracket introduced by Magri. As an application, a correspond-
ing result is then derived for the modified Korteweg-de Vries equation (mKdV)
on HN with N ≥ 1. Indeed, it was shown in [8] that the Miura map f 7→ f ′+f2

canonically embeds the symplectic leaves of the phase space of mKdV, endowed
with the Poisson bracket (3), into the phase space of KdV, endowed with the
Magri bracket. (For a detailed study of the Miura map see [11].) As a con-
sequence, results similar to the ones of Theorem 0.1 and Theorem 0.2 can be
proved for mKdV – see [19].

Remark 0.8. We expect that similar results as the ones of Theorem 0.4 can
be proved for the defocusing NLS equation. As a consequence, results similar to
the ones of Theorem 0.1 and Theorem 0.2 are expected to hold for this equation.

Remark 0.9. Normalizing transformations such as the Birkhoff map are often
viewed as nonlinear versions of the Fourier transform. In the case of KdV,
Theorem 0.4 provides a qualitative statement in this respect, saying that Φ is a
weakly nonlinear perturbation of the (weighted) Fourier transform.

The proof of Theorem 1.4 is based on sharp asymptotic estimates of various
spectral quantities of Schrödinger operators, some of which have not been con-
sidered before, which can be found in [9]. Some of these estimates improve on
earlier results due to Marchenko [16] and others – see [18] and references therein.

Related results Recently, Kuksin and Piatnitski initiated a study of random
perturbations with damping of the KdV equation [15], [13]. More precisely they
are interested, how the KdV-action variables evolve under certain perturbed
equations. For this purpose they express the perturbed KdV equation in nor-
mal coordinates. Up to highest order, it is a linear differential equation if the
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nonlinear part Φ − Φ0 of the Birkhoff map is 1-smoothing, i.e. if it maps HN
0

to hN+3/2 for any N ≥ 0. In their recent paper, Kuksin and Perelman [14]
succeeded in showing a local version of Theorem 0.4 near the equilibrium point
q = 0. More preciseely they prove that on a neighbourhood U of the equilibrium
point q = 0, there exists a canonical, real analytic diffeomorphism Ψ : U → V
with V ⊆ h1/2 a neighbourhood of 0 in h1/2 providing Birkhoff coordinates for
KdV so that Ψ−Ψ0 is 1-smoothing where Ψ0 denotes the linearization of Ψ at
q = 0 and coincides with Φ0. They obtain the map Ψ by generalizing Eliasson’s
construction of a Birkhoff map near an equilibrium point of a finite dimensional
integrable system to a class of integrable PDEs including the KdV equation. In
order to apply Eliasson’s construction, Kuksin and Perelman need coordinates
for the KdV equation, provided in [4], as a starting point. Eliasson’s construc-
tion is based on Moser’s path-method and, in general, cannot be extended to
get global coordinates. However, for the study of random perturbations of KdV
in [13], global Birkhoff coordinates for KdV are needed. In [14], it was con-
jectured that there exists a globally defined Birkhoff map Ψ so that Ψ − Ψ0 is
1-smoothing. Note that Birkhoff maps are not uniquely determined. Theorem
0.4 confirms that this conjecture holds true and that Ψ can be chosen to be the
Birkhoff map of Theorem 0.3.
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