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GENERALIZED GRADIENT FLOW AND SINGULARITIES

OF THE RIEMANNIAN DISTANCE FUNCTION

PIERMARCO CANNARSA

Abstract. Significant information about the topology of a bounded
domain Ω of a Riemannian manifold M is encoded into the properties
of the distance, d∂Ω, from the boundary of Ω. We discuss recent results
showing the invariance of the singular set of the distance function with
respect to the generalized gradient flow of d∂Ω, as well as applications
to homotopy equivalence.

Keywords: distance function, generalized characteristics, propagation
of singularities, semiconcavity, Riemannian manifold, homotopy
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1. Introduction

It is well known that the distance function from the boundary of a bounded
open set Ω ⊂ Rn, that is,

d∂Ω(x) = min
y∈∂Ω

|y − x| ∀x ∈ Rn ,

is Lipschitz continuous in Rn with Lipschitz seminorm equal to one, and
locally semiconcave in Ω1. Consequently, d∂Ω is differentiable in Ω \ Σ,
where Σ ⊂ Ω is a set of Lebesgue measure zero called the singular set of
d∂Ω. The structure of Σ has been investigated in several papers providing
upper bounds for its Hausdorff dimension and also lower bounds in the
form of conditions ensuring the propagation of singularities. It is the latter
viewpoint we will be here concerned with in this paper.

1991 Mathematics Subject Classification. 35A21, 26B25, 49J52, 55P10.
1This means that, for every convex compact set G ⊂ Ω, there is a constant KG ∈ R

such that x 7→ d∂Ω(x)−KG|x|2/2 is concave on G.
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For semiconcave functions, geometric conditions ensuring the propagation
of singularities were obtained in [1]. In [2] and [7], propagation results were
derived for viscosity solutions of the Hamilton-Jacobi equation

F (x, u,Du) = 0 in Ω , (1.1)

with F (x, u, p) convex in p. More precisely, given a noncritical singular
point x0 of u, one can show that u fails to be differentiable on a nonconstant
lipschitz arc γ : [0, σ[→ Rn, starting at x0, which satisfies the generalized
characteristic inclusion

γ′(t) ∈ co DpF (γ(t), u(γ(t)), D+u(γ(t))) , (1.2)

where D+u denotes the superdifferential of u while ‘co’ stands for ‘convex
hull’. Observe that the above settings include the distance function, which
solves the eikonal equation |Dd∂Ω|2 = 1. In this case, inclusion (1.2) reduces
to the generalized gradient flow γ′ ∈ D+d∂Ω(γ) up to rescaling.

The propagation of singularities along characteristics is a well-studied
property of solutions to linear hyperbolic equations. In [9], for scalar hy-
perbolic conservation laws in one space dimension, Dafermos observed that
singular arcs could be regarded as generalized solutions of the same differ-
ential equation governing classical characteristics.

The above considerations can be naturally extended to an open subset
Ω of a Riemannian manifold M . In a local coordinate chart, the eikonal
equation takes the form

〈A−1(x)Du(x), Du(x)〉 = 1 , (1.3)

where A(x) is related to the Riemannian scalar product gx on the tangent
space TxM by the formula

gx(ξ, ζ) = 〈A(x)ξ, ζ〉 ∀ξ, ζ ∈ TxM .

In this case, the equation of generalized characteristics is

γ′(t) ∈ A−1(γ(t))D+u(γ(t)) . (1.4)

In the aforementioned paper [9], singularities are shown to propagate
along a generalized characteristic, forward in time up to infinity. Intuitively
speaking, such a behaviour is related to the well-known interpretation of the
entropy condition for solutions of conservation laws (with a convex flux),
which ensures that characteristics can only go inside a singularity: a char-
acteristic which enters the singular set remains “trapped” there.

Although the two-dimensional structure of the problem is essential for the
proof of [9], in [3] it was proved that the same property holds for singular
arcs of the euclidean distance function in arbitrary dimension, showing that
Σ is invariant for the generalized gradient flow. Moreover, the approach of
[3] applies to the Riemannian distance as well, even though d2

∂Ω fails to be
semiconcave with K = 2, in general.

It is interesting to remark that the properties of the singular set of d∂Ω are
also relevant to applied domains such as computer science (see [5, 11] and
the references therein). Several authors have studied, at increasing levels
of generality, the homotopy equivalence between Σ and Ω. If the boundary
of Ω is smooth (or piecewise smooth in dimension 2), then a homotopy can
be constructed by moving every point outside Σ by the smooth gradient
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flow of the distance function until it reaches Σ. However, this method only
works if the distance from a regular point p to Σ along the gradient of the
distance is a continuous function of p. If Ω is a nonsmooth set of dimension
at least 3, then this fails to be true and the construction of the homotopy
becomes more involved [11]. An essential step of the procedure is to extend
the gradient flow of the distance function past a singular point, ensuring
that the corresponding generalized characteristic stays singular for all time.
This is why the methods of [3] can be used to generalize the homotopy
equivalence between Σ and Ω to complete Riemannian manifolds.

The above generalization is rich of important consequences even for prob-
lems which are naturally set in euclidean space. To clarify this point, we
will describe the analysis of optimal exit time problems in Rn made in [3].
In this example, the minimum time function T (x), which measures the min-
imum time needed to steer a point x ∈ Ω to ∂Ω, can be interpreted as a
Riemannian distance function. This connection allows to show the homo-
topy equivalence between Ω and the singular set of T (·) in a simple way,
while such a result would be hard to derive in a euclidean setting.

2. Semiconcave functions

In this section, we introduce semiconcave functions and recall some of
their properties. Given x, y ∈ Rn, we denote by 〈x, y〉 and by |x| the eu-
clidean scalar product and norm respectively. Let Ω be an open set in Rn.

Definition 2.1. A function u : Ω → R is said to be semiconcave in Ω if
there exists K ≥ 0 such that

tu(x) + (1− t)u(y)− u(tx+ (1− t)y) ≤ t(1− t)K |x− y|
2

2

for any x, y ∈ Ω such that the segment from x to y is contained in Ω, and for
any t ∈ [0, 1]. We call K a semiconcavity constant for u in Ω. We say that
u is locally semiconcave in Ω if it is semiconcave on any subset A ⊂⊂ Ω.

It is easy to see that u is semiconcave with constant K if and only if the
function u(x) − K

2 |x|2 is concave or if D2u ≤ K Id in the sense of distribu-
tions, where Id denotes the identity matrix.

The (Fréchet) superdifferential of a function u : Ω→ R at a point x ∈ Ω
is defined as the set

D+u(x) =

{
p ∈ Rn : lim sup

y→x

u(y)− u(x)− 〈p, y − x〉
|y − x| ≤ 0

}
.

In the case of a semiconcave function, the superdifferential enjoys the follow-
ing properties; the proofs can be found in any textbook on convex analysis
or in Chapter 3 of [6].

Proposition 2.2. Let u : Ω→ R be semiconcave.

(i) The function u is locally Lipschitz continuous in Ω and differentiable
almost everywhere.

(ii) The superdifferential D+u(x) is nonempty for all x ∈ Ω. It is a
singleton if and only if u is differentiable at x, and in this case we
have D+u(x) = {Du(x)}, where Du(x) is the standard gradient.

Exp. no IX— Generalized gradient flow and singularities of the Riemannian distance function
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(iii) For any x, y ∈ Ω such that the segment from x to y is contained in
Ω, for any p ∈ D+u(x) and q ∈ D+u(y), we have

〈q − p, y − x〉 ≤ K|y − x|2, (2.1)

where K is a semiconcavity constant of u.
(iv) Given {xi} ⊂ Ω such that xi → x̄ ∈ Ω and pi ∈ D+u(xi) such that

pi → p̄, we have that p̄ ∈ D+u(x̄).

The singular set of u is defined as

Σ(u) = {x ∈ Ω | u is not differentiable at x}
= {x ∈ Ω | D+u(x) contains more than one point}.

General properties of semiconcave functions ensure that Σ(u) is countably
(n−1)-rectifiable that is, it can be covered by a countable family of Lipschitz
hypersurfaces (see [4]).

3. Euclidean distance function

We denote by dC the euclidean distance function from a closed set C ⊂ Rn
defined as

dC(x) = min
y∈C
|y − x| ∀x ∈ Rn ,

and by projC(x) the set of closest points in C to x:

projC(x) = {y ∈ C : dC(x) = |x− y|} x ∈ Rn .

The following properties of dC are well known.

(i) dC is differentiable at x /∈ C if and only if projC(x) is a singleton
and in this case

DdC(x) =
x− y
|x− y| (3.1)

where y is the unique element of projC(x).
(ii) If projC(x) is not a singleton then we have

D+dC(x) = co

{
x− y
|x− y| : y ∈ projC(x)

}
=
x− co (projC(x))

dC(x)
.

(iii) For any x /∈ C and any y ∈ projC(x), dC is differentiable along the
segment ]x, y[.

dC is Lipschitz continuous in Rn with Lipschitz seminorm equal to one, and
locally semiconcave in Rn \C as we recall below (see [6, Proposition 2.2.2]).

Proposition 3.1. Given any nonempty closed set C ⊂ Rn, the distance
function dC is locally semiconcave on Rn \ C. In addition, the squared
distance function d2

C(·) is semiconcave on all Rn with constant K = 2.
Moreover, we have

〈dC(x)p− dC(y)q, x− y〉 ≤ |x− y|2 (3.2)

for all x, y ∈ Rn, p ∈ D+d(x) and q ∈ D+d(y).

Piermarco Cannarsa
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Proof. We begin by showing the semiconcavity of d2
C . For any x ∈ Rn we

have

d2
C(x)− |x|2 = inf

y∈C
|x− y|2 − |x|2 = inf

y∈C

(
|y|2 − 2〈x, y〉

)
.

Since the infimum of affine functions is concave we deduce that u(x) :=
d2
C(x) − |x|2 is concave on Rn. This yields that d2

C is semiconcave on Rn
with constant K = 2.

We now proceed to derive the local semiconcavity of dC . Let us first
observe that, given z, h ∈ Rn, z 6= 0, we have

(|z + h|+ |z − h|)2

≤ 2(|z + h|2 + |z − h|2) = 4(|z|2 + |h|2) ≤
(

2|z|+ |h|
2

|z|

)2

.

Thus

|z + h|+ |z − h| − 2|z| ≤ |h|
2

|z| . (3.3)

Let S be a set with positive distance from C. For any x, h such that the line
segment [x−h, x+h] is contained in S, let x̄ ∈ C be such that dC(x) = |x−x̄|.
Then

dC(x+ h) + dC(x− h)− 2dC(x)

≤ |x+ h− x̄|+ |x− h− x̄| − 2|x− x̄|

≤ |h|2
|x− x̄| .

Moreover |x − x̄| = dC(x) ≥dist (S,C). We conclude that dC satisfies the
desired property.

Finally, Estimate (3.2) follows from Proposition 2.2(iii), observing that
D+d2

C(x) = 2dC(x)D+dC(x). �

Consequently, dC satisfies the eikonal equation

|Du(x)| = 1 for a.e. x ∈ Rn \ C. (3.4)

4. Generalized characteristics of eikonal type equations

In the following, we will consider semiconcave functions u : Ω→ R which
solve an equation of the form

〈A−1(x)Du(x), Du(x)〉 = 1 (x ∈ Ω a.e.) (4.1)

where A(x) a symmetric positive definite n× n matrix with C1 dependence
on x ∈ Ω (the formulation with A−1, rather than A, is natural in the context
of Riemannian manifolds that we shall treat in the sequel).

It is well known (see e.g. [6, Prop. 5.3.1]) that, if u is locally semiconcave
in Ω, then the following properties are equivalent:

• u satisfies (4.1);
• for every x ∈ Ω and p ∈ D+u(x) we have 〈A−1(x)p, p〉 ≤ 1;
• u is a viscosity solution of (4.1) (in the sense of [8]).

Exp. no IX— Generalized gradient flow and singularities of the Riemannian distance function
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Throughout the paper, we call a solution of (4.1) a locally semiconcave
function with any of the above properties.

Given a solution of (4.1), we consider the differential inclusion

γ′(t) ∈ A−1(γ(t))D+u(γ(t)). (4.2)

A Lipschitz arc γ : [0, t0] → Ω is called a solution to the above problem
if, for a.e. t ∈ [0, t0], it satisfies γ′(t) = A−1(γ(t))p(t) for some element
p(t) ∈ D+u(γ(t)). Such an arc will also be called a generalized characteristic
of equation (4.1) associated with u.

We now recall some properties of generalized characteristics. The main
part of the statement (in particular claim (iv) about the propagation of sin-
gularities) follows from the results first proved in [2] and then obtained with
a simpler approach in [7, 14]. Here, we include some additional properties,
not explicitly observed in the above references, which were derived in [3].

Theorem 4.1. Let u : Ω→ R be a solution of (4.1). Then, for every x0 ∈ Ω
there exists t0 > 0 and a unique Lipschitz continuous arc γ : [0, t0[→ Ω
which satisfies (4.2) and the initial condition γ(0) = x0. In addition, the
right derivative γ′+(t) exists for every t ∈ [0, t0[ , and p(t) := γ′+(t) has the
following properties:

(i) p(t) ∈ A−1(γ(t))D+u(γ(t)) for every t ∈ [0, t0[ and

〈p(t), A(γ(t))p(t)〉 ≤ 〈q, A(γ(t))q〉, ∀ q ∈ A−1(γ(t))D+u(γ(t)). (4.3)

(ii) p(t) is continuous from the right for every t ∈ [0, t0[ and, for all
points t∗ where it is discontinuous, we have

lim inf
t→t∗−

〈p(t), A(γ(t))p(t)〉 ≥ 〈p(t∗), A(γ(t∗))p(t∗)〉. (4.4)

(iii) For any t ∈ [0, t0[ , γ(t) ∈ Σ(u) if and only if 〈A(γ(t))p(t), p(t)〉 < 1.
(iv) If x0 ∈ Σ(u), then there exists σ ∈]0, t0] such that γ(t) ∈ Σ(u) for

all t ∈ [0, σ].
(v) For all t ∈ [0, t0[ we have

d

dt+
u(γ(t)) = 〈A(γ(t))p(t), p(t)〉 , (4.5)

where the symbol d
dt+

denotes the derivative from the right.

We give below a continuous dependence result for generalized character-
istics that is due to [3].

Lemma 4.2. Under the above assumptions, for any U ⊂⊂ Ω there exist
C > 0 and t0 > 0 such that, if x, y ∈ U and γx, γy are solutions of (4.2) with
initial conditions γx(0) = x and γy(0) = y respectively, then

|γx(t)− γy(t)| ≤ C|x− y|, t ∈ [0, t0]. (4.6)

In particular, the above results apply to the distance from the boundary
of Ω, d∂Ω. In this case, the flow associated with generalized characteristics
is called the generalized gradient flow.

Corollary 4.3. Let Ω ⊂ Rn be an open set. Then, for every x ∈ Ω there
exists a unique Lipschitz continuous arc γ : [0,∞[→ Ω such that

γ′(t) ∈ D+d∂Ω(γ(t)) t ∈ [0,∞[ a.e. γ(0) = x. (4.7)

Piermarco Cannarsa
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In addition, for any t0 ≥ 0 such that γ(t0) ∈ Σ(d∂Ω) there exists σ > 0 such
that γ(t) ∈ Σ(d∂Ω) for all t ∈ [t0, t0 + σ[ . Finally, the derivative from the
right γ′+(t) exists for all t ∈ [0,+∞) and satisfies the properties described in
Theorem 4.1, with u(x) = d∂Ω(x) and A(x) ≡ Id.

Proof. The statement follows directly from Theorem 4.1, provided we show
that the maximal interval of existence of γ is [0,+∞[ . To see this we
note that, if such an interval is [0, T [ with T 6= +∞, then necessarily γ(t)
approaches ∂Ω as t→ T , that is, d∂Ω(γ(t))→ 0 as t→ T , in contrast with
the property that d∂Ω(γ(t)) is positive and nondecreasing in t by (4.5). �

5. Gradient flow and singularities of the euclidean distance

We have just seen that generalized characteristics starting from a singular
point stay singular up to some time T > 0. This raises the question whether,
at list in some case, one can have that T = ∞. In other terms, we would
like to investigate the invariance of the singular set under the generalized
characteristic flow. An interesting result in this direction is the following
one, obtained in [3], the proof of which we describe below.

Theorem 5.1. Let Ω ⊂ Rn be an open set, let x ∈ Ω, and let γ(·) be the
solution of (4.7) given by Corollary 4.3. If γ(t0) ∈ Σ(d∂Ω) for some t0 ≥ 0,
then γ(t) ∈ Σ(d∂Ω) for all t ∈ [t0,+∞[.
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Figure 1. Invariance of Σ(d∂Ω) under gradient flow

Proof. For simplicity of notation, we suppose t0 = 0. Set

p(t) := γ′+(t), δ(t) := d∂Ω(γ(t)) t ∈ [0,∞[ .

From Theorem 4.1 and Corollary 4.3 we know that p(t) ∈ D+d∂Ω(γ(t))
for all t; in addition γ(t) ∈ Σ(d∂Ω) and |p(t)| < 1 for all t > 0 in a right
neighbourhood of 0. Our aim is to show that |p(t)| < 1 holds for every t ≥ 0;
by part (iii) of Theorem 4.1, this will prove our assertion.
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Let 0 ≤ s < t. By Proposition 3.1, we have

δ(t)〈p(t)− p(s), γ(t)− γ(s)〉
≤ |γ(t)− γ(s)|2 − (δ(t)− δ(s))〈p(s), γ(t)− γ(s)〉. (5.1)

Now, set t = s+ h (h > 0),

γh(s) =
γ(s+ h)− γ(s)

h
and δh(s) =

δ(s+ h)− δ(s)
h

.

We observe that |γh| ≤ 1, |δh| ≤ 1, since γ and δ are both Lipschitz functions
of constant 1. From (5.1) we obtain

〈
γ′h(s) , γh(s)

〉
≤ 1

δ(s+ h)
[|γh(s)|2 − δh(s)〈p(s), γh(s)〉]. (5.2)

Here and in the rest of the proof, we use for simplicity the notation of
the ordinary derivative to mean the derivative from the right of expressions
involving γh. Observe that, by Theorem 4.1, we have for all s ≥ 0

lim
h→0+

γh(s) = p(s), lim
h→0+

δh(s) = |p(s)|2. (5.3)

From a heuristic point of view, it is useful to take the limit as h ↓ 0 in
(5.2). We obtain

d

ds
|p(s)|2 ≤ 2

δ(s)
|p(s)|2(1− |p(s)|2). (5.4)

Such an inequality implies that, if |p(t0)| < 1, then |p(s)| < 1 for all s > t0.
However, such a reasoning is only formal, because we cannot say anything
about the differentiability of p(·). It is interesting to observe that the crucial
constant 1, in the expression 1 − |p(s)|2 above, arises from the previous
computations as K/2, where K = 2 is the semiconcavity constant of d2

∂Ω.
Although the above argument is not rigorous, it suggests that γh(·) can be
estimated by a suitable adaptation of the separation of variables procedure
which could be used to integrate (5.4). We refer the reader to [3] for the
detailed resoning. �

6. The Riemannian case

Let us now consider a complete Riemannian manifold M , possibly
noncompact. For any x ∈ M , we denote by TxM the tangent space to M
at x and by T ∗xM the cotangent space. For simplicity, we use the same
symbol 〈·, ·〉 to denote the scalar product of two vectors of TxM , or of two
elements of T ∗xM , or the pairing of a form in T ∗xM and a vector in TxM .
The Riemannian distance between two points x, y ∈ M will be denoted
by d(x, y). If u is a function on a Riemannian manifold M , we denote by
Du(x) ∈ TxM its gradient and by du(x) ∈ T ∗xM its differential. In addition,
we denote by D2u the hessian of u, interpreted as a linear operator from
TxM to itself, as for example in [13, Ch. 14].

If C is a nonempty closed subset of M , we denote by dC(x) the distance
function from C, defined as

dC(x) = min
y∈C

d(y, x). (6.1)

Piermarco Cannarsa
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In order to extend the techniques of the previous section, we first need to
recall some basic properties of parallel transport and geodesic curves. On
M , there is a canonical notion of derivative of a vector field, called covariant
derivative. Using this definition, a vector field is called parallel along a
curve γ if its derivative in direction γ′(t) is zero for all t. If we have a
curve γ : [a, b]→M and a vector v ∈ Tγ(a)M , there is a unique vector field
v(t) ∈ Tγ(t)M , with t ∈ [a, b], which is parallel along γ; such a field v(t) is
called the parallel transport of v along γ(t). Parallel transport preserves the
scalar product and therefore gives an isometry between the tangent spaces
at different points. The geodesics on M can be defined equivalently as the
curves γ such that the speed γ′(t) is parallel along the curve γ itself or as
the curves which are stationary for the energy functional. Geodesics have
constant speed and are curves of minimal length between two endpoints if
these points are close enough to each other.

Given a point x ∈M , we denote by expx(·) the exponential map at x. We
recall that, given a tangent vector v ∈ TxM , expx(v) is the point reached at
t = 1 by the geodesic γ(t) starting with γ(0) = x and γ′(0) = v. If f is a
smooth function and df(x) ∈ T ∗xM is its differential at x, we have

f(expx(v))− f(x) = 〈df(x), v〉+ o(|v|), v ∈ TxM, v → 0.

Let us now consider a function u : M → R not necessarily smooth. We
say that p ∈ T ∗xM belongs to d+u(x), the superdifferential of u at x, if

u(expx(v))− u(x) ≤ 〈p, v〉+ o(|v|), v ∈ TxM, v → 0.

This is equivalent to saying that there exists a smooth function f touching u
from above at x such that df(x) = p. It is easy to see that, if p ∈ d+u(x) and
if γ : [−a, a] → M is any smooth curve such that γ(0) = x (not necessarily
a geodesic), then

lim sup
h→0

u(γ(h))− u(γ(0))

h
≤ 〈p, γ′(0)〉. (6.2)

We recall that a subset U ⊂ M is called convex if any distance mini-
mizing geodesic between two points in U is contained in U . The notion of
semiconcavity can be extended to Riemannian manifolds as follows.

Definition 6.1. A function u : U → R, with U ⊂ M convex, is called
semiconcave in U with constant K if, for every geodesic γ : [0, 1] → U and
t ∈ [0, 1], we have

(1− t)u(γ(0)) + tu(γ(1))− u(γ(t)) ≤ t(1− t)K d(γ(0), γ(1))2

2
. (6.3)

A detailed exposition of the basic properties of semiconcave functions
on a manifold is given in [13]. Notice that, in such a reference, functions
satisfying (6.3) are called “semiconcave with modulus ω(t) = Kt2/2”.

It can be checked (see Proposition 10.12 and inequality (10.14) in [13])
that, if u is semiconcave with constant K, then its superdifferential is
nonempty at each point. In addition, any p ∈ d+u(x) satisfies

u(expx(v))− u(x) ≤ 〈p, v〉+K
|v|2
2

for all x ∈ U, v ∈ TxM such that expx(v) ∈ U.

Exp. no IX— Generalized gradient flow and singularities of the Riemannian distance function
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Denote by γ(·) the geodesic γ(t) = expx(tv) starting at x with speed
v. If we set y = γ(1) and w = γ′(1) ∈ TyM , we have x = expy(−w).

Thus, if q ∈ d+u(y), we find u(x) − u(y) ≤ −〈q, w〉 + K|w|2/2. Since
|w| = d(x, y) = |v|, we can sum up with the previous inequality to obtain

〈q, w〉 − 〈p, v〉 ≤ K|v|2. (6.4)

Denote by Π : TxM → TyM the parallel transport along the geodesic γ.
Since parallel transport preserves the scalar product and γ is a geodesic,
we have w = Πv and 〈q, w〉 = 〈Π−1(q), v〉. We conclude that the above
inequality can be rewritten as

〈Π−1(q)− p, v〉 ≤ K|v|2 (6.5)

for all v ∈ TxM with expx(v) ∈ U , and any p ∈ d+u(x) and q ∈ d+u(expx(v)).
It is well known that the properties of the hessian of the distance func-

tion in a Riemannian manifold are closely related with the curvature of the
manifold. Roughly speaking, positive curvature decreases the hessian of
the distance function (i.e., gives a “stronger” semiconcavity), while negative
curvature increases it. In particular, it can be proved that the square of
the distance function is semiconcave with constant 2 only if the manifold
has nonnegative sectional curvature. Even in the case when the curvature
has arbitrary sign, however, it turns out that we can replace the square by
another function of the distance which enjoys the properties we need for our
application. The crucial result for our purposes is the following (see [3] for
a proof).

Theorem 6.2. Let M be a Riemannian manifold and let Ω ⊂M be any open
set (not necessarily smooth). Suppose that all sectional curvatures κ at any
point of Ω satisfy κ ≥ −α2 for some α > 0 and define v(x) = cosh(αd∂Ω(x)).
Then, given any convex compact set C ⊂ Ω, the function v is semiconcave
on C with constant K = α2 maxC v(x).

Remark 6.3. We mention that, if the infimum of the sectional curvature
is zero or positive, then it is possible to use functions different from the
hyperbolic cosine which give a sharper semiconcavity estimate (e.g. the
square of the distance in the euclidean case); the result of Theorem 6.2,
however, suffices for the purposes of this paper. This theorem also imples
that the distance function itself is locally semiconcave in Ω. However, the
semiconcavity constant in general becomes unbounded as ∂Ω is approached.

We now proceed to show how Theorem 4.1 and Corollary 4.3 have been
extended to manifolds in [3].

Theorem 6.4. For a given open bounded subset Ω ⊂ M , let us set u(x) =
d∂Ω(x) for x ∈ Ω. For every x0 ∈ Ω there exists a unique lipschitz continuous
arc γ : [0,+∞[→ Ω such that

γ′(t) ∈ d+u(γ(t)) t ∈ [0,+∞[ a.e. γ(0) = x0. (6.6)

The arc γ satisfies properties analogous to the ones of Theorem 4.1 and
Corollary 4.3 in the euclidean case. In particular, the right derivative γ′+(t)
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exists for every t ≥ 0, is continuous from the right and satisfies (6.6) every-
where. The derivative of u along γ satisfies

d

dt+
u(γ(t)) = |γ′+(t)|2, t ∈ [0,+∞[ . (6.7)

Moreover, for any t0 ≥ 0 such that γ(t0) ∈ Σ(u) there exists σ = σ(t0) > 0
such that γ(t) ∈ Σ(u) for all t ∈ [t0, t0 + σ[ .

Notice that, since γ′(t) ∈ Tγ(t)M and d+u(γ(t)) ⊂ T ∗γ(t)M , in (6.6) the two

spaces are identified via the canonical isomorphism.

Proof. The result can be easily deduced from the euclidean case by using a
local coordinate chart. In fact, if φ : U → M is a local chart around x0,
where U ⊂ Rn, and G(x) is the matrix associated to the scalar product on
TxM in the chart φ, then it is easy to see that the function ū := u◦φ : U → R
satisfies

n∑

i,j=1

gij(x)
∂ū

∂xi

∂ū

∂xj
= 1,

where gij(x) are the entries of the inverse matrix G−1(x). Thus, the as-
sertions of the theorem follow from the corresponding ones of Theorem 4.1.
We observe, in particular, that the equation satisfied by the generalized
characteristics can be written in local coordinates as

γ′(t) ∈ G−1(γ(t))D+ū(γ(t)), (6.8)

where D+ū is the euclidean superdifferential of ū. Finally, the property
that γ(t) can be defined for t ∈ [0,+∞) is obtained by the same argument
of Corollary 4.3. �

Following [3], we now explain how Theorem 5.1 extends to manifolds.

Theorem 6.5. Let M be any smooth complete Riemannian manifold, let
Ω ⊂ M any bounded open set, let u(·) = d∂Ω(·) and let γ(·) be the arc of
Theorem 6.4. If γ(t0) ∈ Σ(u) for some t0 ≥ 0 then γ(t) ∈ Σ(u) for all
t ∈ [t0,+∞[.

Proof. Since Ω is bounded, we can find a finite value α > 0 such that the
sectional curvature is everywhere greater than −α2 on Ω and Theorem 6.2
can be applied.

Let x0 ∈ Ω and let γ(t) be the solution of the differential inclusion (6.6).
Let us set

p(t) = γ′+(t), δ(t) = u(γ(t)).

We now suppose that γ(t0) ∈ Σ(u). We then fix any s ≥ t0, and consider
t > s close enough to s so that γ(s) and γ(t) both belong to a neighborhood
where any two points are connected by a unique minimal geodesic.

Let us call v(s, t) the vector in Tγ(s)M such that γ(t) = expγ(s)(v(s, t)).
Also, we denote by Πs,t : Tγ(s)M → Tγ(t)M the isometry induced by the
parallel transport along the geodesic connecting γ(s) to γ(t), and we set
Πt,s = Π−1

s,t to denote the inverse map, which is associated to the same
geodesic with the opposite direction.
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Using Gauss Lemma (see e.g. Lemma 3.3.5 in [10]), we obtain that

∂

∂t+
d( γ(s) , γ(t) )2

2
= 〈Πs,tv(s, t), γ′+(t)〉 = 〈v(s, t),Πt,sp(t)〉,

and, similarly,

∂

∂s+

d( γ(s) , γ(t) )2

2
= 〈−v(s, t), p(s)〉 .

It follows, for h > 0 small enough,

d

ds+

d( γ(s) , γ(s+ h) )2

2
= 〈Πs+h,sp(s + h) − p(s) , v(s, s + h) 〉 . (6.9)

Let us now set φ(τ) = cosh(α τ), for τ ∈ R. Then, Theorem 6.2 gives a
semiconcavity estimate for the function φ ◦ u. Let us also observe that, by
the definition of superdifferential,

q ∈ d+u(x) ⇐⇒ φ′(u(x)) q ∈ d+(φ ◦ u)(x). (6.10)

Let us denote by C ⊂ M the spherical neighbourhood of radius h centered
at γ(s). If h is sufficiently small, C is a convex set which includes the point
γ(s+h), and in addition supC u(x) ≤ u(γ(s))+h. By Theorem 6.2, we have
that (φ◦u)(x) is semiconcave on C with constant given byK = α2φ(δ(s)+h).
Therefore, using (6.5), (6.6), (6.10) and the property that α2φ = φ′′, we find

〈φ′(δ(s+ h)) Πs+h,sp(s+ h)− φ′(δ(s)) p(s) , v(s, s+ h) 〉
≤ φ′′(δ(s) + h) d(γ(s), γ(s+ h))2.

We rewrite the above inequality as

φ′(δ(s+ h)) 〈Πs+h,sp(s+ h)− p(s), v(s, s+ h)〉
≤ φ′′(δ(s) + h) d(γ(s), γ(s+ h))2 (6.11)

−[φ′(δ(s+ h))− φ′(δ(s))] 〈p(s), v(s, s+ h)〉.

Let us set

vh(s) =
v(s, s+ h)

h
, δh(s) =

δ(s+ h)− δ(s)
h

.

Dividing inequality (6.11) by h2, we obtain, using formula (6.9) and the fact
that d(γ(s), γ(s+ h)) = |v(s, s+ h)| = h|vh(s)|,

φ′(δ(s+ h))

2

d

ds+
|v′h(s)|2 ≤ φ′′(δ(s) + h)|vh(s)|2

(6.12)

−φ
′(δ(s+ h))− φ′(δ(s))

h
〈p(s), vh(s)〉.

We rewrite for simplicity this inequality as

d

ds+
|vh(s)|2 ≤ ψh(s), (6.13)
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where we have set

ψh(s) =
2

φ′(δ(s+ h))

[
φ′′(δ(s) + h)|vh(s)|2

(6.14)

−φ
′(δ(s+ h))− φ′(δ(s))

h
〈p(s), vh(s)〉

]
.

Now, we observe that

lim
h↓0

vh(s) = γ′+(s) = p(s), (6.15)

for a.e. s, which can be easily checked for instance by using local coordinates
around γ(s). More formally, the above relation follows from the fact that
limh→0 vh(s) = d

dh

∣∣
h=0

v(s, s+h), that expγ(s) v(s, s+h) = γ(s+h) and that

the differential of exp at zero is the identity (see the proof of Proposition 18 in
Ch. 5 of [12]); therefore, the derivatives d

dh

∣∣
h=0

v(s, s+h) and d
dh

∣∣
h=0

γ(s+h)
coincide.

In addition, using Theorem 6.4, we find that for a.e. s

lim
h→0

φ′(δ(s+ h))− φ′(δ(s))
h

= φ′′(δ(s)) lim
h→0

δ(s+ h)− δ(s)
h

= φ′′(δ(s))|p(s)|2.

Therefore, we see that the function ψh(s) defined in (6.14) is uniformly
bounded for h > 0 small and s varying in a bounded interval. Moreover, for
all s ≥ 0,

lim
h↓0

ψh(s) = 2
φ′′(δ(s))
φ′(δ(s))

(
|p(s)|2 − |p(s)|4

)

=
2α

tanh(α δ(s))

(
|p(s)|2 − |p(s)|4

)
. (6.16)

From this point on, the proof proceeds as in the euclidean case. �

7. Homotopy equivalence

In this section, we discuss and application of the invariance result de-
scribed above. We begin by recalling the well known notion of homotopy
equivalence.

Definition 7.1. Let X and Y be two topological spaces and let

f : X → Y and g : X → Y

be two continuous maps. We say that f and g are homotopic if there exists
a continuous map H : X × [0, 1]→ Y , called homotopy, such that

H(0, ·) = f(·) and H(1, ·) = g(·).
Furthermore, we say that X and Y have the same homotopy type if there
exist continuous maps f : X → Y and g : Y → X such that g ◦ f and f ◦ g
are homotopic to the identity on X and Y , respectively.

The following result is a direct consequence of Definition 7.1.
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Lemma 7.2. Let Y ⊂ X. If there exists a continuous map

H : X × [0, 1]→ X

such that

(a) H(x, 0) = x, for every x ∈ X,
(b) H(x, 1) ∈ Y , for every x ∈ X, and
(c) H(x, t) ∈ Y , for every (x, t) ∈ Y × [0, 1],

then X and Y have the same homotopy type.

We are now ready to explain how Theorem 6.5 can be used to obtain
the following homotopy equivalence result which holds under no regularity
assumption on ∂Ω.

Theorem 7.3. Let Ω be a bounded open subset of a smooth Riemannian
manifold M . Then Ω has the same homotopy type as Σ(d∂Ω).

Proof. In view of Lemma 7.2 it suffices to construct a continuous map

H : Ω× [0, 1]→ Ω

satisfying conditions (a), (b), and (c) above with Y = Σ(d∂Ω).
For any x ∈ Ω, let γx(·) be the generalized characteristic starting at x.

We claim that

∃T > 0 : ∀x ∈ Ω γx(T ) ∈ Σ(d∂Ω). (7.1)

Indeed, set T = 2 diam(Ω) and let x ∈ Ω. Arguing by contradiction, suppose
γx(T ) /∈ Σ(d∂Ω). Then, in light of Theorem 6.5, γx(t) /∈ Σ(d∂Ω) for all
t ∈ [0, T ]. So, |γ′x(t)| = 1 for every t ∈ [0, T ]. Hence, owing to (6.7), we have

d∂Ω(γx(T )) = d∂Ω(x) +

∫ T

0
|γ′x(t)|2 dt = d∂Ω(x) + T.

Then,

2 diam(Ω) = T = d∂Ω(γx(T ))− d∂Ω(x) ≤ diam(Ω).

The above contradiction shows that (7.1) holds true. Next, define

H(x, t) = γx(tT ) (x, t) ∈ Ω× [0, 1].

We point out that H is a locally Lipschitz continuous map in view of
Lemma 4.2. Moreover, on account of (7.1) and Theorem 6.5, H satisfies
conditions (b) and (c) of Lemma 7.2. This completes the proof. �

8. Singularities of the minimum time function

The time optimal control problem we discuss below is hard to treat ar-
guing just inside the euclidean framework. The analysis we have developed
for Riemannian manifolds, however, turns out to be useful for this purpose.

Let F : Rn → Rn×n be a smooth function such that detF (x) 6= 0 for all x
and let Ω ⊂ Rn be a bounded open set. For any given x ∈ Ω we consider
the control system {

y′(t) = F (y(t))α(t),
y(0) = x,

(8.1)
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where α : [0,+∞) → B1(0) is a measurable function called the control.
We denote by y(·;x, α) the trajectory of (8.1), and we define the exit time
from Ω of the trajectory as

τ(x, α) = inf{t > 0 : y(t;x, α) ∈ ∂Ω} ∈ (0,+∞].

The minimum time function is defined as

T (x) = inf
α
τ(x, α), x ∈ Ω.

Under our hypotheses, it is well known that the infimum is attained and that
T (·) is a semiconcave solution of the Hamilton–Jacobi–Bellman equation

H(x,DT (x)) = 1, x ∈ Ω, (8.2)

where H is defined as

H(x, p) = 〈F (x)F ∗(x)p, p〉
with F ∗ the transpose matrix.

Let us consider the Riemannian metric g on Rn induced by the scalar
product with matrix

G(x) := (F ∗)−1(x)F−1(x).

Then, using the subscripts e and g to distinguish between the euclidean and
Riemannian metrics, we have

|v|g ≤ 1 ⇐⇒ 〈G(x)v, v〉e ≤ 1 ⇐⇒ |F−1(x)v|e ≤ 1,

which shows that an arc y(·) is an admissible trajectory for the control
system (8.1) if and only |y′(t)|g ≤ 1. It follows that T (x) ≡ d∂Ω(x), where
the distance function d∂Ω is taken with respect to the Riemannian metric g.

Thus, the previous analysis can be applied to the singular set Σ(T ) of the
minimum time function. In particular, recalling also (6.8), we obtain that
Σ(T ) is invariant under the flow induced by the differential inclusion

γ′(t) ∈ G−1(γ(t))D+T (γ(t)).

The above inclusion, up to a factor 2, can be written equivalently as

γ′(t) ∈ DpH(γ(t), D+T (γ(t))),

which is the equation of the characteristics associated with (8.2). Therefore,
Theorem 7.3 yields the following.

Corollary 8.1. Ω and Σ(T ) have the same homotopy type.

References

[1] P. Albano, P. Cannarsa, Structural properties of singularities of semiconcave func-
tions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28 (1999), 719–740.

[2] P. Albano, P. Cannarsa, Propagation of singularities for solutions of nonlinear
first order partial differential equations, Arch. Ration. Mech. Anal. 162 (2002), 1–23.

[3] P. Albano, P. Cannarsa, Khai T. Nguyen, C. Sinestrari, Singular gradient flow
of the distance function and homotopy equivalence, Math. Ann. 356 (2013), 23–43.

[4] G. Alberti, L. Ambrosio, P. Cannarsa, On the singularities of convex functions,
Manuscripta Math. 76 (1992), 421–435.

[5] D. Attali, J.-D. Boissonnat, H. Edelsbrunner, Stability and computation of me-
dial axes—a state-of-the-art report, in Mathematical Foundations of Scientific Visu-
alization, Computer Graphics, and Massive Data Exploration (G. Farin, H.-C. Hege,
D. Hoffman, C.R. Johnson, K. Polthier eds.), 109–125, Springer, Berlin (2009).

Exp. no IX— Generalized gradient flow and singularities of the Riemannian distance function

IX–15



[6] P. Cannarsa, C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations,
and optimal control. Birkhäuser, Boston (2004).
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