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Abstract. In this paper, a nonlinear control volume finite element (CVFE) scheme for a degenerate
Keller–Segel model with anisotropic and heterogeneous diffusion tensors is proposed and analyzed. In this
scheme, degrees of freedom are assigned to vertices of a primal triangular mesh, as in finite element methods.
The diffusion term which involves an anisotropic and heterogeneous tensor is discretized on a dual mesh
(Donald mesh) using the diffusion fluxes provided by the conforming finite element reconstruction on the
primal mesh. The other terms are discretized using a nonclassical upwind finite volume scheme on the
dual mesh. The scheme ensures the validity of the discrete maximum principle without any restriction on
the transmissibility coefficients. The convergence of the scheme is proved under very general assumptions.
Finally, some numerical experiments are carried out to prove the ability of the scheme to tackle degenerate
anisotropic and heterogeneous diffusion problems over general meshes.
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1. Introduction and model

In this paper, we are interested in degenerate nonlinear parabolic reaction–convection–diffusion sys-
tems modeling the chemotaxis process over general mesh, with anisotropic and heterogeneous diffusion
tensors. From the numerical point of view, the convergence analysis of the finite volume scheme for
this type of systems is carried out in [4] for the isotropic case (i.e. the diffusion tensor is considered
to be proportional to the identity matrix) and under the “admissibility” assumption on the mesh
used for the space discretization in the sense of satisfying the orthogonality condition (see e.g. [21]).
Although its ability to ensure stability, the classical upwind finite volume method does not permit to
handle anisotropic diffusion even if the mesh verifies the orthogonality condition. Various ”multi-point”
schemes, where the approximation of the flux through an edge involves several scalar unknowns, have
been proposed for anisotropic diffusion problems, see for example [22, 18, 14, 2, 15] for a detailed
review of modern finite volume methods for diffusion equations. However, nonlinear corrections have
been proposed in [11] in order to enforce the monotony, but no complete convergence proof have been
provided for such methods yet.

Let us introduce the chemotaxis model. For that, let Ω be a connected open bounded polygonal
domain of R2, and tf > 0 be a fixed time. The modified Keller–Segel system (e.g., see [26, 27]) modeling
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the chemotaxis process is given by the following set of equations{
∂tu− div (Λ(x)a (u)∇u− Λ(x)χ (u)∇v) = f (u) in Qtf = Ω× (0, tf),
∂tv − div (D(x)∇v) = g (u, v) in Qtf = Ω× (0, tf).

(1.1)

The system is complemented with zeros-flux boundary conditions on Σtf := ∂Ω× (0, tf) given by

(Λ(x)a (u)∇u− Λ(x)χ (u)∇v) · n = 0, D(x)∇v · n = 0, (1.2)

and the initial conditions on Ω:

u (x, 0) = u0(x), v (x, 0) = v0(x). (1.3)

In the above model, the density of the cell-population and the chemoattractant concentration are
represented by u = u (x, t) and v = v (x, t) respectively. Next, a(u) is a density-dependent diffusion
coefficient, and Λ(x) is the diffusion tensor in a heterogeneous medium. Furthermore, the function χ
is the chemoattractant sensitivity, and D(x) is the diffusion tensor for v. The function f describes the
cell density proliferation and the cell density death. The function g describes the production and the
degradation of the chemoattractant concentration; for simplicity, we assume that it is a linear function
given by

g (u, v) = αu− βv, α, β ≥ 0. (1.4)
α and β represent respectively the production and the degradation rate of the chemical concentration.

Let us state the main assumptions made about system (1.1)–(1.3):

(A1) The cell-density diffusion coefficient a : [0, 1] −−→ R+ is a continuous function such that,
a(0) = a(1) = 0, and a(u) > 0 for 0 < u < 1.

(A2) The chemosensitivity χ : [0, 1] −−→ R+ is a continuous function such that, χ(0) = χ(1) = 0.

Furthermore, we assume that there exists a function µ ∈ C
(
[0, 1] ;R+), such that µ (u) = χ (u)

a (u)
for all u ∈ (0, 1) and µ(0) = µ(1) = 0.

(A3) The diffusion tensors Λ and D are two bounded, uniformly positive symmetric tensors on Ω,
that is: ∀w 6= 0, 0 < T− |w|2 ≤ 〈T (x)w,w〉 ≤ T+ |w|2 <∞, T = Λ or D.

(A4) The cell density proliferation f is a continuous function such that f (0) ≥ 0 and f (1) ≤ 0.

(A5) The initial function u0 and v0 are two functions in L2 (Ω) such that, 0 ≤ u0 ≤ 1 and v0 ≥ 0.

In the sequel, we use the Lipschitz continuous nondecreasing function ξ : R −−→ R defined by

ξ (u) :=
∫ u

0

√
a (s) ds, ∀u ∈ R. (1.5)

We recall the definition of a weak solution of system (1.1)–(1.3).

Definition 1.1 (weak solution). Under the assumptions (A1)–(A5), we say that the couple of mea-
surable functions (u, v) is a weak solution of system (1.1)–(1.3) if

0 ≤ u (x, t) ≤ 1, 0 ≤ v (x, t) for a.e. in Qtf ,

ξ (u) ∈ L2
(
0, tf ;H1 (Ω)

)
,

v ∈ L∞ (Qtf ) ∩ L2
(
0, tf ;H1 (Ω)

)
,
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and for all ϕ,ψ ∈ D
(
Ω× [0, tf)

)
, one has

−
∫

Ω
u0(x)ϕ (x, 0) dx−

∫∫
Qtf

u ∂tϕ dx dt+
∫∫

Qtf

√
a (u)Λ(x)∇ξ (u) · ∇ϕdx dt

−
∫∫

Qtf

Λ(x)χ (u)∇v · ∇ϕ dx dt =
∫∫

Qtf

f (u)ϕ (x, t) dx dt, (1.6)

−
∫

Ω
v0(x)ψ (x, 0) dx−

∫∫
Qtf

v ∂tψ dx dt+
∫∫

Qtf

D(x)∇v · ∇ψ dx dt =
∫∫

Qtf

g (u, v)ψ dx dt. (1.7)

A standard weak formulation uses the Kirchhoff transform κ(u) as a primitive of the function a(u).
According to [8, 9], we approximate the degenerate diffusion term in its original form in (1.1). Next,
we use the specific form of the chemoattractant function to propose a new scheme preserving the
positivity of solutions and convergent.

Schemes with mixed conforming piecewise linear finite elements on triangles for the diffusion term
and finite volume on dual elements were proposed and analyzed in [7, 13, 1] for fluid mechanics
equations, and in [25] for a degenerate nonlinear chemotaxis model. The convergence analysis for
these schemes is carried out for the case of anisotropic and heterogeneous diffusion problems under
an essential assumption that all the transmissibility coefficients are nonnegative. However, there is
no sufficient conditions for nonnegativity of transmissibility coefficients and therefore the schemes do
not permit to tackle general anisotropic diffusion problems. Nevertheless, in [12] the authors propose
a combined nonconforming finite elements finite volumes scheme for which they add a monotone
regularization permitting positiveness of discrete solution; the convergence of the scheme, introduced
in [11], is ensured under a numerical condition depending on the mesh size and on the discrete solutions.

Recently, Cancès and Guichard proposed and analyzed in [9] a nonlinear Control Volume Finite
Element (CVFE) scheme for solving degenerate anisotropic parabolic diffusion equations modeling
flows in porous media. The convergence analysis is carried out without any restriction on the trans-
missibility coefficients, and the efficiency of the scheme is tested using anisotropic diffusion tensors
over an unstructured mesh.
Our aim is to elaborate a general approach, inspired from [9] and [25], to approximate a nonlinear
degenerate parabolic system modeling the chemotaxis process over general mesh, with anisotropic
and heterogeneous diffusion tensors. Especially, the diffusion terms are discretized by means of a con-
forming piecewise linear finite element method on a primal triangular mesh and using the Godunov
scheme to approximate the diffusion fluxes provided by the conforming finite element reconstruction.
The others terms are discretized by means of a nonclassical upwind finite volume method on a dual
mesh (Donald mesh or Median dual mesh).

The rest of this paper is organized as follows. In section 2, we define a primal triangular mesh
and its corresponding Donald dual mesh, next, we define standard P1 finite element and finite vol-
ume reconstructions. Then, we introduce the nonlinear CVFE scheme and specify the discretization
of the degenerate diffusion and convection terms. In Section 3, we prove the existence of a discrete
solution to the CVFE scheme based on the establishment of a priori estimates on the discrete so-
lution as well as the discrete maximum principle. In Section 4, we give estimates on differences of
time and space translates for the approximate solutions. In Section 5, using the Kolmogorov relative
compactness criterion, we prove the convergence of a subsequent of discrete solutions to the weak
solution (Definition 1.1). Finally, some numerical simulations are carried out, in Section 6, to show
the effectiveness of the scheme to tackle degenerate anisotropic and heterogeneous diffusion problems
over general unstructured mesh.
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2. The numerical scheme and main result

In this section, we describe the space and time discretizations of Qtf , define the approximate spaces,
introduce useful properties on discrete H1-norms stemming from finite elements discretizations as well
as the nonlinear CVFE scheme, and state the main result.

2.1. Space-time discretization and notations

2.1.1. Space discretizations of Ω.

In order to discretize problem (1.1)–(1.3), we perform a finite element triangulation T of the polygonal
domain Ω, consisting of open bounded triangles such that Ω =

⋃
T∈T T and such that for all T, T ′ ∈ T ,

T ∩ T ′ is either an empty set or a common vertex or edge of T and T ′. We denote by V the set of
vertices of the discretization T , located at positions (xK)K∈V , and by E the set of edges of T joining
two vertices of V. The edge joining two vertices K and L is denoted by σKL.

For a given triangle T ∈ T , we denote by xT the centre of gravity of T , by ET the set of the edges
of T , by hT the diameter of T , and by ρT the diameter of the largest ball inscribed in the triangle T .
We denote by h the size of the triangulation T defined by h := maxT∈T hT and and by θT the shape
regularity of the triangulation T , defined by θT := maxT∈T hT /ρT .

For K ∈ V, we denote by EK the set of the edges having K as an extremity, and by TK the subset of
T including the triangles having K as a vertex. We also define a barycentric dual meshM (known as

K

L

σKL xT

Figure 2.1. Triangular mesh T and Donald dual meshM: dual volumes, vertices, interfaces.

Donald dual or Median dual mesh) generated by the triangulation mesh T . There is one dual element
ωK associated with each vertex K ∈ V. We construct it around the vertex K by connecting the
barycenter xT of each surrounding triangle T ∈ TK with the barycenters xσ of the edges σ ∈ EK . We
refer to Fig. 2.1 for an illustration of the primal and the barycentric dual mesh in a two-dimensional
space. Note that Ω =

⋃
K∈V ωK . The 2-dimensional Lebesgue measure of ωK is denoted by mK .
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2.2. Discrete finite elements space HT , control volumes space XM.

We define two discrete functional spaces associated with each mesh of the above meshes. The first
one, denoted by HT , is the usual P1-finite element space corresponding to the triangular mesh T ,
consisting of piecewise affine finite elements.

HT :=
{
ϕ ∈ C0

(
Ω
)

; ϕ|T ∈ P1 (R) , ∀T ∈ T
}
⊂ H1 (Ω) .

The canonical basis of HT is spanned by the shape functions (ϕK)K∈V , such that

ϕK (xK) = 1, ϕK (xL) = 0 if L 6= K, ∀K ∈ V.

On the other hand, we denote by XM the discrete control volumes space consisting of piecewise
constant functions on the dual meshM.

XM = {ϕ : Ω −→ R measurable; ϕ|ωK ∈ R is constant, ∀K ∈ V}.

Given a vector (uK)K∈V ∈ R#V(resp. (vK)K∈V ∈ R#V), there exists a unique function uT ∈ HT (resp.
vT ∈ HT ) and a unique uM ∈ XM (resp. vM ∈ XM) such that

uT (xK) = uM (xK) = uK , ∀K ∈ V,
vT (xK) = vM (xK) = vK , ∀K ∈ V.

(2.1)

For all (K,L) ∈ V2, we define the transmissibility coefficient TKL by

TKL = −
∫

Ω
T (x)∇ϕK(x) · ∇ϕL(x)dx = TLK , T = Λ or D. (2.2)

We have TKK = −
∑
L6=K

TKL, since
∑
K∈V
∇ϕK = 0. As a consequence, one has

∫
Ω
T (x)∇uT · ∇vT dx =

∑
σKL∈E

TKL (uK − uL) (vK − vL) , T = Λ or D.

2.3. Time discretization of (0, tf).

For the time discretization of the interval (0, tf), we consider a uniform time discretization, and we do
not impose any restriction on the time step. In addition, we assume that the spatial meshes do not
change with the time step. We note that all the results presented in this paper can be extended to the
case of general time discretization.
Let N be a nonnegative integer, we define the uniform time step ∆t = tf/ (N + 1), and tn = n∆t for
all n ∈ {0, . . . , N + 1}, so that t0 = 0, and tN+1 = tf .

2.4. Space-time discretization of Qtf .

Here, we define the space and time discrete spaces HT ,∆t and XM,∆t as the set of piecewise constant
functions in time with values in HT and XT respectively.

HT ,∆t = {ϕ ∈ L2
(
0, tf ;H1 (Ω)

)
, ϕ (x, t) = ϕ

(
x, tn+1

)
∈ HT , ∀t ∈ (tn, tn+1]},

XM,∆t = {ϕ : Qtf −→ R measurable, ϕ (x, t) = ϕ
(
x, tn+1

)
∈ XM, ∀t ∈ (tn, tn+1]}.

For a given (unK)n∈{0,··· ,N+1},K∈V ∈ R(N+2)#V (resp. (vnK)n∈{0,··· ,N+1},K∈V), there exists a unique
function uT ,∆t ∈ HT ,∆t (resp. vT ,∆t ∈ HT ,∆t) and a unique uM,∆t ∈ XM,∆t (resp. vM,∆t ∈ XM,∆t)
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such that

uT ,∆t (xK , t) = uM,∆t (xK , t) = un+1
K , ∀K ∈ V, ∀t ∈ (tn, tn+1],

vT ,∆t (xK , t) = vM,∆t (xK , t) = vn+1
K , ∀K ∈ V, ∀t ∈ (tn, tn+1].

(2.3)

2.5. The nonlinear CVFE scheme

The discretizations of the initial data u0
K and v0

K , K ∈ V are defined by

u0
M (x) = u0

K = 1
mK

∫
ωK

u0 (y) dy, ∀x ∈ ωK , (2.4)

v0
M (x) = v0

K = 1
mK

∫
ωK

v0 (y) dy, ∀x ∈ ωK , (2.5)

2.5.1. Discretization of the first equation of system (1.1)

For all K ∈ V, and n ∈ {0, . . . , N}, we define the discretization of the diffusion term by∑
σKL∈EK

an+1
KL ΛKL

(
un+1
K − un+1

L

)
,

where,

an+1
KL =


max
u∈In+1

KL

a (u) if ΛKL ≥ 0,

min
u∈In+1

KL

a (u) if ΛKL ≤ 0,
(2.6)

and In+1
KL denotes the interval defined by

In+1
KL = [min(un+1

K , un+1
L ),max(un+1

K , un+1
L )]

Let us focus on the discretization of the convection term, and recall that the function χ (u) is defined
to be the product of the continuous functions µ (u) and a (u). To handle the discretization of the
convection term in order to obtain a robust and stable scheme, we perform a nonclassical upwind
finite volume scheme which consists of considering an upwind scheme for the function µ (u) according
to the discrete gradient of v, and an upwind finite volume scheme for the function a (u) with respect
to u. These choices of discretization are crucial to ensure the discrete maximum principle as well as
the energy estimates on the approximate solutions.

Definition 2.1. Consider system (1.1) and the notations given in §2.2. We say that the function
µn+1
KL = z

(
un+1
K , un+1

L

)
is an approximation of the function µ (u) on the interfaces of ωK with respect

to the discrete gradient of v if it is nonincreasing (resp. nondecreasing) with respect to the first
variable un+1

K and nondecreasing (resp. nonincreasing) with respect to the other variable un+1
L when

ΛKL
(
vn+1
K − vn+1

L

)
≥ 0 (resp. ΛKL

(
vn+1
K − vn+1

L

)
≤ 0). Furthermore, we have z

(
un+1
K , un+1

K

)
=

µ
(
un+1
K

)
.

We give here two examples on the construction of µn+1
KL . The first example consists of taking the

Engquist-Osher scheme and the second example consists of taking the Godunov scheme (see e.g. [24,
28]).
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Engquist-Osher scheme

• µn+1
KL =

µ↓
(
un+1
K

)
+ µ↑

(
un+1
L

)
, if ΛKL

(
vn+1
K − vn+1

L

)
≥ 0,

µ↑
(
un+1
K

)
+ µ↓

(
un+1
L

)
, if ΛKL

(
vn+1
K − vn+1

L

)
< 0.

The functions µ↑ and µ↓ are given by

µ↑ (z) :=
∫ z

0

(
µ′ (s)

)+ ds, µ↓ (z) := −
∫ z

0

(
µ′ (s)

)− ds.

Herein, s+ = max(s, 0) and s− = max(−s, 0).

Godunov scheme

• µn+1
KL =



max
[un+1
K ,un+1

L ]
µ (u) , if ΛKL

(
vn+1
K − vn+1

L

)
≥ 0, and un+1

K ≤ un+1
L ,

min
[un+1
L ,un+1

K ]
µ (u) , if ΛKL

(
vn+1
K − vn+1

L

)
≥ 0, and un+1

K > un+1
L ,

max
[un+1
L ,un+1

K ]
µ (u) , if ΛKL

(
vn+1
K − vn+1

L

)
< 0, and un+1

K > un+1
L ,

min
[un+1
K ,un+1

L ]
µ (u) , if ΛKL

(
vn+1
K − vn+1

L

)
< 0, and un+1

K ≤ un+1
L .

We are now in a position to introduce what we call nonlinear control volume finite element (CVFE)
scheme. For all K ∈ V, and all n ∈ {0, . . . , N},

un+1
K − unK

∆t mK+
∑

σKL∈EK

ΛKLan+1
KL

(
un+1
K − un+1

L

)
−
∑

σKL∈EK

ΛKLµn+1
KL a

n+1
KL

(
vn+1
K − vn+1

L

)
= f

(
un+1
K

)
mK ,

(2.7)
where, the transmissibility coefficients ΛKL and DKL are given in equality (2.2).

2.5.2. Discretization of the second equation of system (1.1)–(1.3)

Here, we focus on the discretization of the second equation of system (1.1)–(1.3). We note that a
classical discretization of this equation is given by the following form

mK
vn+1
K − vnK

∆t +
∑

σKL∈EK

DKL

(
vn+1
K − vn+1

L

)
= mK

(
αunK − βvn+1

K

)
. (2.8)

However, this discretization does not guaranty the positivity of the discrete solutions without any re-
striction on the transmissibility coefficients, for instance, one can get the discrete maximum principle
by assuming that all the transmissibility coefficients DKL are nonnegative (see [25]).
Here, we propose a numerical discretization in order to ensure the discrete maximum principle with-
out any restriction on the transmissibility coefficients. To do this, we introduce the following set of
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functions: η (v), p (v), Γ (v) and φ (v) defined by

η (v) = max (0,min (v, 1)) , (2.9)

p (v) =
∫ v

1

1
η (s) ds =

{
ln(v) if v ∈ (0, 1),
v − 1 if v ≥ 1,

(2.10)

Γ (v) =
∫ v

1
p (s) ds =

{
v ln(v)− v + 1 if v ∈ [0, 1),
(v−1)2

2 if v ≥ 1,
(2.11)

φ (v) =
∫ v

0

1√
η (s)

ds =
{

2
√
v if v ∈ [0, 1),

v + 1 if v ≥ 1.
(2.12)

In the sequel, we adopt the convention

η(v)p(v) = 0 if v ≤ 0. (2.13)

We give the discretization of the second equation of system (1.1)–(1.3); specifically, we have

mK
vn+1
K − vnK

∆t +
∑

σKL∈EK

DKLη
n+1
KL

(
p
(
vn+1
K

)
− p

(
vn+1
L

))
= mK

(
αunK − βvn+1

K

)
, (2.14)

where, denoting by Jn+1
KL = [min(vn+1

K , vn+1
L ),max(vn+1

K , vn+1
L )], we have set

ηn+1
KL =

maxs∈Jn+1
KL

η(s) if DKL ≥ 0,
mins∈Jn+1

KL
η(s) if DKL < 0.

(2.15)

Note that because of the use of the function p in the scheme, the scheme (2.14) only makes sense if

vn+1
K > 0 ∀K ∈ V, ∀n ≥ 0. (2.16)

This will be assumed in the a priori estimates and rigorously proved later on (cf. Lemma 3.11).
We can show that the scheme (2.7)–(2.14), whose construction is based on finite elements for the

diffusion term and a nonclassical upwind finite volume for the convection term, can be interpreted as
a finite volume scheme. Indeed, denoting by

Fn+1
KL = ΛKLan+1

KL

(
un+1
K − un+1

L

)
− ΛKLµn+1

KL a
n+1
KL

(
vn+1
K − vn+1

L

)
,

Φn+1
KL = DKLη

n+1
KL

(
p
(
vn+1
K

)
− p

(
vn+1
L

))
.

Then the scheme (2.7)–(2.14) rewrites

Fn+1
KL + Fn+1

LK = 0 = Φn+1
KL + Φn+1

LK , for all σKL ∈ E ,

mK
un+1
K − unK

∆t +
∑

σKL∈EK

Fn+1
KL = f

(
un+1
K

)
mK , for all K ∈ V,

mK
vn+1
K − vnK

∆t +
∑

σKL∈EK

Φn+1
KL = g

(
unK , v

n+1
K

)
mK , for all K ∈ V.

2.6. Main result

Let (Tm)m≥1 be a sequence of triangulations of Ω such that

hm = max
T∈Tm

diam (T )→ 0 as m→∞.
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We assume that the sequence of triangulations has a bounded regularity, i.e., there exists a constant
θ > 0 such that

θTm ≤ θ, ∀m ≥ 1.
As before, a sequence of dual meshes (Mm)m≥1 is given.

Let (Nm)m be an increasing sequence of integers, then we define the corresponding sequence of time
steps (∆tm)m such that ∆tm → 0 as m → ∞. The intention of this paper is to prove the following
main result.

Theorem 2.2. Let
(
uMm,∆tm , vMm,∆tm

)
m be a sequence of solutions to the scheme (2.7)–(2.14), such

that 0 ≤ uMm,∆tm ≤ 1 and 0 ≤ vMm,∆tm for almost everywhere in Qtf , then

uMm,∆tm → u and vMm,∆tm → v a.e. in Qtf as m→∞,

where the couple (u, v) is a weak solution to the system (1.1)–(1.3) in the sense of Definition 1.1.

3. Discrete properties, a priori estimates and existence of a discrete solution

In this section, we first bring up some technical lemmas presented by Cancès and Guichard [9], that
we reproduce here for clarity. Then, we establish the a priori estimates necessary to prove later the
existence of a solution to the discrete problem.

Lemma 3.1. Let
(
un+1
K

)
K,n
∈ R(N+1)#V (resp.

(
vn+1
K

)
K,n
∈ R(N+1)#V), then denoting by ξT ,∆t (resp.

φT ,∆t) the unique function of HT ,∆t with nodal values
(
ξ
(
un+1
K

))
∈ R(N+1)#V (resp.

(
φ
(
vn+1
K

))
∈

R(N+1)#V), one has

N∑
n=0

∆t
∑

σKL∈E
ΛKLan+1

KL

(
un+1
K − un+1

L

)2

≥
N∑
n=0

∆t
∑

σKL∈E
ΛKL

(
ξ
(
un+1
K

)
− ξ

(
un+1
L

))2
=
∫∫

Qtf

Λ∇ξT ,∆t · ∇ξT ,∆tdxdt, (3.1)

and
N∑
n=0

∆t
∑

σKL∈E
DKLη

n+1
KL

(
p(vn+1

K )− p(vn+1
L )

)2

≥
N∑
n=0

∆t
∑

σKL∈E
DKL

(
φ
(
vn+1
K

)
− φ

(
vn+1
L

))2
=
∫∫

Qtf

D∇φT ,∆t · ∇φT ,∆tdxdt. (3.2)

Proof. We refer to [9, Lemma 3.1], for the proof of this lemma.

Let T ∈ T , and let (K, L) ∈ V2, we denote by

λTKL := −
∫
T

Λ∇ϕK · ∇ϕLdx = λTLK .

δTKL := −
∫
T
D∇ϕK · ∇ϕLdx = δTLK .

As a consequence, ΛKL =
∑
T∈T

λTKL and DKL =
∑
T∈T

δTKL for all σKL ∈ E .

9
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Lemma 3.2. Let ΨT =
∑
K∈V

ψKϕK ∈ HT , then there exists a quantity C0 depending only on Λ, D,

and θT such that ∑
σKL∈E

∑
T∈T

∣∣∣λTKL∣∣∣ (ψK − ψL)2 ≤ C0

∫
Ω

Λ∇ΨT · ∇ΨT dx, (3.3)

and ∑
σKL∈E

∑
T∈T

∣∣∣δTKL∣∣∣ (ψK − ψL)2 ≤ C0

∫
Ω
D∇ΨT · ∇ΨT dx. (3.4)

Proof. We refer to [9, Lemma 3.2] for the proof of this lemma.

Lemma 3.3. There exists a quantity C1 depending only on Λ, D, and θT such that
N∑
n=0

∆t
∑

σKL∈E
|ΛKL| an+1

KL

(
un+1
K − un+1

L

)2
≤ C1

N∑
n=0

∆t
∑

σKL∈E
ΛKLan+1

KL

(
un+1
K − un+1

L

)2
. (3.5)

and
N∑
n=0

∆t
∑

σKL∈E
|DKL| ηn+1

KL

(
p(vn+1

K )− p(vn+1
L )

)2
≤ C1

N∑
n=0

∆t
∑

σKL∈E
DKLη

n+1
KL

(
p(vn+1

K )− p(vn+1
L )

)2
.

(3.6)

Proof. We denote by E− := {σKL ∈ E ; ΛKL < 0}, then since |x| = x + 2x−, x− = max (−x, 0), one
has

N∑
n=0

∆t
∑

σKL∈E
|ΛKL| an+1

KL

(
un+1
K − un+1

L

)2
=

N∑
n=0

∆t
∑

σKL∈E
ΛKLan+1

KL

(
un+1
K − un+1

L

)2

+ 2
N∑
n=0

∆t
∑

σKL∈E−
|ΛKL| an+1

KL

(
un+1
K − un+1

L

)2
.

Now, from the definition (2.6) of an+1
KL , there exists c ∈

◦
In+1
KL such that(

ξ
(
un+1
K

)
− ξ

(
un+1
L

))2
= a (c)

(
un+1
K − un+1

L

)2
≥ an+1

KL

(
un+1
K − un+1

L

)2
, ∀σKL ∈ E−

Therefore,
N∑
n=0

∆t
∑

σKL∈E
|ΛKL| an+1

KL

(
un+1
K − un+1

L

)2
≤

N∑
n=0

∆t
∑

σKL∈E
ΛKLan+1

KL

(
un+1
K − un+1

L

)2

+ 2
N∑
n=0

∆t
∑

σKL∈E
|ΛKL|

(
ξ
(
un+1
K

)
− ξ

(
un+1
L

))2
. (3.7)

Lemma 3.2 ensures the existence of a quantity C0 > 0 (= C0 (Λ, θT )) such that
N∑
n=0

∆t
∑

σKL∈E
|ΛKL|

(
ξ
(
un+1
K

)
− ξ

(
un+1
L

))2
≤

N∑
n=0

∆t
∑

σKL∈E

∑
T∈T
|λKL|

(
ξ
(
un+1
K

)
− ξ

(
un+1
L

))2

≤ C0

∫
Qt

Λ∇ξT ,∆t · ∇ξT ,∆tdx dt,

and from Lemma 3.1, we deduce that
N∑
n=0

∆t
∑

σKL∈E
|ΛKL|

(
ξ
(
un+1
K

)
− ξ

(
un+1
L

))2
≤ C0

N∑
n=0

∆t
∑

σKL∈E
ΛKLan+1

KL

(
un+1
K − un+1

L

)2
. (3.8)

10
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Plugging estimate (3.8) into estimate (3.7), then estimate (3.5) holds with C1 = 1 + 2C0. The proof
of estimate (3.6) is similar.

3.1. Discrete maximum principle

Lemma 3.4. Let
(
un+1
K , vn+1

K

)
K∈V, n∈{0,...,N}

be a solution to the CVFE scheme (2.7)–(2.14). Then,
for all K ∈ V, and all n ∈ {0, . . . , N + 1}, we have 0 ≤ unK ≤ 1.

Proof. We show this property using an induction on n. The property is true for n = 0 thanks to the
definitions (2.4) and (2.5) of u0

K and v0
K and to the assumptions on u0 and v0. Now, assume that the

claim is true up to time step n. Consider a dual control volume ωK such that un+1
K = min

L∈V
{un+1

L }, we

want to show that un+1
K ≥ 0 i.e.

(
un+1
K

)−
= 0. Multiplying equation (2.7) by −

(
un+1
K

)−
, one has

−mK
un+1
K − unK

∆t
(
un+1
K

)−
−

∑
σKL∈EK

ΛKLan+1
KL

(
un+1
K − un+1

L

) (
un+1
K

)−
+

∑
σKL∈EK

ΛKLµn+1
KL a

n+1
KL

(
vn+1
K − vn+1

L

) (
un+1
K

)−
= −mKf

(
un+1
K

) (
un+1
K

)−
≤ 0,

(3.9)
to which, we have used the extension by f (0) ≥ 0 (see assumption (A4)) of the continuous function
f for u ≤ 0.
In view of the definition (2.6) of an+1

KL , and of the fact that a (u) = 0 if u ≤ 0, one has an+1
KL = 0, if

ΛKL ≤ 0. Therefore, the second term in the left hand side of equation (3.9) reads to

−
∑

σKL∈EK

an+1
KL (ΛKL)+

(
un+1
K − un+1

L

) (
un+1
K

)−
≥ 0,

Let us now focus on the third term of equation (3.9), and denote by A this term. Since an+1
KL = 0 for

ΛKL ≤ 0, then A rewrites

A =
∑

σKL∈EK

Λ+
KLµ

n+1
KL a

n+1
KL

(
vn+1
K − vn+1

L

)+ (
un+1
K

)−
−

∑
σKL∈EK

Λ+
KLµ

n+1
KL a

n+1
KL

(
vn+1
K − vn+1

L

)− (
un+1
K

)−
.

The second term of A is nonpositive, but in view of Definition 2.1 on the approximation µn+1
KL and in

view of the extension by zero of the function µ for u ≤ 0 since µ (0) = 0, one can deduce that

µn+1
KL Λ+

KL

(
vn+1
K − vn+1

L

)− (
un+1
K

)−
≤ µ

(
un+1
K

)
Λ+
KL

(
vn+1
K − vn+1

L

)− (
un+1
K

)−
= 0,

thus, the second term of A is equal to zero and consequently A ≥ 0 since the first term of A is
nonnegative.
Finally, we use the identity un+1

K =
(
un+1
K

)+
−
(
un+1
K

)−
and the nonnegativity of unK , one can deduce

from equation (3.9) that
(
un+1
K

)−
= 0. According to the choice of the dual control volume ωK , then

min
L∈V
{un+1

L } is non-negative. Consequently, unK ≥ 0, ∀K ∈ V, and all n ∈ {0, . . . , N + 1}.
In order to prove by induction that unK ≤ 1, ∀K ∈ V, ∀n ∈ {0, . . . , N + 1}, we proceed in the same
way as before, so that we consider a dual control volume ωK such that un+1

K = max
L∈V
{un+1

L }. We get
up the result using Remark 2.1, the extension by zero of each of the function a, and µ for u ≥ 1, and
the extension by f (1) ≤ 0 of the continuous function f for u ≥ 1.

11
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3.2. Entropy estimates on vM,∆t

In the following, C denotes a “generic” constant, that may vary throughout the proofs. We prove now
an entropy estimate on vM,∆t.

Lemma 3.5. There exists C > 0 depending only on ‖v0‖L2(Ω), Ω, tf , α and β such that, for all
n? ∈ {0, . . . , N}, one has

∑
K∈V

mKΓ(vn?+1
K ) +

n?∑
n=0

∆t
∑

σKL∈E
DKLη

n+1
KL

(
p(vn+1

K )− p(vn+1
L )

)2
≤ C.

Proof. It follows from Jensen’s inequality – recall that Γ is convex – that∑
K∈V

mKΓ
(
v0
K

)
≤
∫

Ω
Γ (v0(x)) dx.

Since Γ(v) ≤ (v − 1)2 for all v ≥ 0, we obtain that∑
K∈V

mKΓ
(
v0
K

)
≤
∫

Ω
(v0(x)− 1)2 dx ≤ C. (3.10)

Multiplying the scheme (2.14) by p(vn+1
K )∆t and summing of K ∈ V and n = 0, . . . , n? provides

A+ B = C, (3.11)
where we have set

A =
n?∑
n=0

∑
K∈V

mK(vn+1
K − vnK)p(vn+1

K ),

B =
n?∑
n=0

∆t
∑

σKL∈E
DKLη

n+1
KL

(
p(vn+1

K )− p(vn+1
L )

)2
,

C =
n?∑
n=0

∆t
∑
K∈V

mK(αunK − βvn+1
K )p(vn+1

K ).

Since, thanks to Lemma 3.4, unK is non-negative for all K ∈ V and all n ≥ 0, and since p(v) ≤ (v − 1)
for all v ≥ 0 (with the convention p(0) = −∞), one has

αunKp(vn+1
K ) ≤ αunK(vn+1

K − 1).
On the other hand, there exists an absolute constant c? such that vp(v) ≥ (v − 1)2 − c? for all v ≥ 0.
Therefore,

βvn+1
K p(vn+1

K ) ≥ β(vn+1
K − 1)2 − c?.

As a consequence, we obtain that

C ≤ tf |Ω|c? +
n?∑
n=0

∆t
∑
K∈V

mK

(
αunK(vn+1

K − 1)− β(vn+1
K − 1)2

)
.

Using the weighted Young’s inequality αab ≤ βb2 + α2

4βa
2 for all (a, b) ∈ R2 provides

αunK(vn+1
K − 1)− β(vn+1

K − 1)2 ≤ α2

4βu
n
K ≤

α2

4β
thanks to Lemma 3.4. Hence, we obtain that

C ≤ tf |Ω|
(
c? + α2

4β

)
. (3.12)

The function p being increasing, an elementary convexity inequality provides that
(a− b)p(a) ≥ Γ(a)− Γ(b), ∀(a, b) ∈ (R+)2,

12
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ensuring that

A ≥
n?∑
n=0

∑
K∈V

mK

(
Γ(vn+1

K )− Γ(vnK)
)

=
∑
K∈V

mK

(
Γ(vn?+1

K )− Γ(v0
K)
)
. (3.13)

Using (3.12), (3.13) and (3.10) in (3.11) concludes the proof of Lemma 3.5.

As a second step, we propose to derive a classical energy estimate on vM,∆t. Even though the
convergence analysis of the scheme can be performed without this estimate, it is interesting to check
that our nonlinear scheme also allows to recover the classical estimates ones expects from the classical
scheme (2.8).

Lemma 3.6. There exists C depending only on Ω, ‖v0‖L2(Ω), α, β, and tf such that, for all n? ∈
{0, . . . , N}, one has

1
2
∑
K∈V

mK

(
vn

?+1
K

)2
+

n?∑
n=0

∆t
∑

σKL∈E
DKL

(
vn+1
K − vn+1

L

)2
≤ C.

Proof. Let n ∈ {0, . . . , n?}, then multiplying the scheme (2.14) by vn+1
K ∆t and summing over K ∈ V

yields

An+1 +Bn+1 = Cn+1 (3.14)

where
An+1 =

∑
K∈V

mKv
n+1
K

(
vn+1
K − vnK

)
,

Bn+1 = ∆t
∑

σKL∈E
DKLη

n+1
KL

(
p(vn+1

K )− p(vn+1
L )

) (
vn+1
K − vn+1

L

)
,

Cn+1 = ∆t
∑
K∈V

mK

(
αun+1

K − βvn+1
K

)
vn+1
K .

It follows from the simple inequality a(a− b) ≥ a2

2 −
b2

2 that

An+1 ≥ 1
2
∑
K∈V

mK

(
vn+1
K

)2
− 1

2
∑
K∈V

mK

(
vn+1
K

)2
. (3.15)

The definition (2.15) of ηn+1
KL and the relation (2.10) between η and p implies that

DKLη
n+1
KL

(
p(vn+1

K )− p(vn+1
L )

) (
vn+1
K − vn+1

L

)
≥ DKL

(
vn+1
K − vn+1

L

)2
, ∀σKL ∈ E .

Therefore,

Bn+1 ≥ ∆t
∑

σKL∈E
DKL

(
vn+1
K − vn+1

L

)2
. (3.16)

Let us now focus on the term Cn+1. Thanks to the simple inequality αab ≤ α2

4βa
2 + βb2, one gets that

Cn+1 ≤ ∆t
∑
K∈V

mK
α2

4β
(
un+1
K

)2
.

Using now the fact that 0 ≤ un+1
K ≤ 1 (cf. Lemma 3.4), we obtain that

Cn+1 ≤ α2∆t|Ω|
4β . (3.17)

13



Clément Cancès, Moustafa Ibrahim, et al.

Combining (3.15)–(3.17) in (3.14) and summing over n ∈ {0, . . . , N} provides that
1
2
∑
K∈V

mK

(
vn

?+1
K

)2
+

n?∑
n=0

∆t
∑

σKL∈E
DKL

(
vn+1
K − vn+1

L

)2
≤ 1

2
∑
K∈V

mK

(
v0
K

)2
+ α2n?∆t|Ω|

4β .

In order to conclude the proof of Lemma 3.6, it only remains to check that∑
K∈V

mK

(
v0
K

)2
≤ ‖v0‖2L2(Ω)

as a consequence of Jensen’s inequality.

3.3. Energy estimates on uM,∆t

Proposition 3.7. There exists a constant C > 0 depending only on ‖v0‖L2(Ω), Ω, tf , α, β, Λ, D, and
θT such that, for all n? ∈ {0, . . . , N}, one has

∑
K∈V

mK

(
un

?+1
K

)2
+

n?∑
n=0

∆t
∑

σKL∈E
ΛKLan+1

KL

(
un+1
K − un+1

L

)2
≤ C. (3.18)

Proof. We multiply equation (2.7) by ∆t un+1
K and sum over K ∈ V and n ∈ {0, . . . , n?}. This yields

E1 + E2 + E3 = E4, (3.19)
where

E1 =
n?∑
n=0

∑
K∈V

mK

(
un+1
K − unK

)
un+1
K , E2 =

n?∑
n=0

∆t
∑
K∈V

∑
σKL∈EK

ΛKLan+1
KL

(
un+1
K − un+1

L

)
un+1
K ,

E4 =
n?∑
n=0

∆t
∑
K∈V

mKf
(
un+1
K

)
un+1
K , E3 = −

n?∑
n=0

∆t
∑
K∈V

∑
σKL∈EK

ΛKLµn+1
KL a

n+1
KL

(
vn+1
K − vn+1

L

)
un+1
K .

For the time evolution term, we use the following inequality: (a− b) a ≥ 1
2
(
a2 − b2

)
, ∀a, b ∈ R, to

get

E1 ≥
1
2

n?∑
n=0

∑
K∈V

mK

((
un+1
K

)2
− (unK)2

)
= 1

2
∑
K∈V

mK

((
un

?+1
K

)2
−
(
u0
K

)2
)
. (3.20)

Next, for the diffusion term, we reorganize the sum over the edges, we find

E2 =
n?∑
n=0

∆t
∑
K∈V

∑
σKL∈EK

ΛKLan+1
KL

(
un+1
K − un+1

L

)
un+1
K =

n?∑
n=0

∆t
∑

σKL∈E
ΛKLan+1

KL

(
un+1
K − un+1

L

)2
.

(3.21)
Similarly, we reorganize the sum over the edges for the convection term. We obtain

E3 = −
n?∑
n=0

∆t
∑
K∈V

∑
σKL∈EK

ΛKLµn+1
KL a

n+1
KL

(
vn+1
K − vn+1

L

)
un+1
K

= −
n?∑
n=0

∆t
∑

σKL∈E
ΛKLµn+1

KL a
n+1
KL

(
vn+1
K − vn+1

L

) (
un+1
K − un+1

L

)
.
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Using the weighted Young inequality and the uniform boundedness of the function µ, we deduce

|E3| ≤ C
n?∑
n=0

∆t
∑
K∈V

∑
σKL∈EK

|ΛKL| an+1
KL

∣∣∣vn+1
K − vn+1

L

∣∣∣ ∣∣∣un+1
K − un+1

L

∣∣∣
≤ C

n?∑
n=0

∆t
∑
K∈V

∑
σKL∈EK

|ΛKL|
(
vn+1
K − vn+1

L

)2

+ 1
2C1

n?∑
n=0

∆t
∑
K∈V

∑
σKL∈EK

|ΛKL| an+1
KL

(
un+1
K − un+1

L

)2
,

where C1 is the same constant introduced in Lemma 3.3.
Thanks to estimates (3.3) and (3.5), one has

|E3| ≤ C
n?∑
n=0

∆t
∑
K∈V

∑
σKL∈EK

ΛKL
(
vn+1
K − vn+1

L

)2
+ 1

2

n?∑
n=0

∆t
∑
K∈V

∑
σKL∈EK

ΛKLan+1
KL

(
un+1
K − un+1

L

)2
.

Therefore, Lemma 3.6 provides

|E3| ≤ C + 1
2

n?∑
n=0

∆t
∑
K∈V

∑
σKL∈EK

ΛKLan+1
KL

(
un+1
K − un+1

L

)2
. (3.22)

Finally, for the reaction term, since 0 ≤ un+1
K ≤ 1 thanks to Lemma 3.4, one has

E4 =
n?∑
n=0

∆t
∑

K∈Vm
mKf

(
un+1
K

)
un+1
K ≤ |Ω| ‖f‖L∞(0,1) tf . (3.23)

Plugging estimates (3.20)–(3.23) into equation (3.19), one deduces that estimate (3.18) holds.

3.4. Enhanced estimate on vM,∆t

The goal of this section is to prove a refined estimate on vM,∆t inspired from [9, Lemma 3.10], claiming
that either vM,∆t is constant equal to 0, or vM,∆t ≥ rh > 0 for some rh depending on the discretization
parameters. The first step consists of bounding from below the L∞((0, tf);L1(Ω)) norm of vM,∆t.
Lemma 3.8. Assume that

∫
Ω u0(x)dx > 0 or

∫
Ω v0(x)dx > 0, then there exists κ > 0 depending on

the discretization and on the data such that∫
Ω
vM,∆t(x, t)dx ≥ κ, ∀t ∈ [0, tf ].

Proof. Summing equation (2.14) over K ∈ V ensures that∑
K∈V

mK(1 + β∆t)vn+1
K =

∑
K∈V

mKv
n
K + α∆t

∑
K∈V

mKu
n
K , ∀n ∈ {0, . . . , N}. (3.24)

Assume that vnKn
?
> 0 or unKn

?
> 0 for some Kn

? ∈ V, as this is the case for n = 0 because of the
assumption on the initial data u0 and v0, then we deduce from (3.24) and from the non-negativity of
vnK and unK proved in Lemma 3.4 that∑

K∈V
mK(1 + β∆t)vn+1

K > 0.

In particular, there exists Kn+1
? ∈ V such that vn+1

Kn+1
?

is (strictly) positive and∑
K∈V

mKv
n+1
K := κn+1 > 0.

One concludes the proof by setting κ = min
n=1,...,N+1

κn.
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We give now the definition of D-transmissive path, which was introduced in [9, Definition 3.4].

Definition 3.9. A D-transmissive path w joining Ki ∈ V to Kf ∈ V consists in a list of vertices
(Kq)0≤q≤M such that Ki = K0, Kf = KM , with Kq 6= K` if q 6= `, and such that σKqKq+1 ∈ E with
DKqKq+1 > 0 for all q ∈ {0, . . . ,M − 1}. We denote by W(Ki,Kf) the set of the transmissive path
joining Ki ∈ V to Kf ∈ V.

We now state a result which is proved in [9, Lemma 3.5].

Lemma 3.10. For all (Ki,Kf) ∈ V2 there exists a transmissive path w ∈ W(Ki,Kf).

We have now introduced all the necessary tools for proving the main result of this section.

Lemma 3.11. Assume that
∫
Ω u0(x)dx > 0 or

∫
Ω v0(x)dx > 0, then there exists rh > 0 depending on

the data as well as on the mesh T and ∆t such that
vn+1
K ≥ rh, ∀K ∈ V, ∀n ∈ {0, . . . , N}. (3.25)

Proof. Thanks to Lemma 3.8, we know that there exists Ki such that vn+1
Ki

> 0. Let Kf ∈ V, then
there exists a D-transmissive path w = (Kq)0≤q≤M ∈ W(Ki,Kf) thanks to Lemma 3.10, with K0 = Ki
and KM = Kf .
Thanks to Lemmas 3.3 and 3.5, we know that there exists C such that

N∑
n=0

∆t
∑

σKL∈E
|DKL| ηn+1

KL

(
p(vn+1

K )− p(vn+1
L )

)2
≤ C.

In particular, this ensures that

DKqKq+1η
n+1
KqKq+1

(
p(vn+1

Kq
)− p(vn+1

q+1 )
)2
≤ C

∆t , ∀q ∈ {0, . . . ,M − 1}.

Assume now that vn+1
Kq

> 0, as this is the case for q = 0, then ηn+1
KqKq+1

≥ η(vn+1
Kq

) > 0. Then one has(
p(vn+1

Kq
)− p(vn+1

Kq+1
)
)2
≤ C

∆tDKqKq+1η
n+1
KqKq+1

<∞. (3.26)

We deduce from (3.26) that p(vn+1
Kq+1

) > −∞ and, since limv→0 p(v) = −∞ hence vn+1
Kq+1

> 0. A
straightforward induction provides that vn+1

Kf
> 0, and since Kf was chosen arbitrarily, we obtain that

vn+1
K > 0, ∀K ∈ V.

Since the set V × {0, . . . , N} is finite, we can conclude that there exists rh such that (3.25) holds.

3.5. Existence of a discrete solution

Proposition 3.12. Given (unK , vnK)K∈V such that uM,∆t(·, n∆t) and vM,∆t(·, n∆t) are non-negative,
then there exists (at least) one solution

(
un+1
K , vn+1

K

)
K∈V

of the scheme (2.7),(2.14). Moreover,
uM,∆t(·, n∆t) and vM,∆t(·, n∆t) are non-negative.

Proof. The case where (unK , vnK)K∈V ≡ 0 has to be treated apart. In this very particular case, it is
easy to check that

(
un+1
K , vn+1

K

)
K∈V

≡ 0 is a solution to the scheme.
Let us now focus on the case where unK or vnK is strictly positive for some K ∈ V. Because of the
weak coupling on the numerical scheme, we can first solve (2.14), and afterwards (2.7). The existence
of a solution

(
vn+1
K

)
K∈V

can be proved by slightly adapting the proof of [9, Proposition 3.11], which
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relies on a topological argument. The main difficulty comes from the fact the scheme (2.14) is not
continuous w.r.t.

(
vn+1
K

)
K∈V

on (R+)#V , but Lemma 3.11 ensures that no component vn+1
K of the

discrete solution can go close to 0. Let us detail now the proof.
Let γ ∈ [0, 1], we denote by

(
vn+1
K,γ

)
K∈V

the solution (if it exists) to the numerical scheme

vn+1
K,γ − vnK

∆t mK + γ
∑

σKL∈EK

DKLη
n+1
KL,γ

(
p(vn+1

K,γ )− p(vn+1
L,γ )

)
(1− γ)

∑
σKL∈EK

|DKL|(p(vn+1
K,γ )− p(vn+1

L,γ )) = αunKmK − βvn+1
K,γ mK . (3.27)

In the above scheme, we have set

ηn+1
KL,γ =

maxv∈Jn+1
KL,γ

η(v) if DKL ≥ 0,
minv∈Jn+1

KL,γ
η(v) if DKL < 0,

where Jn+1
KL,γ =

[
min(vn+1

K,γ , v
n+1
L,γ ),max(vn+1

K,γ , v
n+1
L,γ )

]
. Reproducing the analysis carried out in §3.2 and

§3.4, we get that for all γ ∈ [0, 1],∑
σKL∈E

DKL

(
φ(vn+1

K,γ )− φ(vn+1
L,γ )

)2
≤

∑
σKL∈E

DKLη
n+1
KL,γ

(
p(vn+1

K,γ )− p(vn+1
L,γ )

)2
≤ C (3.28)

and, that there exists ε > 0 such that
vn+1
K,γ ≥ ε > 0, ∀K ∈ V. (3.29)

This ensures in particular that for all γ ∈ [0, 1], the solutions of equation (3.27) stay in the interior of
a compact subset K of R#V such that

dist
(
K, (R−)#V

)
≥ ε

2 .

Define the function Υ : K × [0, 1]→ R#V by: ∀K ∈ V,

ΥK ((wK)K , γ) = wK − vnK
∆t mK + γ

∑
σKL∈EK

DKLη
n+1
KL,γ (p(wK)− p(wL))

+ (1− γ)
∑

σKL∈EK

|DKL|(wK)− p(wL))− αunKmK + βwKmK .

The function Υ is uniformly continuous on K × [0, 1], and for all γ ∈ [0, 1] the solution vn+1
K,γ of the

nonlinear system
Υ
((
vn+1
K,γ

)
K∈V

, γ

)
= 0 (3.30)

cannot reach ∂K. For γ = 0, the system is monotone, so that the system (3.30) admits a unique
solution, whose topological degree is equal to 1 (we refer to [19, Proposition 3.1] for a proof of this
property). The topological degree being constant w.r.t. γ ∈ [0, 1], the system (3.30) admits at least
one solution for γ = 1, concluding the proof of the existence of

(
vn+1
K

)
K∈V

.

The existence proof for
(
un+1
K

)
K∈V

is similar but simpler since

i. the a priori estimate 0 ≤ un+1
K ≤ 1 is sufficient for the claim, and no energy estimate is needed

here;
ii. the scheme (2.7) depends in a uniformly continuous way on

(
un+1
K

)
K∈V

on the compact subset
[−1, 2]#V of R#V .

Therefore, we let to the reader the care of checking the proof for self-conviction.
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4. Compactness estimates on the family of discrete solutions.

As a consequence of Lemmas 3.4 and 3.6, the sequences
(
uMm,∆tm

)
m and

(
vMm,∆tm

)
m are uni-

formly bounded w.r.t. m in L∞(Qtf ) and L∞(0, tf ;L2(Ω)) respectively. Moreover, as a consequence of
Lemma 3.6, the sequence

(
vTm,∆tm

)
m is uniformly bounded in L2(0, tf ;H1(Ω)). Therefore, there exists

v ∈ L2(0, tf ;H1(Ω)) such that, up to an unlabeled subsequence,

vTm,∆tm −→m→∞
v weakly in L2(0, tf ;H1(Ω)).

we deduce from the following inequality (see for instance [6, Lemma 3.4] or [10, Lemma 6.5])∥∥wTm,∆tm − wMm,∆tm
∥∥
L2(Ω) ≤ Ch‖∇wTm,∆tm‖L2(Ω), ∀wTm,∆tm ∈ HTm,∆tm , (4.1)

that
(
vTm,∆tm

)
m and

(
vMm,∆tm

)
m have the same limit, so that, up to an unlabeled subsequence,

vMm,∆tm −→m→∞
v in the L∞(0, tf ;L2(Ω))-weak-? sense.

On the other hand, the combination of Lemma 3.1 with Proposition 3.7 provides that∫∫
Qtf

∣∣∇ξTm,∆tm ∣∣2 dxdt ≤ C

for some C not depending on m, where ξTm,∆tm is the piecewise linear function with nodal values
ξnK = ξ(unK) for all K ∈ Vm and all n ∈ {0, . . . , Nm+1}. Therefore, there exists ξ? ∈ L2(0, tf ;H1(Ω))∩
L∞(Qtf ) such that, up to an unlabeled subsequence,

ξTm,∆tm −→m→∞
ξ? weakly in L2(0, tf ;H1(Ω)).

It follows from inequality (4.1) that
(
ξTm,∆tm

)
m and

(
ξMm,∆tm

)
m share the same limit, therefore, up

to an unlabeled subsequence,

ξMm,∆tm −→m→∞
ξ? in the L∞(Qtf )-weak-? sense.

Finally, since
(
uMm,∆tm

)
m is uniformly bounded in L∞(Qtf ), then there exists u ∈ L∞(Qtf ) such that,

up to an unlabeled subsequence,

uMm,∆tm −→m→∞
u in the L∞(Qtf )-weak-? sense.

The goal of this section is to show that ξ? = ξ(u), and that

vMm,∆tm −→m→∞
v a.e. in Qtf and uMm,∆tm −→m→∞

u a.e. in Qtf ,

As an alternative to the lengthy and technical proof that consists in estimating the time- and space-
translates of the discrete functions (see [3] for the continuous framework and [21] for the discrete
setting), we make use of the technical blackbox proposed in [5, Theorem 3.9]. We refer to [16, Lem-
mas 4.4 and 6.6], [17, §4.2, §C.1.6], and [23] for alternative but very close approaches.

Let m ≥ 1 be fixed, then let us denote by
(
ϕn+1
K

)
K∈Vm,0≤n≤Nm

a set a nodal values such that

ϕn+1
K = 0 if xK ∈ ∂Ω. We deduce the functions ϕTm,∆tm and ϕMm,∆tm . We state now discrete

L1
(
0, tf ;

(
H1(Ω)

)′) estimates on the finite differences w.r.t. time of uMm,∆tm and vMm,∆tm .

18
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Lemma 4.1. There exists C not depending on m such that

Nm∑
n=0

∑
K∈Vm

mK

(
un+1
K − unK

)
ϕn+1
K ≤ C‖∇ϕTm,∆tm‖L2(Qtf ), (4.2)

Nm∑
n=0

∑
K∈Vm

mK

(
vn+1
K − vnK

)
ϕn+1
K ≤ C‖∇ϕTm,∆tm‖L2(Qtf ). (4.3)

Proof. We only establish (4.3) since the proof of (4.2) is similar. Multiplying (2.14) by ∆tϕn+1
K and

summing over n ∈ {0, . . . , Nm} and K ∈ Vm yields
Nm∑
n=0

∑
K∈Vm

mK

(
vn+1
K − vnK

)
ϕn+1
K ≤ Am +Bm, (4.4)

where

Am =−
Nm∑
n=0

∆t
∑

σKL∈E
DKLη

n+1
KL

(
p(vn+1

K )− p(vn+1
L )

) (
ϕn+1
K − ϕn+1

L

)
,

Bm =
Nm∑
n=0

∆t
∑

K∈Vm
mK

(
αun+1

K − βvn+1
K

)
ϕn+1
K .

It follows from Cauchy-Schwarz inequality and from ‖η‖∞ = 1 that

|Am|2 ≤

Nm∑
n=0

∆t
∑

σKL∈E
|DKL|ηKL

(
p(vn+1

K )− p(vn+1
L )

)2
Nm∑

n=0
∆t

∑
σKL∈E

|DKL|
(
ϕn+1
K − ϕn+1

L

)2


Combining Lemmas 3.3 and 3.5 provides
Nm∑
n=0

∆t
∑

σKL∈E
|DKL|ηKL

(
p(vn+1

K )− p(vn+1
L )

)2
≤ C,

whereas Lemma 3.2 implies that
Nm∑
n=0

∆t
∑

σKL∈E
|DKL|

(
ϕn+1
K − ϕn+1

L

)2
≤ C

∥∥∇ϕTm,∆tm∥∥2
L2(Qtf ) .

Therefore, we obtain that

|Am| ≤ C
∥∥∇ϕTm,∆tm∥∥L2(Qtf ) (4.5)

On the other hand, Cauchy-Schwarz inequality provides
|Bm| ≤

∥∥αuMm,∆tm − βvMm,∆tm
∥∥
L2(Qtf )

∥∥ϕMm,∆tm
∥∥
L2(Qtf ) .

It results from Proposition 3.7 and Lemma 3.6 that∥∥αuMm,∆tm − βvMm,∆tm
∥∥
L2(Qtf ) ≤ C,

whereas the discrete Poincaré’s inequality [6, Lemma 3.3] ensures that∥∥ϕMm,∆tm
∥∥
L2(Qtf ) ≤ C

∥∥∇ϕTm,∆tm∥∥L2(Qtf ) .

Gathering the previous inequalities, one gets that
|Bm| ≤ C

∥∥∇ϕTm,∆tm∥∥L2(Qtf ) . (4.6)
Putting (4.4), (4.5) and (4.6) together provides (4.3).
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We have all the necessary estimates at hand to make use of [5, Theorem 3.9]. It allows us to claim
directly that ξ? = ξ(u), and that

vMm,∆tm −→m→∞
v a.e. in Qtf and uMm,∆tm −→m→∞

u a.e. in Qtf .

5. Identification as a weak solution

It remains to be shown that (u, v) satisfies the weak formulation (1.6)–(1.7). To do this, we consider
a test function ψ ∈ D

(
Ω× [0, tf)

)
, and denote by ψnK = ψ (xK , tn), for all K ∈ Vm and all n ∈

{0, . . . , Nm}. Let us focus on the convergence of the first equation of scheme (2.7)–(2.14), i.e., we show
that equation (1.6) is verified when m→∞. We note that the convergence of the second equation of
the scheme is similar and major difficulties that we can encounter are discussed hereafter.

Multiplying the first equation (2.7) by ∆tmψnK and summing over n ∈ {0, . . . , Nm} and K ∈ Vm
yields, after a reorganization of the sum,

Am + Bm + Cm +Dm = Fm, (5.1)

where

Am =
Nm∑
n=0

∑
K∈Vm

(
un+1
K − unK

)
ψnKmK , Fm =

Nm∑
n=0

∆tm
∑

K∈Vm
f
(
un+1
K

)
ψnKmK ,

Bm =
Nm∑
n=0

∆tm
∑

σKL∈Em
ΛKL

(
an+1
KL

(
un+1
K − un+1

L

)
−
√
an+1
KL

(
ξ
(
un+1
K

)
− ξ

(
un+1
L

)))
(ψnK − ψnL) ,

Cm =
Nm∑
n=0

∆tm
∑

σKL∈Em
ΛKL

√
an+1
KL

(
ξ
(
un+1
K

)
− ξ

(
un+1
L

))
(ψnK − ψnL) ,

Dm = −
Nm∑
n=0

∆tm
∑

σKL∈Em
ΛKLµn+1

KL a
n+1
KL

(
vn+1
K − vn+1

L

)
(ψnK − ψnL) .

Accumulation term

Note that ψNm+1
K = 0 for all K ∈ Vm, then, performing summation by parts in time, the term Am can

be rewritten

Am =
Nm∑
n=0

∑
K∈Vm

un+1
K ψnKmK −

Nm∑
n=1

∑
K∈Vm

unKψ
n
KmK −

∑
K∈Vm

u0
Kψ

0
KmK

= −
Nm∑
n=0

∆tm
∑

K∈Vm
un+1
K

ψn+1
K − ψnK

∆tm
mK −

∑
K∈Vm

u0
Kψ

0
KmK

= −
∫∫

Qtf

uMm,∆tm (x, t) ∂tψMm,∆tm (x, t) dx dt−
∫

Ω
uMm,∆tm (x, 0)ψMm,∆tm (x, 0) dx.

Thanks to the regularity of ψ, and the convergence in L1 (Qtf ) of the sequence
(
uMm,∆tm

)
m towards

u, it follows that (see e.g. [20])

Am −→ −
∫∫

Qtf

u (x, t) ∂tψ (x, t) dx dt−
∫

Ω
u (x, 0)ψ (x, 0) dx, as m→∞.
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Diffusion term

Let us first prove that lim
m→∞

Bm = 0.
For all σKL ∈ Em and all n ∈ {0, . . . , Nm}, we denote by an+1

KL the quantity defined by

an+1
KL =


(
ξ(un+1

K )− ξ(un+1
L )

un+1
K − un+1

L

)2

if un+1
K 6= un+1

L ,

a
(
un+1
K

)
if un+1

K = un+1
L .

Then, the term Bm rewrites

Bm =
Nm∑
n=0

∆tm
∑

σKL∈Em
ΛKL

√
an+1
KL

(√
an+1
KL −

√
an+1
KL

)(
un+1
K − un+1

L

)
(ψnK − ψnL) .

Now, using the Cauchy-Schwarz inequality, we get

|Bm| ≤

Nm∑
n=0

∆tm
∑

σKL∈Em
|ΛKL| an+1

KL

(
un+1
K − un+1

L

)2
 1

2

×Rm
1
2 ,

where, Rm is given by

Rm =
Nm∑
n=0

∆tm
∑

σKL∈Em
|ΛKL|

(√
an+1
KL −

√
an+1
KL

)2
(ψnK − ψnL)2 .

Using Lemma 3.3 and Proposition 3.7, one has |Bm| ≤ CRm
1
2 . Hence, in order to prove that lim

m→∞
Bm =

0, it suffices to prove that lim
m→∞

Rm = 0.
For all T ∈ Tm, we denote by

ξ
n+1
T = max

x∈T

(
ξ (p)Tm,∆tm

(
x, tn+1

))
, ξn+1

T
= min

x∈T

(
ξ (p)Tm,∆tm

(
x, tn+1

))
,

and for all (x, t) ∈ T ×
(
tn, tn+1), by
ξTm,∆tm (x, t) = ξ

n+1
T , ξTm,∆tm

(x, t) = ξn+1
T

.

Consider the uniform continuous function
√
a ◦ ξ−1 defined on the closed bounded interval [0, ξ (1)],

and let % be its modulus of continuity, then we have∣∣∣∣√an+1
KL −

√
an+1
KL

∣∣∣∣ ≤ %(ξn+1
T − ξn+1

T

)
, for all σKL ∈ ET . (5.2)

Therefore, using this inequality in the definition of Rm, we get

0 ≤ Rm ≤ Qm (5.3)

where,

Qm =
Nm∑
n=0

∆tm
∑
T∈Tm

(
%
(
ξ
n+1
T − ξn+1

T

))2 ∑
σKL∈ET

∣∣∣λTKL∣∣∣ (ψnK − ψnL)2 , (5.4)

and λTKL is the constant defined by (3.3).
Thanks to Lemma 3.2, one can deduce that the inequality (5.3) implies that

0 ≤ Rm ≤ C
∫∫

Qtf

%
(
ξTm,∆tm (x, t)− ξTm,∆tm (x, t)

)
dx dt,
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where C is independent of hm, and ∆tm. Therefore, it suffices to show that ξTm,∆tm (x, t) −
ξTm,∆tm

(x, t) → 0 a.e. in Qtf to consequently prove that lim
m→∞

Rm = 0. By a simple generalization
of [9, Lemma A.1] and by the help of Lemma 3.1 and Proposition 3.7, it follows that∫∫

Qtf

∣∣∣ξTm,∆tm (x, t)− ξTm,∆tm (x, t)
∣∣∣ dx dt ≤ Ch

(∫∫
Qtf

∣∣∣∇ξ (u)Tm,∆tm (x, t)
∣∣∣2 dx dt

) 1
2

≤ Ch.

As a consequence, up to a subsequence, one has
lim
m→∞

Bm = lim
m→∞

Rm = lim
m→∞

Qm = 0.

We now focus on the term Cm and prove that

lim
m→∞

Cm =
∫∫

Qtf

Λ(x)
√
a (u)∇ξ(u) · ∇ψdx dt.

To do this, we introduce the term C′m defined by

C′m :=
∫∫

Qtf

ΘTm,∆tmΛ(x)∇ξ (u)Tm,∆tm · ∇ψTm,∆tm (·, t−∆tm) dx dt,

where ΘTm,∆tm is a piecewise constant function (on the triangular mesh) function given by

ΘTm,∆tm (x, t) =
√
a ◦ ξ−1 (ΥTm,∆tm (x, t)

)
, ∀x ∈ T, ∀t ∈ (tn, tn+1], ∀T ∈ Tm,

where ΥTm,∆tm is defined by

ΥTm,∆tm (x, t) = ξ (u)Tm,∆tm (xT , t) , ∀x ∈ T, ∀t ∈ (tn, tn+1], ∀T ∈ Tm.

Using again a slight generalization of [9, Lemma A.1] as well as the boundedness of the continuous
function

√
a ◦ ξ−1, we obtain

ΥTm,∆tm −→ ξ (u) in L2 (Qtf ) as m→∞,

ΘTm,∆tm −→
√
a (u) in L2 (Qtf ) as m→∞.

(5.5)

It remains to verify that |Cm − C′m| −→ 0, when m tends to infinity.
We denote by

an+1
T =

(
ΘTm,∆tm

(
xT , tn+1

))2
, ∀T ∈ Tm, ∀n ∈ {0, . . . , Nm}.

The discretization of the term C′m is written as

C′m =
Nm∑
n=0

∆tm
∑
T∈Tm

√
an+1
T

∑
σKL∈ET

λTKL

(
ξ
(
un+1
K

)
− ξ

(
un+1
L

))
(ψnK − ψnL) .

Similar arguments as for obtaining inequality (5.2) yield∣∣∣∣√an+1
KL −

√
an+1
T

∣∣∣∣ ≤ %(ξn+1
T − ξn+1

T

)
, for all σKL ∈ ET .

Therefore, using the Cauchy-Schwarz inequality, Lemma 3.1, Lemma 3.2, and Proposition 3.7, we
deduce that there exists a constant C does not depend on hm such that

∣∣Cm − C′m∣∣2 ≤
Nm∑
n=0

∆tm
∑
T∈Tm

%
(
ξ
n+1
T − ξn+1

T

) ∑
σKL∈ET

∣∣∣λTKL∣∣∣ ∣∣∣ξ (un+1
K

)
− ξ

(
un+1
L

)∣∣∣ |ψnK − ψnL|
2

≤ Qm ×
Nm∑
n=0

∆tm
∑
T∈Tm

∑
σKL∈ET

∣∣∣λTKL∣∣∣ ∣∣∣ξ (un+1
K

)
− ξ

(
un+1
L

)∣∣∣2 ≤ CQm −→ 0 as m→∞.
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Convection term

For all T ∈ Tm, we define the piecewise constant function κTm,∆tm by

κTm,∆tm (x, t) = χ ◦ ξ−1 (ΥTm,∆tm (x, t)
)
, ∀x ∈ T, ∀t ∈ (tn, tn+1].

Using the same guidelines as for the convergence results (5.5), one has

κTm,∆tm −→ χ (u) in L2 (Qtf ) as m→∞.
We introduce the term

D′m := −
∫∫

Qtf

κTm,∆tmΛ(x)∇vTm,∆tm · ∇ψTm,∆tm (·, t−∆tm) dx dt.

Thanks to the weak convergence in L2 (Qtf ) of the sequence ∇vTm,∆tm towards ∇v, and to the uniform
convergence of ∇ψTm,∆tm towards ∇ψ, we obtain

D′m −→ −
∫∫

Qtf

χ (u) Λ(x)∇v · ∇ψdx dt as m→∞.

Let us prove, using the same guidelines as before, that |Dm −D′m| −→ 0, when m tends to infinity.
We denote by

χn+1
T = κTm,∆tm

(
xT , tn+1

)
, ∀T ∈ Tm, ∀n ∈ {0, . . . , Nm},

µn+1
T = µTm,∆tm

(
xT , tn+1

)
, ∀T ∈ Tm,∀n ∈ {0, . . . , Nm}.

Therefore,

Dm −D′m =
Nm∑
n=0

∆tm
∑
T∈Tm

∑
σKL∈ET

(
an+1
T µn+1

T − an+1
KL µ

n+1
KL

)
λTKL

(
vn+1
K − vn+1

L

)
(ψnK − ψnL) .

Thanks to the the triangle inequality and to the existence of a continuity moduli η and δ of the
continuous functions

√
a ◦ ξ−1 and µ ◦ ξ−1 respectively, one has∣∣∣an+1

KL µ
n+1
KL − a

n+1
T µn+1

T

∣∣∣ ≤ µn+1
KL

∣∣∣an+1
KL − a

n+1
T

∣∣∣+ an+1
T

(
µn+1
KL − µ

n+1
T

)
≤ C

(
%
(
ξ
n+1
T − ξn+1

T

)
+ δ

(
ξ
n+1
T − ξn+1

T

))
,

where the constant C does not depend on hm. Therefore, using the Cauchy-Schwarz inequality,
Lemma 3.1, Lemma 3.2, and Proposition 3.7, we deduce that there exists a constant C independent
of hm such that

∣∣Dm −D′m∣∣2 ≤ C (Qm +Wm)×
Nm∑
n=0

∆tm
∑
T∈Tm

∑
σKL∈ET

∣∣∣λTKL∣∣∣ ∣∣∣vn+1
K − vn+1

L

∣∣∣2 ,
where Qm is given by equation (5.4), and Wm is given by

Wm =
Nm∑
n=0

∆tm
∑
T∈Tm

(
δ
(
ξ
n+1
T − ξn+1

T

))2 ∑
σKL∈ET

∣∣∣λTKL∣∣∣ (ψnK − ψnL)2 .

Now, using the same proof as for the diffusion term, one can deuce that Wm ≤ Chm. Therefore
lim
m→∞

∣∣Dm −D′m∣∣ = 0,

and consequently,
lim
m→∞

Dm = −
∫∫

Qtf

χ (u) Λ(x)∇v · ∇ψdx dt.
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Reaction term

We would now like to show that

Fm −→
∫∫

Qtf

f (u (x, t))ψ (x, t) dx dt as m→∞.

For this purpose, we denote, for all K ∈ Vm and for all n ≥ 1, by fnK = f (unK), and by fMm,∆tm the
piecewise constant reconstruction in XMm,∆tm . Thus we have

Fm =
∫∫

Qtf

fMm,∆tmψMm,∆tm (·, t−∆tm) dx dt −→
∫∫

Qtf

f (u (x, t))ψ (x, t) dx dt as m→∞,

since f (u)Mm,∆tm converges strongly in L2 (Qtf ) towards f (u), and as ψMm,∆tm converges uniformly
towards ψ. This ends the proof of Theorem 2.2.

6. Numerical results

In this section, we establish various 2–D numerical results provided by the nonlinear CVFE
scheme (2.7), (2.14). Newton’s algorithm is carried out for the implementation of the scheme, coupled
with a biconjugate gradient method to solve linear systems arising from the Newton algorithm. We
provide three tests to show the effectiveness of the nonlinear CVFE scheme (2.7), (2.14). For these
tests, we consider the following data: Lx = 1, Ly = 1 (the length and the width of the domain). We fix:
∆t = 0.002, α = 0.01, β = 0.05, a (u) = duu (1− u), du = 0.0005, χ (u) = ζ × (u (1− u))2, ζ = 0.05.
By definition, we have µ (u) = ζ

du
u (1− u) then, the numerical flux function µn+1

KL is given using the
following functions:

µ↑ (z) = µ

(
min{z, 1

2}
)
, and µ↓ (z) = µ

(
max{z, 1

2}
)
− µ

(1
2

)
, ∀z ∈ (0, 1)× (0, 1) .

Unless stated otherwise and throughout the tests, we assume that f (u) = 0, that the initial conditions
are defined by regions, and we assume zero-flux boundary conditions. For instance, the cell density is
initially defined by u0 (x,y) = 1 in the square region given by (x,y) ∈ [0.45, 0.55] and 0 otherwise.
The initial chemeoattractant concentration is defined by v0 (x,y) = 5 in the space region given by
(x,y) ∈ [0.2, 0.3]× [0.45, 0.55]∪ [0.45, 0.55]× [0.2, 0.3]∪ [0.45, 0.55]× [0.7, 0.8]∪ [0.7, 0.8]× [0.45, 0.55].

Test 1 (Weak anisotropic case). In this test, we assume that the diffusion tensors are given by

Λ(x) =
(

1 0
0 θ

)
, D(x) = d

(
1 0
0 1

)
, d = 0.0001.

Further, we consider an admissible triangular primary mesh made of 14 336 triangles, the corresponding
Donald dual mesh consists of 7 297 dual control volumes. In a admissible triangular mesh, all the
angles of triangles are acute, then one can deduce that the maximum principle is verified for v since
the transmissibility coefficients are nonnegative, which it is not the case for u. In Tab. 6.1, we present
minimum and maximum values obtained with each of the scheme (2.7)–(2.8), the nonlinear CVFE
scheme (2.7),(2.14), and the finite volume scheme.
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scheme (2.7)–(2.8) scheme (2.7),(2.14) FV scheme
After 1 iteration Min. Val. u 0.0 0.0 0.0

θ = 1 Max. Val. u 1.0 1.0 1.0
After 10 iterations Min. Val. u 0.0 0.0 0.0

θ = 1 Max. Val. u 0.971110 1.0 1.0
After 1 iteration Min. Val. u −1.73001× 10−3 8.68789× 10−20 |

θ = 5 Max. Val. u 0.99722922 1.0 |
After 10 iterations Min. Val. u −1.62500× 10−2 0.00 |

θ = 5 Max. Val. u 0.9715705 1.0 |
After 1 iteration Min. Val. u −4.46953× 10−3 6.30555× 10−16 |

θ = 10 Max. Val. u 1.00018368 1.0 |
After 10 iterations Min. Val. u −3.91245× 10−2 6.30554× 10−16 |

θ = 10 Max. Val. u 0.98342428 0.9999999 |

Table 6.1. Numerical results after 1 and 10 iterations.

Figure 6.1. Meshes: admissible mesh for Test 1(left), initial primal mesh for Test 2
and 3 (center) and barycentric dual mesh for Test 2 and 3 (right).

Test 2 (Weak anisotropic case/obtuse angles). In this test, we consider a general unstructured
mesh that contains obtuse angles, this mesh is made of 5 193 triangles and 2 665 dual control volumes.
The discrete maximum principle is not guarantied for v, hence we cannot expect the maximum principle
for u since the computation of u depends on the values of v, for that we consider the nonlinear
discretization (2.14) of v.

Figure 6.2. Initial condition for the cell density u (left) with 0 ≤ u ≤ 1 and for the
chemeoattractant concentration v (right) with 0 ≤ v ≤ 5.
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The diffusion tensors are defined, for all x ∈ (0, 1)× (0, 1), by

Λ(x) =
(

7 2
2 10

)
, D(x) = d

(
1 0
0 1

)
, d = 0.0001.

Figure 6.2 represents initial distributions of the cell density u and the chemeoattractant concentra-
tion v over the initial triangular mesh as well as the corresponding dual mesh.

Figure 6.3. Evolution of the cell density u at time t = 0.4 with 0 ≤ u ≤ 0.667 (left),
and at time t = 1.4 with 0 ≤ u ≤ 0.632(right).

Figure 6.4. Evolution of the cell density u at time t = 2.4 with 0 ≤ u ≤ 0.972 (left),
and at time t = 4 with 0 ≤ u ≤ 0.987(right).

Figures 6.3–6.4 represent the evolution of the cell density at time t = 0.4, t = 1.4, t = 2.4,
and t = 4. At moment t = 0.4, it is clear that the cell density diffuses in the space without any
interactions with the chemeoattractant which diffuses uniformly in the space. Then, after a while, and
when the chemeoattractant diffusion reaches the cell density location, we see that the latter changes
its direction to be absorbed by the chemeoattractant located vertically. This process continues and
the cells accumulate into the location of the chemeoattractant and finally we obtain the cell density
aggregations as shown at t = 4.

Test 3 (Anisotropic case/obtuse angles). In this test, we consider an unstructured mesh consisting
of 15 568 primal triangles and 7 912 dual control dual volumes. Further, we assume that the diffusion
tensors are anisotropic and are given by:

Λ(x) =
(

8 −7
−7 20

)
, D(x) = d

(
1 0
0 3

)
, d = 0.0001.

Table 6.2 provides a comparison between the nonlinear CVFE scheme coupled on the one hand
with the discretization (2.8) of v and with the discretization (2.14) of v on the other hand. We see
that the discretization (2.14) carries out a better approximation than the discretization (2.8) in terms
of ensuring the discrete maximum principle property.
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CVFE scheme: (2.7)–(2.8) CVFE scheme: (2.7),(2.14)
Min. Val. u 0.0 0.0

After 1 iteration Max. Val. u 1.0 1.0
Min. Val. v -1.141912E-002 1.922764E-051
Max. Val. v 5.012383 4.999982
Min. Val. u 0.0 0.0

After 200 iterations Max. Val. u 0.5298226 0.5312562
Min. Val. v -1.731068E-003 1.297192E-080
Max. Val. v 4.8053827 4.8018742
Min. Val. u 0.0 0.0

After 1000 iterations Max. Val. u 0.9957580 0.9974757
Min. Val. v 6.265859E-023 3.171769E-080
Max. Val. v 2.961761 2.910828

Table 6.2. Numerical results after 1, 200 and 1000 iterations over an unstructured
mesh with obtuse angles.
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