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Mean field games: the master equation and the mean field limit

P. Cardaliaguet∗

Abstract

We present here results obtained in the joint work with Delarue, Lasry and Lions [4] on
the convergence, as N tends to infinity, of a system of N coupled Hamilton-Jacobi equations,
the Nash system. This system arises in differential game theory. The limit problem can be
expressed in terms of the “Mean Field Game” system (coupling a Hamilton-Jacobi equation
with a Fokker-Planck equation), or, alternatively, in terms of the “master equation” (a kind
of second order partial differential equation stated on the space of probability measures).
We also discuss the behavior of the optimal trajectories, for which we show a propagation of
chaos property.

The description of interactions between “rational agents” is often a difficult issue because the
agents, being supposed rational, observe each other and react in function of their observation
(strategic interaction): this leads to the notion of Nash equilibria, which are often difficult to
compute and interpret. Aumann [2] was among the first to notice that this problem simplifies
a lot when there are infinitely many “non-atomic” agents. By non-atomic, we mean that the
agents have an infinitesimal influence on the global system. For a long time the ideas of non-
atomic games have been applied to games in which the action space of the players is relatively
simple (one-shot games). The importance of dynamic optimization problems (optimal control)
in engineering sciences, economic theory, finance, etc... lead Lasry and Lions [12, 13, 14] and
Huang, Caines and Malhamé [8, 9, 10, 11] to develop the counterpart of Aumann’s “non-antomic
games” to optimal control. This is the so-called mean field games. It is worth mentioning that
similar ideas were discussed in earlier works in the economic literature (heterogeneous agent
models).

Based on heuristic considerations, these authors derived a system describing interacting,
indistinguishable agents. This system, called Mean Field Game (MFG) system, takes the form
of a coupling between a backward Hamilton-Jacobi (HJ) equation and a forward Kolmogorov
equation: $

&
%
´Btu´∆u`Hpx,Duq “ F px,mptqq in r0, T s ˆ Rd,
Btm´∆m´ divpmDpHpx,Duqq “ 0 in r0, T s ˆ Rd,
upT, xq “ Gpx,mpT qq, mp0, ¨q “ mp0q in Rd,

(1)

The data are the Hamiltonian H : RdˆRd Ñ R, the horizon T ą 0, the initial measure m0 and
the maps F,G which describe the influence of the second equation on the first one. The function
u can be thought of as the value function for an average agent seeking to optimize an optimal
control problem, while m represents the time-evolving probability distribution of the state of
the players when all players play in an optimal way.

The terminology Mean Field Games comes from the analogy with statistical physics, which
deals with large populations of particules and derives macroscopic laws from microscopic ones.
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Here also it is tempting to derivate the MFG system from a model where N agents interact,
by letting the number N of agents tend to infinity. Let us recall that the Nash equilibrium
configuration for a system of N´interacting players is described by the following nonlinear
parabolic system (called here the Nash system):

$
’’’’’’’&
’’’’’’’%

´BtvN,ipt,xq ´
Nÿ

j“1
∆xjv

N,ipt,xq ´ β
Nÿ

j,k“1
TrD2

xj ,xk
vN,ipt,xq `Hpxi, Dxiv

N,ipt,xqq

`
ÿ

j‰i
DpHpxj , Dxjv

N,jpt,xqq ¨Dxjv
N,ipt,xq “ FN,ipxq

for pt,xq “ pt, x1, . . . , xN q in r0, T s ˆ pRdqN ,
vN,ipT,xq “ GN,ipxq in pRdqN .

(2)

System (2) describes the Nash equilibrium configuraion of an N´player differential game.
Roughly speaking, for any agent i P t1, . . . , Nu, the map vN,ipt,xq is the minimal cost of agent i
when the initial position of the system at time t is x “ px1, . . . , xN q P RNd. The cost is de-
scribed in term of an optimal control problem with running cost FN,i and terminal cost GN,i.
Such Nash equilibria have been discussed, for instance, by Friedman [7] or Bensoussan and
Frehse [3]. Note that (2) is a nonlinear parabolic system in a high dimensional space (RNd) with
many unknown (N).

Intimately related with the Nash system, the set of optimal trajectories describes the evolu-
tion in time of the state of each agent when playing in an optimal way. It solves a system of N
coupled stochastic differential equations (SDE):

dXi,t “ ´DpH
`
Xi,t, Dxiv

N,ipt,Xtq
˘
dt`?2dBi

t `
a

2βdWt, t P r0, T s, i P t1, . . . , Nu, (3)

where vN,i is the solution to (2) and the ppBi
tqtPr0,T sqi“1,...,N and pWtqtPr0,T s are d´dimensional

independent Brownian motions. The Brownian motions ppBi
tqtPr0,T sqi“1,...,N correspond to the

individual noises, while the Brownian motion pWtqtPr0,T s is the same for all the equations and, for
this reason, is called the common noise. These trajectories somehow play the role of (random)
characteristics for the Nash system (in a kind of Feynman-Kac formula). It is also interesting
to study the limit of the pXi,tq as the number of players tends to infinity.

In order to expect a relation between the Nash system and the MFG system, one has of
course to assume that the FN , GN , F and G are related. As we wish to formalize the fact that
the agents are small and indistinguishable, the more natural choice is to require that

FN,ipxq “ F pxi,mN,i
x q, GN,ipxq “ Gpxi,mN,i

x q, where mN,i
x :“ 1

N ´ 1

ÿ

j‰i
δxi (4)

for any x “ px1, . . . , xN q. We will mostly work under this assumption. Another interesting
regime is when the FN,ipxq can be written in the same form FN pxi,mN,i

x q, but FN becomes
more and more singular as N Ñ `8: this configuration is discussed in Section 4.

The relation between the MFG system and the Nash system is far from obvious, even heuris-
tically. First the measure m0 does not appear in the Nash system, while it is a data for the MFG
system. Second, each map vN,i depends on Nd´space variables, while the pair pu,mq depends
only on d´space variables only. Third there is no parameter β in the MFG system: actually we
will see that the MFG system is indeed the limit of the Nash system only in the regime β “ 0.
In the regime β ą 0, the MFG system has to be replaced by a stochastic MFG system (a system
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of SPDEs) presented below. In order to explain the convergence, Lions introduced (mostly in
an informal way) the following ideas in his courses at the Collège de France [15].

Assume that the FN , GN are given by (4). Then, by the symmetry properties of the
maps vN,i, one expects that there exists a map UN “ UN pt, x,mq, such that the following
representation holds:

vN,ipt,xq “ UN pt, xi,mN,i
x q.

Note that, a priori, UN is defined only on discrete measures taking at most N values. However,
if one could be able to extend UN to the full space of probability measure, it is natural to guess
that the sequence of maps UN should converge, as N Ñ `8, to a map U “ Upt, x,mq. In order
to guess the equation satisfied by U , let us suppose that UN is sufficiently smooth and converge
smoothly to U . Here, by smooth, we mean that UN is sufficiently derivable in all variable, in
particular with respect to the measure m: this point is detailed in Section 1. Then one can show
that

Dxju
N,ipt,xq “ 1

N´1DmU
N pt, xi,mN,i

x , xjq pj ‰ iq,
D2
xj ,xjv

N,ipt,xq “ 1
N´1Dy

“
DmU

N
‰ pt, xi,mN,i

x , xjq
` 1
pN´1q2D

2
mmU

N pt, xi,mN,i
x , xj , xjq pj ‰ iq

while, if j ‰ k, D2
xj ,xk

vN,ipt,xq “ 1
pN´1q2D

2
mmU

N pt, xi,mN,i
x , xj , xkq pi, j, k distinctq.

(5)
Plugging these expressions into the equation satisfied by vN,1 and assuming that UN converges
to U in a sufficiently smooth way leads to the so-called master equation that the limit map U
should satisfy:

$
’’’’’’’’&
’’’’’’’’%

´BtU ´ p1` βq∆xU `Hpx,DxUq
´p1` βq

ˆ

Rd

divy rDmU s dmpyq `
ˆ

Rd

DmU ¨DpHpy,DxUq dmpyq
´2β

ˆ

Rd

divx rDmU s dmpyq ´ β
ˆ

R2d

Tr
“
D2
mmU

‰
dmb dm “ F px,mq

in r0, T s ˆ Rd ˆ PpRdq
UpT, x,mq “ Gpx,mq in Rd ˆ PpRdq

(6)

The master equation is not—by far—the first equation stated in the space of probability mea-
sures: for instance, in a pioneering work, Otto [16] described the porous medium equation as a
gradient flow in the space of measures. However the difficulty with the master equation is that
it is nonlinear, nonlocal and of second order in the measure variable (and not a gradient flow).

There is a strong relation between the master equation and the MFG system (1), at least
when β “ 0. Indeed, when β “ 0, the solutions of the MFG system play the role of characteristics
for the master equation (see Section 3). In this sense the MFG system can indeed be understood
as the limit of the Nash system. When β is positive, the MFG system has to be replaced by the
stochastic MFG system.

Making the above argument rigorous took some time. The main issue is the lack of estimate
for the Nash system which prevents to use simple compactness arguments. Actually one only
has uniform L8´bounds on the vN,i, which is far from sufficient to justify the computation
above. The first step has been the construction of a solution for the master equation (see the
references in [4, 6]). The paper [4], presented in this notes and co-authored with Delarue, Lasry
and Lions, has been the first to derive the existence of a solution to the master equation with
common noise (β ą 0). It also shows for the first time the convergence of the Nash system to
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the master equation, and thus to the MFG system. The aim of these notes is to present these
results, as well as their (partial) extension to the case of singular coupling ([5]).

To fit with the presentation in [4, 5], we work here with functions which are periodic in
the space variable: although this might seem artificial, this simplifies somewhat the analysis,
avoiding the issue of the boundary conditions. So the ambiant space is Td :“ Rd{Zd. An
extension of the results to Rd is discussed in the forthcoming monograph by Carmona and
Delarue [6].

1 Derivatives in the space of probability measures

Throughout these notes with denote by PpTdq the set of Borel probability measures on the torus
Td :“ Rd{Zd. It is endowed with the Monge-Kantorovitch distance:

d1pm,m1q “ sup
φ

ˆ

Td

φpyq dpm´m1qpyq,

where the supremum is taken over all 1´Lipschitz continuous maps φ : Td Ñ R.
Our aim is now to introduce the notion of derivatives for functions defined on PpTdq. There

is a large literature on this topic: see, for instance, the monograph [1] and the references therein.
Here we use two notions. The first one fits with the linear structure of the space signed measures.
The second one has more to do with the “Riemannian” geometry of the space PpTdq.

Definition 1.1. We say that U : PpTdq Ñ R is C1 if there exists a continuous map
δU

δm
:

PpTdq ˆ Td Ñ R such that, for any m,m1 P PpTdq,

lim
sÑ0`

Upp1´ sqm` sm1q ´ Upmq
s

“
ˆ

Td

δU

δm
pm, yqdpm1 ´mqpyq.

The derivative δU
δm is defined up to an additive constant: we use the convention

ˆ

Td

δU

δm
pm, yqdmpyq “ 0. (7)

Note also that

@m,m1 P PpTdq, Upm1q ´ Upmq “
ˆ 1

0

ˆ

Td

δU

δm
pp1´ sqm` sm1, yq dpm1 ´mqpyqds. (8)

In particular, the Lipschitz continuity of U can be estimated by:

|Upm1q ´ Upmq| ď sup
m2

››››Dy
δU

δm
pm2, ¨q

››››8
d1pm,m1q.

This leads us to define the “intrinsic derivative” of U .

Definition 1.2. If
δU

δm
is of class C1 with respect to the second variable, the intrinsic derivative

DmU : PpTdq ˆ Td Ñ Rd is defined by

DmUpm, yq :“ Dy
δU

δm
pm, yq
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The expression DmU can be understood as a derivative of U along vector fields: indeed, if
φ : Td Ñ Rd is a smooth and bounded vector field, then one can show that

lim
hÑ0

Uppid` hφq7mq ´ Upmq
h

“
ˆ

Td

DmUpm, yq ¨ φpyq dmpyq.

Second order derivatives can be defined in a similar way (see [4] for details).

2 Main results

We discuss here the well-posedness of the master equation and the convergence of the Nash
system when the coupling functions FN and GN can be represented as in (4) where F and G
are nonlocal and smooth.

To simplify the discussion, we assume that all the data are sufficiently regular. We also
suppose (which is a very strong condition) that the Hamiltonian is globally Lipschitz continuous
and that all its derivatives are bounded. Finally, and this is a key condition, we assume that F
and G are monotone: for F , for instance, this means that

ˆ

Td

pF px,mq ´ F px,m1qdpm´m1qpxq ě 0 @m,m1 P PpTdq.

Under these assumptions, the master equation (6) is well-posed:

Theorem 2.1 ([4]). Under the above conditions, equation (6) has a unique classical solution.

Our main convergence result is based on the existence of a solution to the master equation.
It can be expressed in two different ways.

Theorem 2.2 ([4]). Let pvN,iq be the solution to the Nash system (2) and U be the classical
solution to the second order master equation (6). Fix N ě 1 and pt0,m0q P r0, T s ˆ PpTdq.

(i) For any x P pTdqN , let mN
x :“ 1

N

řN
i“1 δxi. Then

sup
iPt1,...,Nu

ˇ̌
vN,ipt0,xq ´ Upt0, xi,mN

x q
ˇ̌ ď CN´1.

(ii) For any i P t1, . . . , Nu and x P Td, let us set

wN,ipt0, xi,m0q :“
ˆ

Td

. . .

ˆ

Td

vN,ipt0,xq
ź

j‰i
m0pdxjq where x “ px1, . . . , xN q.

Then ››wN,ipt0, ¨,m0q ´ Upt0, ¨,m0q
››8 ď

"
CN´1{d if d ě 3

CN´1{2 logpNq if d “ 2
(9)

In (i) and (ii), the constant C does not depend on i, t0, m0, i nor N .

The result can actually be proved in more general frameworks and, in particular, as soon
as one knows the existence of a classical solution to the master equation (see [6]). We explain
below that the second statement holds (in a weaker form) when the coupling functions are local.

Theorem 2.2 is the first to show the link between the Nash system and the master equation
(and, as we explain in the next section, with the MFG system). However there remains many
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open problems. The main open question concerns the convergence without the monotonicity
assumptions on F and G. Indeed, when F or G are not monotone, the classical solution of the
master equation does not exist, it is expected to develop shocks in finite time. Then the method
of proof completely breaks down and nothing is known after the onset of singularities. Another
open question concerns more realistic models (where H is not globally Lipschitz continuous,
when there are boundaries, etc...).

The above convergence is also strongly related with the mean field analysis. Namely, let
t0 P r0, T q, m0 P PpTdq and let pZiq be an i.i.d family of N random variables of law m0. We
set Z “ pZ1, . . . , ZN q. Let also ppBi

tqtPr0,T sqiPt1,...,Nu be a family of N independent Brownian
motions which is also independent of pZiq and let pWtqtPr0,T s be a Brownian motion independent
of the pBiq and pZiq. We consider the optimal trajectories pY t “ pY1,t, . . . , YN,tqqtPrt0,T s for the
N´player game:

"
dYi,t “ ´DpHpYi,t, Dxiv

N,ipt,Y tqqdt`
?

2dBi
t `

?
2βdWt, t P rt0, T s

Yi,t0 “ Zi

and the solution pX̃t “ pX̃1,t, . . . , X̃N,tqqtPrt0,T s of stochastic differential equation of McKean-
Vlasov type:

#
dX̃i,t “ ´DpH

´
X̃i,t, DxU

`
t, X̃i,t,LpX̃i,t|W q

˘¯
dt`?2dBi

t `
?

2βdWt,

X̃i,t0 “ Zi.

The next result says that the solutions of the two systems are close:

Theorem 2.3. Let the assumption of Theorem 2.2 be in force. Then, for any N ě 1 and any
i P t1, . . . , Nu, we have

E
„

sup
tPrt0,T s

ˇ̌
ˇYi,t ´ X̃i,t

ˇ̌
ˇ

ď CN´

1
d`8

for some constant C ą 0 independent of t0, m0 and N .

In particular, since the pX̃i,tq are independent conditioned on W , the above result is a
(conditional) propagation of chaos.

3 Ideas of proofs

The convergence results in Theorems 2.2 and Theorem 2.3 rely in a crucial way on the existence
of a classical solution to the master equation. Let us first discuss this point first.

For a start, we focus on the case β “ 0. The key idea is that the solution of the MFG
system is a king of characteristic of the solution of the master equation. More precisely, let
pt0,m0q P r0, T s ˆ PpTdq be an initial position and pu,mq be a solution to the MFG system

$
&
%
´Btu´∆u`Hpx,Duq “ F px,mptqq in rt0, T s ˆ Rd,
Btm´∆m´ divpmDpHpx,Duqq “ 0 in rt0, T s ˆ Rd,
upT, xq “ Gpx,mpT qq, mpt0, ¨q “ m0 in Rd,

Under the monotony condition on F and G this solution is known to exist and to be unique (see
Lasry and Lions [14]). If one sets

Upt0, x,m0q :“ upt0, xq,

Pierre Cardaliaguet
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then we claim that the map U is (at least if it is smooth), a solution of the master equation (6).
Indeed, note first that, for any h P r0, T ´ t0s,

upt0 ` h, ¨q “ Upt0 ` h, ¨,mpt0 ` hqq.
Hence

Btupt0, xq “ BtUpt0, x,m0q `
ˆ

Td

δU

δm
pt0, x,m0, yqBtmpt0, yqdy

“ BtUpt0, x,m0q `
ˆ

Td

δU

δm
pm0, yq p∆m` divpmDpHpx,Duqqq dy

“ BtUpt0, x,m0q `
ˆ

Td

∆y

„
δU

δm


px,m0, yqm0pyqdy

´
ˆ

Td

Dy

„
δU

δm


px,m0, yq ¨DpHpx,Duqqm0pyqdy

“ BtUpt0, x,m0q `
ˆ

Td

divy rDmU s px,m0, yqm0pyqdy
´
ˆ

Td

DmUpx,m0, yq ¨DpHpx,Duqqm0pyqdy.

As
Btupt0, xq “ ´∆u`Hpx,Duq ´ F px,m0q

“ ´∆xUpt0, x,m0q `Hpx,DxUpt0, x,m0qq ´ F px,m0q,
the map U satisfies the master equation (with β “ 0).

Now of cours the difficult part is to justify the assumed regularity of U . For this we argue
as for standard transport equations, by showing that the smoothness of the characteristics with
respect to the initial conditions propagate to the map U : to do so, we linearize the MFG system
with respect to the measure m. The difficult part here is to use in a clever way the monotonicity
condition to ensure the well-posedness of (and to get estimates on) the linearized system.

Note finally that, in view of the above discussion, one can rewrite (9) in Theorem 2.2 as

››wN,ipt0, ¨,m0q ´ upt0, ¨q
››8 ď

"
CN´1{d if d ě 3

CN´1{2 logpNq if d “ 2

where pu,mq is the solution of the MFG system. This explains why the MFG system is indeed
the limit of the Nash system.

The case β ą 0 is much more involve. The general principle is the same as for β “ 0, but
the system of characteristics becomes a stochastic MFG system:

pMFGsq

$
’’’’’’’&
’’’’’’’%

dtut “
 ´p1` βq∆ut `Hpx,Dutq ´ F px,mtq ´

a
2βdivpvtq

(
dt

` vt ¨
a

2βdWt in rt0, T s ˆ Td,

dtmt “
“p1` βq∆mt ` div

`
mtDpHpmt, Dutq

˘‰
dt´a

2βdivpmtdWt

˘

in rt0, T s ˆ Td

mt0 “ m0, uT pxq “ Gpx,mT q in Td.

where pvtq is a vector field which ensures putq to be adapted to the filtration pFtqtPrt0,T s gen-
erated by the M.B. pWtqtPr0,T s. As an intermediate result, we prove the well-posedness of the
stochastic master equation, for which little was known so far (here again we refer to [4, 6] for
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references). The main issue is that, in contrast with the deterministic MFG system, compactness
(and Schauder fixed point) arguments are not adapted and one has instead to rely on continu-
ation methods, which make the work much more technical.

We now turn to the proof of the convergence of the Nash system. As pointed out in the
introduction, we have basically no estimates on the solution of the system (except in a few
particular situations, such as the stationary case or the short time horizon, see [14]). To pass
to the limit, the difficult terms to deal with in the Nash system are the crossed derivatives
DpHpxj , Dxjv

N,jpt,xqq ¨Dxjv
N,ipt,xq. The first key idea is to get rid of these terms by looking

at the solutions along suitable “characteristics”. Not surprisingly, these characteristics are the
optimal trajectories associated with the Nash system. The second key idea is that the classical
solution U of the master equation furnishes an approximate solution to the Nash system. Namely,
let

uN,ipt,xq :“ Upt, xi,mN,i
x q, (10)

then it is not difficult to check that the puN,iq solve the Nash system (up to an error of 1{N
in each equation). The key point is that the puN,iq enjoy very good estimates—actually all the
estimates that are missing for the pvN,iq. For instance, in view of expressions like (5), one has

}Dxju
N,i}8 ď C{N, }Dxj ,xku

N,i}8 ď C{N2 (11)

for any i, j, k distinct. Comparing the vN,i and the uN,i along the optimal solutions for vN,i and
using Gronwal type arguments (thanks to the regularity of the puN,iq) then yield the result after
some computation (that would be a little long to reproduce here).

4 Convergence for local couplings

We now turn to the case where, in the Nash system, the maps FN becomes increasingly singular:
Namely we suppose that there exists a smooth (local) function F : Td ˆ r0,`8q Ñ R such that

lim
NÑ`8F

N pxi,mdxq “ F pxi,mpxiqq, (12)

for any sufficiently smooth probability density mdx “ mpxqdx. In view of the above convergence
result, one expects that the limit system is a MFG system with local interactions:

$
&
%
´Btu´∆u`Hpx,Duq “ F px,mpt, xqq in r0, T s ˆ Td,
Btm´∆m´ divpmDpHpx,Duqq “ 0 in r0, T s ˆ Td,
upT, xq “ Gpxq, mp0, ¨q “ m0 in Td

(13)

(here we have to assume that GN “ Gpxq does not depend on m).
There is a major difference between the non-local and the local coupling. Indeed, when F is a

local couplings, the meaning of the master equation is not clear: obviously one cannot expect U
to be a smooth solution to (6), if only because the coupling blows up at singular measures.
As a consequence, the definition of the maps uN,i through (10) is dubious and, even if such a
definition could make sense, there is no hope that the uN,i satisfy the regularity properties (11)
needed in the proof of convergence.

Nevertheless we can still prove the convergence of the Nash system:
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Theorem 4.1 ([5]). Assume that β “ 0 and that FN “ F εN where, for any ε ą 0, F ε is given by

F εpx,mq “ F p¨, ξε ‹mp¨qq ‹ ξεpxq
and where ξεpxq “ ε´dξpx{εq, ξ being a symmetric smooth nonnegative kernel with compact
support. If one chooses εN “ N´β, with β P p0, p3dpd` 1qq´1q, then there exists γ P p0, 1q such
that ››wN,ipt0, ¨,m0q ´ upt0, ¨q

››
L1pm0q ď CN´γ .

where the wN,i are defined from the solution pvN,iq of the Nash system (2) as in Theorem 2.2,
part (ii), while pu,mq is the solution of the MFG system with local coupling (13).

The result actually holds under general assumption on the coupling function FN : these
assumptions explain how the regularity of FN is allowed to deteriorate in function of the distance
of FN to F , see [5]. One can also show that the optimal trajectories of the Nash system converge
to optimal trajectories associated with the MFG system (leading to a propagation of chaos
property).

As the master equation for the limit problem does not seem to make much sense, we cannot
follow the approach of Theorem 2.2 or 2.3. The new idea consists in comparing directly the
solution of the Nash system to the solution of the MFG system without using the master equation.
Let us point out, however, that we do not recover all the above convergence results and that the
convergence rate is also much sharper in Theorem 2.2. In order to compare directly the solution
of the Nash system vN,i and the u component of the MFG system, we build different and well
chosen paths along which these functions behave in a same way. Then we overcome the difficulty
that the paths are different (as well as the lack of estimate for vN,i) by using the structure of the
equation (convexity of the Hamiltonian and monotonicity of the map F ), somehow reproducing
the uniqueness argument for the MFG system [14] at the level of the difference vN,i ´ u.
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