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Abstract. In this paper, we propose an improvement of the adaptive biasing force (ABF) method, by
projecting the estimated mean force onto a gradient. We show on some numerical examples that the variance
of the approximated mean force is reduced using this technique, which makes the algorithm more efficient
than the standard ABF method. The associated stochastic process satisfies a nonlinear stochastic differential
equation. Using entropy techniques, we prove exponential convergence to the stationary state of this stochastic
process.
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1. Introduction

1.1. The model

Let us consider the Boltzmann-Gibbs measure :
µ(dx) = Z−1

µ e−βV (x)dx, (1.1)

where x ∈ DN denotes the position of N particles in D. The space D is called the configuration space.
One should think of D as a subset of Rn, or the n-dimensional torus Tn (where T = R/Z denotes
the one dimensional torus). The potential energy function V : D −→ R associates with the positions
of the particles x ∈ D its energy V (x). In addition, Zµ =

∫
D

e−βV (x)dx (assumed to be finite) is the
normalization constant and β = 1/(kBT ) is proportional to the inverse of the temperature T , kB being
the Boltzmann constant.

The probability measure µ is the equilibrium measure sampled by the particles in the canonical
statistical ensemble. A typical dynamics that can be used to sample this measure is the Overdamped
Langevin Dynamics:

dXt = −∇V (Xt)dt+
√

2
β
dWt, (1.2)

where Xt ∈ DN and Wt is a Nn-dimensional standard Brownian motion. Under loose assumptions on
V , the dynamics (Xt)t≥0 is ergodic with respect to the measure µ, which means: for any smooth test
function ϕ,

lim
T→+∞

1
T

∫ T

0
ϕ(Xt)dt =

∫
ϕdµ, (1.3)

i.e. trajectory averages converge to canonical averages.
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1.2. Metastability, reaction coordinate and free energy

In many cases of interest, there exists regions of the configuration space where the dynamics (1.2)
remains trapped for a long time, and jumps only occasionally to another region, where it again remains
trapped for a long time. This typically occurs when there exist high probability regions separated by
very low probability areas. The regions where the process (Xt)t≥0 remains trapped for very long times
are called metastable.

Because of the metastability, trajectorial averages (1.3) converge very slowly to their ergodic limit.
Many methods have been proposed to overcome this difficulty, and we concentrate here on the Adaptive
Biasing Force (denoted ABF) method (see [5, 7]). In order to introduce the ABF method, we need
another ingredient: a reaction coordinate (also known as an order parameter), ξ = (ξ1, ..., ξm) : D −→
Rm, ξ(x) = z, where m < nN . Typically, in (1.2), the time-scale for the dynamics on ξ(Xt) is longer
than the time-scale for the dynamics onXt due to the metastable states, so that ξ can be understood as
a function such that ξ(Xt) is in some sense a slow variable compared to Xt. In some sense, ξ describes
the metastable states of the dynamics associated with the potential V . For a given configuration x,
ξ(x) represents some macroscopic information. For example, it could represent angles or bond lengths
in a protein, positions of defects in a material, etc. In any case, it is meant to be a function with values
in a small dimensional space (i.e. m ≤ 4), since otherwise, it is difficult to approximate accurately the
associated free energy which is a scalar function defined on the range of ξ (see equation (1.5) below).
The choice of a “good" reaction coordinate is a highly debatable subject in the literature. One aim of
the mathematical analysis conducted here or in previous papers (see for example [9]) is to quantify
the efficiency of free energy biasing methods once a reaction coordinate has been chosen.

The image of the measure µ by ξ is defined by
ξ ∗ µ := exp(−βA(z))dz, (1.4)

where A is the so-called free energy associated with the reaction coordinate ξ. By the co-area formula
(see [9], Appendix A), the following formula for the free energy can then be obtained: up to an additive
constant,

A(z) = −β−1 ln(ZΣz), (1.5)

where ZΣz =
∫

Σz
e−βV (x)δξ(x)−z(dx), the submanifold Σz is defined by

Σz = {x = (x1, ..., xn) ∈ D | ξ(x) = z},
and δξ(x)−z(dx) represents a measure with support Σz, such that δξ(x)−z(dx)dz = dx (for further
details on delta measures, we refer to [10], Section 3.2.1). We assume henceforth that ξ and V are such
that ZΣz <∞, for all z ∈ Rm.

The idea of free energy biasing methods, such as the adaptive biasing force method (see [5, 7]), or the
Wang-Landau algorithm (see [14]), is that, if ξ is well chosen, the dynamics associated with V −A ◦ ξ
is less metastable than the dynamics associated with V . Indeed, from the definition of the free energy
(1.4), for any compact subspaceM⊂ Rm, the image of Z̃−1e(−β(V−A◦ξ)(x))1ξ(x)∈M by ξ is the uniform

law 1M
|M|

, where Z̃ =
∫
ZΣz

e(−β(V−A◦ξ)(x))1ξ(x)∈Mdx and |M| denotes the Lebesgue measure ofM. The

uniform law is typically easier to sample than the original measure ξ ∗ µ. Therefore, if the function
ξ is well chosen (i.e. if the dynamics in the direction orthogonal to ξ is not too metastable), the free
energy can be used as a biasing potential to accelerate the sampling of the dynamics (see [9]). The
difficulty is of course that the free energy A is unknown and difficult to approximate using the original
dynamics (1.2) because of metastability. Actually, in many practical cases, it is the quantity of interest
that one would like to approximate by molecular dynamics simulations (see [4, 10]). The principle of
adaptive biasing methods is thus to directly approximate A (or its gradient) on the fly in order to
bias the dynamics and to reduce the metastable features of the original dynamics (1.2). Methods
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which directly approximate A are called Adaptive Biasing Potential methods whereas methods which
compute an estimate of ∇A are called Adaptive Biasing Force methods. Here, we focus on the latter.
For a comparison of these two approaches, we refer for example to [8] and Section 5.1.1.5 in [10].

1.3. Adaptive biasing force method (ABF)

In order to introduce the ABF method, we need a formula for the derivatives of A. The so called mean
force ∇A(z), can be obtained from (1.5) as (see [10], Section 3.2.2):

∇A(z) =
∫

Σz
f(x)dµΣz , (1.6)

where dµΣz is the probability measure µ conditioned to a fixed value z of the reaction coordinate:

dµΣz = Z−1
Σz e−βV (x)δξ(x)−z(dx), (1.7)

and f = (f1, ..., fm) is the so-called local mean force defined by

fi =
m∑
j=1

(G−1)i,j∇ξj .∇V − β−1div

 m∑
j=1

(G−1)i,j∇ξj

 , (1.8)

where G = (Gi,j)i,j=1,...,m, has components Gi,j = ∇ξi · ∇ξj . This can be rewritten in terms of
conditional expectation as: for a random variable X with law µ (defined by (1.1)),

∇A(z) = E(f(X)|ξ(x) = z). (1.9)

In the literature, what is called the mean force is sometimes the negative of ∇A. We stick here to
the terminology used in the references [8, 9, 10]. We are now in a position to introduce the standard
adaptive biasing force (ABF) technique, applied to the overdamped Langevin dynamics (1.2) for a
given initial condition X0 ∈ RNn, independent of (Wt)t≥0:

dXt = −
(
∇V −

m∑
i=1

F it ◦ ξ∇ξi +∇(Wc ◦ ξ)
)

(Xt)dt+
√

2β−1dWt,

F it (z) = E[fi(Xt)|ξ(Xt) = z], i = 1, ...,m,
(1.10)

where f is defined in (1.8). One should emphasize that the expectation in the Equation (1.10), unlike
that of (1.9), is over all realizations of the stochastic differential equation. Compared with the original
dynamics (1.2), two modifications have been made to obtain the ABF dynamics (1.10):

(1) First and more importantly, the force
m∑
i=1

F it ◦ ξ∇ξi has been added to the original force −∇V .

At time t, Ft approximates ∇A defined in (1.6).

(2) Second, a potential Wc ◦ ξ has been added. This is actually only needed in the case when ξ
lives in an unbounded domain. In this case, a so-called confining potential Wc is introduced
so that the law of ξ(Xt) admits a longtime limit Z−1

Wc
e−βWc(z)dz (see Remark 3.3 at the end

of Section(3.2), where ZWc =
∫

Ran(ξ)
e−βWc is assumed to be finite. When ξ is living in a

compact subspace of Rm, there is no need to introduce such a potential and the law of ξ(Xt)
converges exponentially fast to the uniform law on the compact subspace (as explained in
Section 1.2 and Section(3.2). Typically, Wc is zero in a chosen compact subspace M of Rm
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and is harmonic outside M. For example, in dimension two, suppose that ξ = (ξ1, ξ2) and
M = [ξmin, ξmax]× [ξmin, ξmax], then Wc can be defined as:

Wc(z1, z2) =
2∑
i=1

1zi≥ξmax(zi − ξmax)2 +
2∑
i=1

1zi≤ξmin(zi − ξmin)2. (1.11)

It is proven in [9] that, under appropriate assumptions, Ft converges exponentially fast to ∇A. In
addition, for well chosen ξ, the convergence to equilibrium for (1.10) is much quicker than for (1.2).
This can be quantified using entropy estimates and Logarithmic Sobolev Inequalities, see [9].

Notice that even though Ft converges to a gradient (∇A), there is no reason why Ft would be a
gradient at time t. In this paper, we propose an alternative method, where we approximate ∇A, at
any time t, by a gradient denoted ∇At. The gradient ∇At is defined as the Helmholtz projection of Ft.
One could expect improvements compared to the original ABF method since the variance of ∇At is
then smaller than the variance of Ft (since At is a scalar function). Reducing the variance is important
since the conditional expectation in (1.10) is approximated by empirical averages in practice.

1.4. Projected adaptive biasing force method (PABF)

A natural algorithm to reconstruct At from Ft, consists in solving the following Poisson problem:
∆At = divFt onM, (1.12)

with appropriate boundary conditions depending on the choice of ξ and M. More precisely, if ξ is
periodic andM is the torus Tm, then we are working with periodic boundary conditions. If ξ is with
values in Rm and M is a bounded subset of Rm, then Neumann boundary conditions are needed
(see Remark 3.17 at the end of Section(3.3.2). To discretize this Poisson problem, standard methods
such as finite difference methods, finite element methods, spectral methods (with, for example, a fast
Fourier transform to solve the associated linear system efficiently) can be used. Note that (1.12) is the
Euler-Lagrange equation associated with the minimization problem:

At = argmin
g∈H1(M)/R

∫
M
|∇g − Ft|2, (1.13)

where H1(M)/R =
{
g ∈ H1(M) |

∫
M
g = 0

}
denotes the subspace of H1(M) of zero average func-

tions. In the following we denote by
P(Ft) = ∇At (1.14)

the projection of Ft onto a gradient. In view of (1.13), At can be interpreted as the function such that
its gradient is the closest to Ft. Solving (1.12) amounts to computing the so-called Helmholtz-Hodge
decomposition of the vector field Ft as (see [6], Section 3):

Ft = ∇At +Rt, onM, (1.15)
where Rt is a divergence free vector field.

Finally, the projected ABF dynamics we propose to study is the following nonlinear stochastic
differential equation:

dXt = −∇(V −At ◦ ξ +Wc ◦ ξ)(Xt)dt+
√

2β−1dWt,

∆At = divFt onM, with appropriate boundary conditions,
F it (z) = E[fi(Xt)|ξ(Xt) = z], i = 1, ...,m.

(1.16)

Compared with the standard ABF dynamics (1.10), the only modification is that the mean force Ft
is replaced by ∇At, which is meant to be an approximation of ∇A at time t.
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The main theoretical result of this paper is a proof that At converges exponentially fast to the free
energy A: we actually prove this result in a simple setting, namely when the domain is the torus,
ξ(x1, ..., xn) = (x1, x2) and for a slightly modified version of (1.16), see Section 3 for more details, and
Remarks 3.17 and 3.18 for discussions about possible extensions. Moreover, we illustrate numerically
this result on a prototypical example. From a numerical point of view, the interest of the method is
that the variance of the norm of the projected estimated mean force (i.e. ∇At) is smaller than the
variance of the norm of the estimated mean force (i.e. Ft). We observe numerically that this variance
reduction enables a faster convergence to equilibrium for PABF compared with the original ABF.

The paper is organized as follows. Section 2 is devoted to a numerical illustration of the practical
value of the projected ABF compared to the standard ABF approach. In Section 3, the longtime
convergence of the projected ABF method is proven. Finally, the proofs of the results presented in
Section 3 are provided in Section 4.

2. Numerical experiments

2.1. Presentation of the model

We consider a system composed of N particles (qi)0≤i≤N−1 in a two-dimensional periodic box of side
length L. Among these particles, three particles (numbered 0, 1 and 2 in the following) are designated
to form a trimer, while the others are solvent particles. In this model, a trimer is a molecule composed
of three identical particles linked together by two bonds (see Figure(2.1).

2.1.1. Potential functions

All particles, except the three particles forming the trimer, interact through the purely repulsive WCA
pair potential, which is the Lennard-Jones (LJ) potential truncated at the LJ potential minimum:

VWCA(d) =
{
ε+ 4ε

[(
σ
d

)12 −
(
σ
d

)6] if d ≤ d0,

0 if d ≥ d0,

where d denotes the distance between two particles, ε and σ are two positive parameters and d0 =
21/6σ.

A particle of the solvent and a particle of the trimer also interact through the potential VWCA. The
interaction potential between two consecutive particles of the trimer (q0/q1 or q1/q2) is the double-well
potential (see Figure(2.2):

VS(d) = h

[
1− (d− d1 − ω)2

ω2

]2

, (2.1)

where d1, h and ω are positive parameters.
The potential VS has two energy minima. The first one, at d = d1, corresponds to the compact bond.
The second one, at d = d1 + 2ω, corresponds to the stretched bond. The height of the energy barrier
separating the two states is h.

In addition, the interaction potential between q0 and q2 is a Lennard-Jones potential:

VLJ(d) = 4ε′
[(

σ′

d

)12
−
(
σ′

d

)6]
,

where ε′ and σ′ are two positive parameters.
Finally, the three particles of the trimer also interact through the following potential function on

the angle θ formed by the vectors −−→q1q0 and −−→q1q2:

Vθ0(θ) = kθ
2 (cos(θ)− cos(θ0))2 ,
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where θ0 is the equilibrium angle and kθ is the angular stiffness. Figure 2.1 presents a schematic view
of the system.

Figure 2.1. Trimer (q0, q1, q2). Left: compact state; Center: mixed state; Right:
stretched state.

The total energy of the system is therefore, for x = (q0, ..., qN−1) ∈ (LT)2N :

V (x) =
∑

3≤i<j≤N−1
VWCA(|qi − qj |) +

2∑
i=0

N−1∑
j=3

VWCA(|qi − qj |)

+
1∑
i=0

VS(|qi − qi+1|) + VLJ(|q0 − q2|) + Vθ0(θ),

Figure 2.2. Double-well potential (2.1), with d1 = 21/6, ω = 2 and h = 2.

2.1.2. Reaction coordinate and physical parameters

The reaction coordinate describes the transition from compact to stretched state in each bond. It is the
normalised bond length of each bond of the trimer molecule. More precisely, the reaction coordinate
is ξ = (ξ1, ξ2), with ξ1(x) = |q0−q1|−d1

2ω and ξ2(x) = |q1−q2|−d1
2ω , where x = (q0, ..., qN−1) ∈ (LT)2N . For

i = 1, 2, the value ξi = 0 refers to the compact state (i.e. d = d1) and the value ξi = 1 corresponds to
the stretched state (i.e. d = d1 + 2ω).

We apply ABF and PABF dynamics to the trimer problem described above. The inverse temperature
is β = 1, we use N = 100 particles (N − 3 solvent particles and the trimer) and the box side length
is L = 15. The parameters describing the WCA and the Lennard-Jones interactions are set to σ = 1,
ε = 1, σ′ = 1, ε′ = 0.1, d0 = 21/6, d1 = 21/6 and the additional parameters for the trimer are ω = 2
and h = 2. The parameters describing the angle potential are: θ0 such that cos(θ0) = 1/3 and kθ = 1
(we refer to [12], Section 10.4.2, for the choice of such parameters). The initial condition on the trimer
is as follows: Both bonds q0q1 and q1q2 are in compact state, which means that the distance between
q0 and q1 and the distance between q1 and q2 are equal to d0. Moreover, the initial bond angle is θ0.
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2.1.3. Numerical methods and numerical parameters

Standard and projected ABF methods are used with Nreplicas = 100 replicas of the system evolving
according to the overdamped Langevin dynamics discretized with a time-step ∆t = 2.5 × 10−4. The
reaction coordinate space of interest is taken of the form M = [ξmin, ξmax] × [ξmin, ξmax], where
ξmin = −0.2 and ξmax = 1.2. The spaceM is discretized into Nbins ×Nbins = 50× 50 = 2500 bins of
equal sizes and δ = δx = δy = ξmax−ξmin

Nbins
= 0.028 denotes the size of each bin along both axes.

To implement the ABF and PABF methods, one needs to approximate
F it (z1, z2) = E[fi(Xt)|(ξ1(Xt), ξ2(Xt)) = (z1, z2)], i = 1, 2.

The mean force Ft is estimated in each bin as a combination of plain trajectorial averages and averages
over replicas. It is calculated at each time as an average of the local mean force in the bin over the
total number of visits in this bin. More precisely, at time t and for l = 1, 2, the value of the mean force
in the (i, j)th bin is:

F lt (i, j) =

∑
t′≤t

Nreplicas∑
k=1

fl(Xk
t′)1{indx(ξ(Xk

t′ ))=(i,j)}

∑
t′≤t

Nreplicas∑
k=1

1{indx(ξ(Xk
t′ ))=(i,j)}

, (2.2)

where Xk
t′ denotes the position at time t of the k-th replica, f = (f1, f2) is defined in (1.8) and

indx(ξ(x)) denotes the number of the bin where ξ(x) lives, i.e.

indx(z) =
([

z1 − ξmin
δ

]
+
,

[
z2 − ξmin

δ

]
+

)
, ∀z = (z1, z2) ∈M.

If the components of the index function (i.e. indx) are either equal to −1 or to Nbins, it means that
we are outsideM and then the confining potential is non zero, and defined as:

Wc(z1, z2) =
2∑
i=1

[
1{zi≥ξmax}(zi − ξmax)2 + 1{zi≤ξmin}(zi − ξmin)2

]
.

To construct the PABFmethod, the solution to the following Poisson problem with Neumann boundary
conditions is approximated:{

∆A = divF inM = [ξmin, ξmax]× [ξmin, ξmax],
∂A
∂n = F · n on ∂M,

(2.3)

where n denotes the unit normal outward toM. The associated variational formulation is the following: FindA ∈ H1(M)/R such that∫
M
∇A · ∇v =

∫
M
F · ∇v, ∀ v ∈ H1(M)/R.

Problem (2.3) is solved using a finite element method of type Q1 on the quadrilateral mesh defined
above, with nodes (zi1, z

j
2), where zi1 = ξmin + iδ and zj2 = ξmin + jδ, for i, j = 0, .., Nbins. The space

M is thus discretized into NT = N2
bins squares, with Ns = (Nbins + 1)2 nodes.

In our numerical experiments, we do not try to optimize the computation of the solution to the
Poisson problem (2.3). Notice that this Poisson problem is in small dimension (namely the number
of reaction coordinates) and over a simple domain (the cartesian product of the domains of each
reaction coordinates). Moreover, only the right-hand side of this problem changes from one time step
to the other. Therefore very efficient numerical techniques can be used, such as fast Fourier transforms,
finite differences methods over cartesian meshes by precomputing the LU decomposition of the matrix
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discretizing the Laplacian, etc. In practice, this is therefore negligible compared to the computation
of the force in the dynamics.

2.2. Comparison of the methods

In this section, we compare results obtained with three different simulations: without ABF, with ABF
and with projected ABF (PABF). First, it is observed numerically that both ABF methods overcome
metastable states. Second, it is illustrated how PABF method reduces the variance of the estimated
mean force compared to ABF method. As a consequence of this variance reduction, we observe that
the convergence of ∇At to ∇A with the PABF method is faster than the convergence of Ft to ∇A
with the ABF method.

2.2.1. Metastability

To illustrate numerically the fact that ABF methods improve the sampling for metastable processes,
we observe the variation, as a function of time, of the two metastable distances (i.e. the distance
between q0 and q1, and the distance between q1 and q2). On Figures 2.3 and 2.4, the distance between
q1 and q2 is plotted as a function of time for three dynamics: without ABF, ABF and PABF.

Both ABF methods allow to switch faster between the compact and stretched bonds and thus to
better explore the set of configurations. Without adding the biasing term, the system remains trapped
in a neighborhood of the first potential minimum (i.e. d0 ' 1.12) region for 20 units of time at least
(see Figure(2.3), while when the biasing term is added in the dynamics, many jumps between the two
local minima are observed (see Figure(2.4).

Figure 2.3. Without ABF.

Figure 2.4. Left: ABF; Right: PABF.
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2.2.2. Variance reduction

Since we use Monte-Carlo methods to approximate Ft and ∇At (see Equation (2.2)), the variance
is an important quantity to assess the quality of the result. The following general proposition shows
that projection reduces the variance. It is written for a reaction coordinate with values in T2 but the
generalization to other settings is straightforward.

Proposition 2.1. Let F be a random function from T2 into R2 which belongs to H(div,T2), and
denote by P the projection onto gradient vector fields defined by (1.14). Then, the variance of P(F )
is smaller than the variance of F : ∫

T2
Var(P(F )) ≤

∫
T2

Var(F ),

where, for any vector field F , Var(F ) = E(|F |2)− E(|F |)2 and |F | being the Euclidian norm.

Proof. Let F be a random vector field of H(div,T2). Let us introduce P(F ) ∈ H1(T2)×H1(T2) its
projection. Notice that by the linearity of the projection P(E(F )) = E(P(F )). By definition of P(F ),
one gets: ∫

T2
(F − P(F )) · ∇h = 0, ∀h ∈ H1(T2).

Therefore, using the Pythagorean theorem and the fact that P(F ) is a gradient,∫
T2
|F |2 =

∫
T2
|F − P(F )|2 +

∫
T2
|P(F )|2

and ∫
T2
|F − E(F )|2 =

∫
T2
|F − E(F )− P(F − E(F ))|2 +

∫
T2
|P(F − E(F ))|2.

Using the linearity of P, we thus obtain∫
T2

Var(F ) =
∫
T2

Var(F − P(F )) +
∫
T2

Var(P(F )),

which concludes the proof.

We illustrate the improvement of the projected method in terms of the variances of the biasing
forces by comparing

∫
M

Var(∇At) =
∫
M

Var(∂1At) +
∫
M

Var(∂2At) (for the PABF method) with∫
M

Var(Ft) =
∫
M

Var(F 1
t )+

∫
M

Var(F 2
t ) (for the ABF method). Figure 2.5 shows that the variance for

the projected ABF method is smaller than for the standard ABF method. We haveNbins×Nbins = 2500
degrees of freedom for each term (i.e. ∂1At, ∂2At, F 1

t and F 2
t ). The variances are computed using 20

independent realizations as follows:

∫
M

Var(F 1
t ) ' 1

2500

50∑
i,j=1

 1
20

20∑
k=1

F 1,k
t (zi1, z

j
2)2 −

(
1
20

20∑
k=1

F 1,k
t (zi1, z

j
2)
)2 .

Note that four averages are involved in this formula: an average with respect to the space variable, an
average over the 20 Monte-Carlo realizations, an average over replicas and a trajectorial average (the
last two averages are more explicit in (2.2)). Since the variance of the biasing force is smaller with
PABF, one may expect better convergence in time results. This will be investigated in Section 2.2.3
and 2.2.4.
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Figure 2.5. Variances as a function of time.

2.2.3. Free energy error

We now present, the variation, as a function of time, of the normalized averages L2-distance between
the real free energy (computed using a very long ABF simulation over 106 time steps and 100 replicas)
and the estimated one, in both cases: ABF and PABF methods. The average L1-distance is approx-
imated using 50 independent realizations. As can be seen in Figure 2.6, in both methods, the error
decreases as time increases. Moreover, this error is always smaller for the projected ABF method than
for the ABF method. At time 10, a good approximation of the free energy is obtained with PABF,
while a similar result is only reached at time 25 with ABF.

Figure 2.6. Free energy error as a function of time.
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2.2.4. Distribution

Another way to illustrate that the projected ABF method converges faster than the standard ABF
method is to plot the density function ψξ as a function of time. The density ψξ is approximated using
average over replicas and 50 independent realizations (see Figures 2.7(2.11).

It is observed that, for the projected ABF method, the state where both bonds are stretched is visited
earlier (at time 5) than for the standard ABF method (at time 20). The convergence to uniform law
along (ξ1, ξ2) is faster with the projected ABF method.

Figure 2.7. At time 0.025. Left:
∫
ψξ(z1, z2)dz2; Right:

∫
ψξ(z1, z2)dz1.

Figure 2.8. At time 5. Left:
∫
ψξ(z1, z2)dz2; Right:

∫
ψξ(z1, z2)dz1.

Figure 2.9. At time 10. Left:
∫
ψξ(z1, z2)dz2; Right:

∫
ψξ(z1, z2)dz1.
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Figure 2.10. At time 20. Left:
∫
ψξ(z1, z2)dz2; Right:

∫
ψξ(z1, z2)dz1.

Figure 2.11. At time 25. Left:
∫
ψξ(z1, z2)dz2; Right:

∫
ψξ(z1, z2)dz1.

3. Longtime convergence of the projected ABF method

We study the longtime convergence in a simplified setting (see Remark 3.17 and 3.18 for possible
extensions). We assume in this Section that D = Tn and that ξ(x) = (x1, x2). Then ξ lives in the
compact spaceM = T2 and we therefore take Wc = 0. The free energy can be written as:

A(x1, x2) = −β−1 ln(ZΣ(x1,x2)), (3.1)

where ZΣ(x1,x2) =
∫

Σ(x1,x2)

e−βV (x)dx3...dxn and Σ(x1,x2) = {x1, x2} × Tn−2. The mean force becomes:

∇A(x1, x2) =
∫

Σ(x1,x2)

f(x)dµΣ(x1,x2) , (3.2)

where f = (f1, f2) = (∂1V, ∂2V ) and the conditional probability measure dµΣ(x1,x2) is:

dµΣ(x1,x2) = Z−1
Σ(x1,x2)

e−βV dx3...dxn.

Finally, the vector field Ft(x1, x2) is
∫

Σ(x1,x2)

fdµΣ(x1,x2)(t, .), or equivalently:

F it (x1, x2) = E
(
∂iV (Xt)|ξ(Xt) = (x1, x2)

)
, i = 1, 2.

3.1. Helmholtz projection

In section 3.1.1, a weighted Helmholtz-Hodge decomposition of Ft is presented. In section 3.1.2, the
associated minimization problem and projection operator are introduced.

Let us first fix some notations. For x ∈ Tn and 1 ≤ i < j ≤ n, xji denotes the vector (xi, xi+1, ..., xj)
and dxji denotes dxi dxi+1 ... dxj . Moreover, ∇x2

1
, divx2

1
and ∆x2

1
represent respectively the gradient,
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the divergence and the laplacian in dimension two for the first two variables (x1, x2). Likewise, ∇xn3 =
(∂3, ..., ∂n)T represents the gradient vector starting from the third variable of Tn.

3.1.1. Helmholtz decomposition

The space T2 is a bounded and connected space. For any smooth positive probability density function
ϕ : T2 → R, let us define the weighted Hilbert space: L2

ϕ(T2) = {f : T2 → R,
∫
T2 |f |2ϕ < ∞}. Let

us also introduce the Hilbert space Hϕ(div;T2) = {g ∈ L2
ϕ(T2) × L2

ϕ(T2), divx2
1
(g) ∈ L2(T2)}. It is

well-known that any vector field Ft : T2 → R2 ∈ H1(div,T2) can be written (see [6], Section 3 for
example) as (Helmholtz decomposition): Ft = ∇x2

1
At +Rt, where Rt is a divergence free vector field.

We will need a generalization of the standard Helmholtz decomposition to the weighted Hilbert spaces
L2
ϕ(T2) and Hϕ(div;T2)):

Ftϕ = ∇x2
1
(At)ϕ+Rt, (3.3)

s.t. divx2
1
(Rt) = 0. This weighted Helmholtz decomposition is required to simplify calculations when

studying the longtime convergence (see Remark 4.1 in Section 4.1 for more details). Recall the space:
H1(T2)/R =

{
g ∈ H1(T2) |

∫
T2 g = 0

}
. The function At is then the solution to the following problem:∫

T2
∇x2

1
At · ∇x2

1
g ϕ =

∫
T2
Ft · ∇x2

1
g ϕ, ∀g ∈ H1(T2)/R, (3.4)

which is the weak formulation of the Poisson problem:
divx2

1
(∇x2

1
Atϕ(t, .)) = divx2

1
(Ftϕ(t, .)), (3.5)

with periodic boundary conditions. Using standard arguments (Lax-Milgram theorem), it is straight-
forward to check that (3.4) admits a unique solution At ∈ H1(T2)/R.

3.1.2. Minimization problem and projection onto a gradient

Proposition 3.1. Suppose that Ft ∈ Hϕ(div;T2). Then for any smooth positive probability density
function ϕ, Equation (3.4) is the Euler Lagrange equation associated with the following minimization
problem:

At = min
h∈H1(T2)/R

∫
T2
|∇x2

1
h− Ft|2ϕ = min

h∈H1(T2)/R
||∇x2

1
h− Ft||2L2

ϕ(T2). (3.6)

Furthermore, At belongs to H2(T2).

Proof. Let us introduce the application I : H1(T2)/R→ R+, defined by I(g) = ||∇x2
1
h− Ft||2L2

ϕ(T2).
It is easy to prove that I is α-convex and coercive, i.e. lim

‖g‖H1→+∞
I(g) = +∞. Thus I admits a unique

global minimum At ∈ H1(T2)/R. Furthermore, ∀ε > 0,∀g ∈ H1(T2),

I(At + εg) =
∫
T2
|∇x2

1
(At + εg)− Ft|2ϕ

=
∫
T2
|∇x2

1
At − Ft|2ϕ− 2ε

∫
T2

(∇x2
1
At − Ft) · ∇x2

1
g ϕ+ ε2

∫
T2
|∇x2

1
g|2ϕ

= I(At)− 2ε
∫
T2

(∇x2
1
At − Ft) · ∇x2

1
g ϕ+ ε2

∫
T2
|∇x2

1
g|2ϕ.

(3.7)

Since At is the minimum of I, then I(At + εg) ≥ I(At), ∀ε > 0,∀g ∈ H1(T2). By considering the
asymptotic regime ε→ 0 in the last equation, one thus obtains the equation (3.4):∫

T2
∇x2

1
At · ∇x2

1
g ϕ =

∫
T2
Ft · ∇x2

1
g ϕ, ∀g ∈ H1(T2)/R.
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This is the weak formulation of the problem (3.5) in H1(T2)/R. Since ϕ is a smooth positive function,
then ∃ δ > 0, s.t. ϕ > δ. Furthermore, since divx2

1
(Ftϕ(t, .)) ∈ L2(T2), thus ∆x2

1
At ∈ L2(T2). Therefore,

using standard elliptic regularity results, At ∈ H2(T2).

For any positive probability density function ϕ, the estimated vector field ∇x2
1
At is the projection

of Ft onto a gradient. In the following, we will use the notation:

Pϕ(Ft) = ∇x2
1
At, (3.8)

where the projection operator Pϕ is a linear projection defined from Hϕ(div;T2) to H1(T2)×H1(T2).
Notice in particular that Pϕ ◦ Pϕ = Pϕ. Moreover, the projection operator P defined by (1.14) is Pϕ
for ϕ = 1.

3.2. The projected ABF dynamics

We will study the longtime convergence of the following Projected ABF (PABF) dynamics:
dXt = −∇

(
V −At ◦ ξ

)
(Xt)dt+

√
2β−1dWt,

∇x2
1
At = Pψξ(Ft),

F it (x1, x2) = E[∂iV (Xt)|ξ(Xt) = (x1, x2)], i = 1, 2,

(3.9)

where Pψξ is the linear projection defined by (3.8) and Wt is a standard nN -dimensional Brownian
motion. Thanks to the diffusion term

√
2β−1dWt, Xt admits a smooth density ψ with respect to the

the Lebesgue measure on Tn and ψξ then denotes the marginal distribution of ψ along ξ:

ψξ(t, x1, x2) =
∫

Σ(x1,x2)

ψ(t, x)dxn3 . (3.10)

The dynamics (3.9) is the PABF dynamics (1.16) with ξ(x) = (x1, x2), Wc = 0 and the weighted
Helmholtz projection Pψξ . As already mentioned above, the weight ψξ is introduced to simplify the
convergence proof (see Remark 4.1 in Section(4).

Remark 3.2. If the law of Xt is ψ(t, x)dx then the law of ξ(Xt) is ψξ(t, x1, x2)dx1dx2 and the
conditional distribution of Xt given ξ(Xt) = (x1, x2) is (see (1.7) for a similar formula when ψ =
Z−1

Σ(x1,x2)
e−βV ):

dµt,x1,x2 = ψ(t, x)dxn3
ψξ(t, x1, x2) . (3.11)

Indeed, for any smooth functions f and g,
E(f(ξ(Xt))g(Xt)) =

∫
Tn
f(ξ(x))g(x)ψ(t, x)dx

=
∫
T2

∫
Σ(x1,x2)

f ◦ ξgψdxn3dx1dx2

=
∫
T2
f(x1, x2)

∫
Σ(x1,x2)

gψdxn3

ψξ(x1, x2) ψξ(x1, x2)dx1dx2.

♦

Let us now introduce the nonlinear partial differential equation (the so-called Fokker-Planck equa-
tion) which rules the evolution of the density ψ(t, x) of Xt solution of (3.9):
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∂tψ = div
((
∇V −

2∑
i=1

∂iAt ◦ ξ∇ξi

)
ψ + β−1∇ψ

)
, for (t, x) ∈ [0,∞[×Tn,

∀t ≥ 0, div(∇Atψξ(t, .)) = div(Ftψξ(t, .)), in T2 with periodic boundary conditions,

∀t ≥ 0, ∀(x1, x2) ∈ T2, F it (x1, x2) =

∫
Σ(x1,x2)

∂iV ψdx
n
3

ψξ(x1, x2) , i = 1, 2.

(3.12)

The first equation of (3.12) rewrites:

∂tψ = div[∇V ψ + β−1∇ψ]− ∂1((∂1At)ψ)− ∂2((∂2At)ψ). (3.13)

Suppose that (ψ, Ft, At) is a solution of (3.12) and let us introduce the expected long-time limits of
ψ, ψξ (defined by (3.10)) and µt,x1,x2 (defined by (3.11)) respectively:

(1) ψ∞ = e−β(V−A◦ξ);

(2) ψξ∞ = 1 (uniform law);

(3)
µ∞,x1,x2 = Z−1

Σ(x1,x2)
e−βV dxn3 . (3.14)

Notice that the probability measure ψξ∞(x1, x2)dx1dx2 is the image of the probability measure ψ∞(x)dx
by ξ and that µ∞,x1,x2 = µΣ(x1,x2) defined in (1.7). Furthermore, we have that∫

Tn
ψ∞ = 1,

∫
T2
ψξ∞ = 1 and ∀(x1, x2) ∈ T2,

∫
Σ(x1,x2)

dµ∞,x1x2 = 1.

Remark 3.3. In the case whenWc 6= 0, the first equation of the Fokker-Plank problem (3.12) becomes:

∂tψ = div
(
∇ (V −At ◦ ξ −Wc ◦ ξ)ψ + β−1∇ψ

)
.

The expected long-time limits of ψ, ψξ and µt,x1,x2 are respectively:

(1) ψ∞ = Z−1
Wc

e−β(V−A◦ξ−Wc◦ξ);

(2) ψξ∞ = Z−1
Wc

e−βWc ;

(3) µ∞,x1,x2 = Z−1
Σ(x1,x2)

e−βV dxn3 ,

where ZWc =
∫
T2

e−βWc .

3.3. Precise statements of the longtime convergence results

In section 3.3.1, some well-known results on entropy techniques are presented. For a general introduc-
tion to logarithmic Sobolev inequalities, their properties and their relation to long-time behaviours
of solutions to partial differential equations, we refer to [1, 2, 13]. Section 3.3.2 presents the main
theorem of convergence.
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3.3.1. Entropy and Fisher information

Define the relative entropy H(.|.) as follows: for any probability measures µ and ν such that µ is
absolutely continuous with respect to ν (denoted µ� ν),

H(µ|ν) =
∫

ln
(
dµ

dν

)
dµ.

Abusing the notation, we will denote H(ϕ|ψ) for H(ϕ(x)dx|ψ(x)dx) in case of probability measures
with densities. Let us recall the Csiszar-Kullback inequality (see [2]):

‖µ− ν‖TV ≤
√

2H(µ|ν), (3.15)

where ‖µ− ν‖TV = sup
‖f‖L∞≤1

{∫
fd(µ− ν)

}
is the total variation norm of the signed measure µ− ν.

When both µ and ν have densities with respect to the Lebesque measure, ‖µ− ν‖TV is simply the L1

norm of the difference between the two densities. The entropy H(µ|ν) can be understood as a measure
of how close µ and ν are.

Now, let us define the Fisher information of µ with respect to ν:

I(µ|ν) =
∫ ∣∣∣∣∇ln

(
dµ

dν

)∣∣∣∣2 dµ. (3.16)

The Wasserstein distance is another way to compare two probability measures µ and ν defined on
a space Σ,

W(µ, ν) =
√

inf
π∈
∏

(µ,ν)

∫
Σ×Σ

dΣ(x, y)2dπ(x, y),

where the geodesic distance dΣ on Σ is defined as: ∀x, y ∈ Σ,

dΣ(x, y) = inf


√∫ 1

0
|ẇ(t)|2dt | w ∈ C1([0, 1],Σ), w(0) = x,w(1) = y

 ,
and

∏
(µ, ν) denotes the set of coupling probability measures, namely probability measures on Σ× Σ

such that their marginals are µ and ν:

∀π ∈
∏

(µ, ν),
∫

Σ×Σ
φ(x)dπ(x, y) =

∫
Σ
φdµ and

∫
Σ×Σ

ψ(y)dπ(x, y) =
∫

Σ
ψdν.

Definition 3.4. We say that a probability measure ν satisfies a logarithmic Sobolev inequality with
constant ρ > 0 (denoted LSI(ρ)) if for all probability measure µ such that µ� ν ,

H(µ|ν) ≤ 1
2ρI(µ|ν).

Definition 3.5. We say that a probability measure ν satisfies a Talagrand inequality with constant
ρ > 0 (denoted T(ρ)) if for all probability measure µ such that µ� ν,

W(µ, ν) ≤
√

2
ρ
H(µ|ν).

Remark 3.6. We implicitly assume in the latter definition, that the probability measures have finite
moments of order 2. This is the case for the probability measures used in this paper.

The following lemma is proved in [11], Theorem 1:

Lemma 3.7. If ν satisfies LSI(ρ), then ν satisfies T (ρ).
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Recall that Xt solution to (3.9) has a density ψ(t, .). In the following, we denote the Total Entropy
by

E(t) = H(ψ(t, .)|ψ∞) =
∫
Tn

ln(ψ/ψ∞)ψ, (3.17)

the Macroscopic Entropy by

EM (t) = H(ψξ(t, .)|ψξ∞) =
∫
T2

ln(ψξ/ψξ∞)ψξ, (3.18)

and the Microscopic Entropy by

Em(t) =
∫
M
em(t, x1, x2)ψξ(t, x1, x2)dx1dx2, (3.19)

where em(t, x1, x2) = H(µt,x1,x2 |µ∞,x1,x2). The following result is straightforward to check:

Lemma 3.8. It holds, ∀t ≥ 0,
E(t) = EM (t) + Em(t).

Note that the Fisher information of µt,x1,x2 with respect to µ∞,x1,x2 can be written as (see (3.16)):

I(µt,x1,x2 |µ∞,x1,x2) =
∫

Σ(x1,x2)

|∇xn3 ln(ψ(t, .)/ψ∞)|2dµt,x1,x2 .

3.3.2. Convergence of the PABF dynamics (3.12)

The following proposition shows that the density function ψξ satisfies a simple diffusion equation.

Proposition 3.9. Suppose that (ψ,Ft, At) is a smooth solution of (3.12). Then ψξ satisfies:{
∂tψ

ξ = β−1∆x2
1
ψξ, in [0,∞[×T2,

ψξ(0, .) = ψξ0, on T2.
(3.20)

Remark 3.10. If ψξ0 = 0 at some points or is not smooth, then F at time 0 may not be well defined
or I(ψξ(0, .)/ψξ∞) may be infinite. Since, by Proposition 3.9, ψξ satisfies a simple diffusion equation
these difficulties disappear as soon as t > 0. Therefore, up to considering the problem for t > t0 > 0,
we can suppose that ψξ0 is a smooth positive function. We also have that for all t > 0, ψξ(t, .) > 0,∫
T2
ψξ = 1 and ψξ(t, .) ∈ C∞(T2).

Remark 3.11. In the case where Wc 6= 0, the probability density function ψξ satisfies the modified
diffusion equation:

∂tψ
ξ = ∇x2

1
·
(
β−1∇x2

1
ψξ + ψξ∇x2

1
Wc

)
.

Here are two simple corollaries of Proposition 3.9.

Corollary 3.12. There exists t0 > 0 and I0 > 0 (depending on ψξ0), such that

∀t > t0, I(ψξ(t, .)|ψξ∞) < I0e−β−18π2t.

Corollary 3.13. The macroscopic entropy EM (t), defined by (3.18), converges exponentially fast to
zero:

∀t > t0, EM (t) ≤ I0
8π2 e−β−18π2t,

where I0 is the constant introduced in Corollary 3.12.

The assumptions we need to prove the longtime convergence of the biasing force ∇At to the mean
force ∇A are the following:
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[H1: ] V ∈ C2(Tn) and satisfies:
∃γ > 0, ∀ 3 ≤ j ≤ n, ∀x ∈ Tn, max(|∂1∂jV (x)|, |∂2∂jV (x)|) ≤ γ.

[H2: ] V is such that ∃ρ > 0, ∀(x1, x2) ∈ T2, µ∞,x1,x2 = µΣ(x1,x2) defined by (3.14) satisfies
LSI(ρ).

The main theorem is:
Theorem 3.14. Let us assume [H1] and [H2]. The following properties then hold:

(1) The microscopic entropy Em converges exponentially fast to zero:

∃C > 0,∃λ > 0, ∀t ≥ 0,
√
Em(t) ≤ Ce−λt. (3.21)

Furthermore, if ρ 6= 4π2, then λ = β−1 min(ρ, 4π2) and

C =
√
Em(0) + γ

β−1|ρ− 4π2|

√
I0
2ρ . If ρ = 4π2, then for all λ < β−1ρ, there exists a positive

constant C such that (3.21) is satisfied.

(2)
√
E(t) and ‖ψ(t, .)− ψ∞‖L1(Tn) both converge exponentially fast to zero with rate λ.

(3) The biasing force ∇x2
1
At converges to the mean force ∇x2

1
A in the following sense:

∀ t ≥ 0,
∫
T2
|∇x2

1
At −∇x2

1
A|2ψξ(t, x1, x2)dx1dx2 ≤

8γ2

ρ
Em(t). (3.22)

The proofs of the results presented in this section are provided in Section 4.
Remark 3.15. We would like to emphasize that our arguments hold under the assumption of existence
of regular solutions. In particular, we suppose that the density ψ(t, .) is sufficiently regular so that the
algebric manipulations in the proofs (see Section(4) are valid.
Remark 3.16. This remark is devoted to show how the rate of convergence of the original gradient
dynamics (1.2) is improved thanks to PABF method. First of all, we mention a classical computation
to get a rate of convergence for (1.2). Precisely, if one denotes ϕ(t, .) the probability density function
of Xt satisfying (1.2), and ϕ∞ = Z−1

µ e−βV its longtime limit, then by standard computations (see for
example [2]), one obtains:

d

dt
H(ϕ(t, .)|ϕ∞) = −β−1I(ϕ(t, .)|ϕ∞).

Therefore, if ϕ∞ satisfies LSI(R), then one obtains the estimate

∃R > 0, ∀t > 0, H(ϕ(t, .)|ϕ∞) ≤ H(ϕ0|ϕ∞) e−2β−1Rt. (3.23)
From (3.15), we obtain that ‖ϕ(t, .)−ϕ∞‖L1(Tn) converges exponentially fast to zero with rate β−1R.
The constant R is known to be small if the metastable states are separated by large energy barriers
or if high probability regions for µ are separated by large regions with small probability (namely µ
is a multimodal measure). Second, by Theorem 3.14, one can show that ∇At converges exponentially
fast to ∇A in L2(ψξ∞(x1, x2)dx1dx2)-norm at rate λ = β−1 min(ρ, 4π2). Indeed, since ψξ∞ = 1,∫

T2
|∇At −∇A|2dx1dx2 =

∫
T2
|∇At −∇A|2

ψξ(t, x1, x2)
ψξ(t, x1, x2)dx1dx2

≤ 8γ2

(1− ε)ρEm(t),

≤ C̃e−2λt,
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where ε > 0 such that ψξ(t, x1, x2) ≥ 1 − ε (for more details refer to the proof of Corollary 3.12
in Section(4). This result can be compared with (3.23). Typically, for good choices of ξ, λ � R,
the PABF dynamics converges to equilibrium much faster than the original dynamics (1.2). This is
typically the case if the conditional measures µ∞,x1,x2 are less multimodal than the original measure
µ. In our framework, we could state that a "good reaction coordinate" is such that ρ is as large as
possible.

Remark 3.17. (Extension to other geometric settings)
The results of Theorem 3.14 are easily generalized to the following setting:

If D = Rn, ξ(x) = (x1, x2) andM is a compact subspace of Rn, then choose a confining potential
Wc (defined in (1.11)) such that ZWc =

∫
e−βWc < +∞, Z−1

Wc
e−βWc satisfies LSI(r∗) (for some r∗ > 0)

and Wc is convex potential, then Corollary 3.12 is satisfied with rate 2β−1(r∗ − ε), for any ε ∈ (0, r∗)
(refer to Corollary 1 in [9] for further details). In this case, Neumann boundary conditions are needed
to solve the Poisson problem (3.5):

div(∇Atψξ(t, .)) = div(Ftψξ(t, .)) inM,

∂At
∂n

= Ft.n on ∂M,
(3.24)

where n denotes the unit normal outward toM. The convergence rate λ of Theorem 3.14 becomes
β−1 min(ρ, r∗−ε). Neumann boundary conditions come from the minimization problem (3.6) associated
with the Euler-Lagrange equation. The numerical applications in Section 2 are performed in this
setting.

Remark 3.18. (Extension to more general reaction coordinates)
In this section, we have chosen ξ(x1, ..., xn) = (x1, x2). The results can be extended to the following
settings:

(1) In dimension one, the Helmholtz projection has obviously no sense. However, if D = Tn
and ξ(x) = x1, then Ft converges to A′, which is a derivative of a periodic function and thus∫
T
A′ = 0. Since

∫
T
Ft is not necessary equal to zero, one can therefore take a new approximation

A
′
t = Ft −

∫
T
Ft, which approximates A′ at any time t. The convergence results of this section

can be extended to this setting, to show that A′t converges exponentially fast to A′.

(2) More generally, for a reaction coordinate with values in Tm, the convergence results presented
in this paper still hold under the following orthogonality condition:

∀i 6= j, ∇ξi · ∇ξj = 0. (3.25)

The proof follows exactly the same lines. In the case when (3.25) does not hold, it is possible
to resort to the following trick used for example in metadynamics (refer to [3, 8]). The idea
is to introduce an additional variable z of dimension m, and an extended potential Vξ(x, z) =
V (x) + κ

2 |z − ξ(x)|2, where κ is a penalty constant. The reaction coordinate is then chosen as
ξmeta(x, z) = z, so that the associated free energy is:

Aξ(z) = −β−1 ln
∫
D

e−βVξ(x,z)dx,
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which converges to A(z) (defined in (1.5)) when κ goes to infinity. The extended PABF dy-
namics can be written as:



dXt = −
(
∇V (Xt) + κ

m∑
i=1

(ξi(Xt)− Zi,t)∇ξi(Xt)
)
dt+

√
2β−1dWt,

dZt = κ(ξ(Xt)−∇Et(Zt)) dt+
√

2β−1dW t,

∇Et = Pψξmeta (Gt) ,
Gt(z) = E(ξ(Xt)|Zt = z),

whereW t is am-dimensional Brownian motion independent ofWt. The results of Theorem 3.14
apply to this extended PABF dynamics.

4. Proofs

The proofs are inspired from [9]. One may assume that β = 1 up to the following change of variable:
t̃ = β−1t, ψ̃(t̃, x) = ψ(t, x), Ṽ (x) = βV (x). Recall, that we work in D = Tn, M = T2 and ∀x =
(x1, ..., xn) ∈ Tn, ξ(x) = (x1, x2).

4.1. Proof of Proposition 3.9

Let g : T2 → R be a function in H1(T2).

d

dt

∫
T2
ψξgdx1dx2 = d

dt

∫
Tn
ψg ◦ ξdxn1

=
∫
Tn

div[(∇V −
2∑
i=1

∂iAt ◦ ξ∇ξi)ψ +∇ψ]g ◦ ξdxn1

= −
∫
Tn

2∑
j=1

[(∇V −
2∑
i=1

∂iAt ◦ ξ∇ξi)ψ +∇ψ].∇ξj∂jg ◦ ξdxn1

= −
2∑
i=1

∫
Tn

[(∇V.∇ξiψ +∇ψ.∇ξi]∂ig ◦ ξdxn1

+
2∑
i=1

∫
Tn
∂iAt ◦ ξψ∂ig ◦ ξdxn1 .
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Applying Fubini’s theorem, it holds:

d

dt

∫
T2
ψξgdx1dx2 = −

2∑
i=1

∫
T2

∫
Σ(x1,x2)

[∂iV ψ + ∂iψ]dxn3∂ig(x1, x2)dx1dx2

+
2∑
i=1

∫
T2

∫
Σ(x1,x2)

∂iAt(x1, x2)ψdxn3∂ig(x1, x2)dx1dx2

= −
2∑
i=1

∫
T2
F itψ

ξ∂ig(x1, x2)dx1dx2 −
2∑
i=1

∫
T2
∂iψ

ξ∂ig(x1, x2)dx1dx2

+
2∑
i=1

∫
T2
∂iAt(x1, x2)ψξ∂ig(x1, x2)dx1dx2

=
∫
T2

∆ψξg(x1, x2)dx1dx2,

where we used (3.4) with ϕ = ψξ(t, .). This is the weak formulation of:

∂tψ
ξ = ∆ψξ, on [0,∞[×T2.

Remark 4.1. The reason why we consider the weighted Helmholtz decomposition (3.3) with ϕ =
ψξ(t, .) in the PABF dynamics (3.9) instead of the standard one (1.15) is precisely to obtain this
simple diffusion equation on the function ψξ. This is will also be useful in the proof of Lemma 4.5
below.

4.2. Proof of Corollary 3.12

Let φ = ψξ and φ∞ = ψξ∞ = 1. It is known that ∀t ≥ 0 and ∀(x1, x2) ∈ T2, φ satisfies:
∂tφ = ∆x2

1
φ. (4.1)

Moreover (See Remark(3.10), it is assumed that and is such that∫
T2
φ(0, .) = 1 andφ(0, .) ≥ 0.

Let us show that ∀ t ≥ 0,∀k > 0, ‖φ(t, .)− 1‖Hk(T2) ≤ ‖φ(0, .)− 1‖Hk(T2)e−8π2t.

First, we prove that φ converges to 1 in L2(T2),
1
2
d

dt

∫
T2
|φ− 1|2 =

∫
T2
∂tφ(φ− 1)

=
∫
T2

∆φ(φ− 1)

= −
∫
T2
∇φ∇(φ− 1)

= −
∫
T2
|∇φ|2

≤ −4π2
∫
T2
|φ− 1|2,

where we have used the Poincaré-Wirtinger inequality on the torus T2, applied to φ: for any function
f ∈ H1(T2), ∫

T2

(
f −

∫
T2
f

)2
≤ 1

4π2

∫
T2
|∇f |2.

75



H. Alrachid & T. Lelièvre

We therefore obtain, ‖φ(t, .)− 1‖2L2(T2) ≤ ‖φ(0, .)− 1‖2L2(T2)e
−8π2t.

Second, we prove that ∂iφ converges to 0 in L2(T2). For i = 1, 2, ∂iφ satisfies (4.1): ∂t(∂iφ) =
∆x2

1
(∂iφ), with periodic boundary conditions. As above,

1
2
d

dt

∫
T2
|∂iφ|2 =

∫
T2
∂t(∂iφ)∂iφ

=
∫
T2

∆(∂iφ)∂iφ

= −
∫
T2
|∇(∂iφ)|2.

Using again the Poincaré-Wirtinger inequality on ∂iφ,

1
2
d

dt

∫
T2
|∂iφ|2 ≤ −4π2

∫
T2

(
∂iφ−

∫
T2
∂iφ

)2

= −4π2
∫
T2
|∂iφ|2.

Where we used
∫
T2 ∂iφ = 0, since φ is periodic on T2. Therefore, it holds

‖∂iφ(t, .)‖2L2(T2) ≤ ‖∂iφ(0, .)‖2L2(T2)e
−8π2t.

Third, one can prove by induction that all higher derivatives of φ converge exponentially fast to 0,
with rate 8π2 and the following estimation is then proven:

∀ t ≥ 0, ∀k > 0, ‖φ(t, .)− 1‖2Hk(T2) ≤ ‖φ(0, .)− 1‖2Hk(T2)e
−8π2t.

As Hk(T2) ↪→ L∞(T2), ∀k > 1, then ∃c > 0,

‖φ− 1‖2L∞ ≤ c‖φ− 1‖2Hk ≤ ce−8π2t.

Therefore, ∀ε > 0, ∃t0 > 0, ∀x ∈ T2, ∀t > t0, φ(t, x) ≥ 1− ε. Finally, ∀t > t0

I(ψξ|ψξ∞) =
∫
T2

|∇x2
1
φ|2

φ
≤ 1

1− ε

∫
T2
|∇x2

1
φ|2 ≤

‖∇x2
1
φ(0, .)‖2L2(T2)

1− ε e−8π2t.

4.3. Proof of Corollary 3.13

We have that ψξ∞ = 1 satisfies LSI(r), for some r > 0 (see Chapter 3, Section 3 in [1]). Referring to
Proposition 3.9 and since ψξ is a probability density function, one gets:

d

dt
EM =

∫
T2
∂t
(
ψξ ln(ψξ)

)
=
∫
T2
∂tψ

ξ ln(ψξ) +
∫
T2
∂tψ

ξ

=
∫
T2

∆ψξ ln(ψξ)

= −
∫
T2
|∇x2

1
ln(ψξ)|2ψξ

= −I(ψξ|ψξ∞)
≤ −2rH(ψξ|ψξ∞)
= −2rEM .
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Therefore, EM converges exponentially fast to zero. Referring to Corollary 3.12 and since EM converges
to zero, we have that for any t > t0,

−EM (t) =
∫ ∞
t

d

ds
EM (s)ds = −

∫ ∞
t

I(ψξ|ψξ∞)ds

≥ −I0

∫ ∞
t

e−8π2sds

= − I0
8π2 e−8π2t,

which yields the desired estimate.

4.4. Proof of Theorem 3.14

To prove our main result, several intermediate lemmas are needed.

Lemma 4.2. ∀t ≥ 0, ∀(x1, x2) ∈ T2 and for i = 1, 2, we have:

(F it − ∂iA)(x1, x2) =
(∫

Σ(x1,x2)

∂i ln(ψ/ψ∞) ψ
ψξ
dxn3

)
(x1, x2)−

(
∂i ln(ψξ/ψξ∞)

)
(x1, x2).

Proof. ∫
Σ(x1,x2)

∂i ln(ψ/ψ∞) ψ
ψξ
dxn3 − ∂i ln(ψξ/ψξ∞)

=
∫

Σ(x1,x2)

∂i ln(ψ) ψ
ψξ
dxn3 −

∫
Σ(x1,x2)

∂i ln(ψ∞) ψ
ψξ
dxn3 − ∂i ln(ψξ) + ∂i ln(ψξ∞)

= 1
ψξ

∫
Σ(x1,x2)

∂iψdx
n
3 +

∫
Σ(x1,x2)

(∂iV −∇ξi∂iA ◦ ξ)
ψ

ψξ
dxn3 − ∂i ln(ψξ)

= ∂iψ
ξ

ψξ
+ F it − ∂iA−

∂iψ
ξ

ψξ

= F it − ∂iA.

Lemma 4.3. Suppose that [H1] and [H2] hold, then for all t ≥ 0, for all (x1, x2) ∈ T2 and for i = 1, 2,
we have:

|F it (x1, x2)− ∂iA(x1, x2)| ≤ γ
√

2
ρ
em(t, x1, x2).

Proof. For any coupling measure π ∈
∏

(µt,x1,x2 , µ∞,x1,x2) defined on Σ(x1,x2) × Σ(x1,x2), it holds:

|F it − ∂iA| =
∣∣∣∣∣
∫

Σ(x1,x2)×Σ(x1,x2)

(∂iV (x)− ∂iV (x′))π(dx, dx′)
∣∣∣∣∣

= ‖∇xn3 ∂iV ‖L∞
√∫

Σ(x1,x2)×Σ(x1,x2)

dΣ(x1,x2)(x, x
′)2π(dx, dx′).
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Taking now the infimum over all π ∈
∏

(µ(t, .|(x1, x2)), µ(∞, .|(x1, x2))) and using Lemma 3.7, we
obtain

|F it − ∂iA| ≤ γW(µ(t, .|(x1, x2)), µξ(∞, .|(x1, x2)))

≤ γ
√

2
ρ
H(µξ(t, .|(x1, x2)), µξ(∞, .|(x1, x2)))

= γ

√
2
ρ
em(t, (x1, x2)).

Lemma 4.4. Suppose that [H2] holds, then for all t ≥ 0,

Em(t) ≤ 1
2ρ

∫
Tn
|∇xn3 ln(ψ(t, .)/ψ∞)|2ψ.

Proof. Using [H2],

Em =
∫
T2
emψ

ξdx1dx2

=
∫
T2
H(µ(t, .|(x1, x2))|µ(∞, .|(x1, x2)))ψξdx1dx2

≤
∫
T2

1
2ρ

∫
Σ
x2
1

|∇xn3 ln(ψ(t, .)/ψ∞)|2dxn3
ψ(t, .)

ψξ(t, x1, x2)dx1dx2

= 1
2ρ

∫
Tn
|∇xn3 ln(ψ(t, .)/ψ∞)|2ψdxn1 .

Lemma 4.5. It holds for all t ≥ 0,∫
Tn

(∂1At − F 1
t )[∂1 ln(ψ/ψ∞)]ψ +

∫
Tn

(∂2At − F 2
t )[∂2 ln(ψ/ψ∞)]ψ ≤ 0.

Proof. Using Fubini’s theorem,∫
Tn

(∂1At − F 1
t )[∂1 ln(ψ/ψ∞)]ψ +

∫
Tn

(∂2At − F 2
t )[∂2 ln(ψ/ψ∞)]ψ

=
∫
T2

(∂1At − F 1
t )
∫

Σ(x1,x2)

[∂1 ln(ψ/ψ∞)]ψ +
∫
T2

(∂2At − F 2
t )
∫

Σ(x1,x2)

[∂2 ln(ψ/ψ∞)]ψ.

For the first term, we have∫
Σ(x1,x2)

[∂1 ln(ψ/ψ∞)]ψ =
∫

Σ(x1,x2)

(∂1 lnψ)ψ −
∫

Σ(x1,x2)

(∂1 lnψ∞)ψ

= ∂1ψ
ξ +

∫
Σ(x1,x2)

∂1(V −A)ψ

= (∂1 lnψξ)ψξ + F 1
t ψ

ξ − ∂1Aψ
ξ.

Similarly, we have ∫
Σ(x1,x2)

[∂2 ln(ψ/ψ∞)]ψ = (∂2 lnψξ)ψξ + F 2
t ψ

ξ − ∂2Aψ
ξ.
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Therefore, one gets∫
Tn

(∂1At − F 1
t )[∂1 ln(ψ/ψ∞)]ψ +

∫
Tn

(∂2At − F 2
t )[∂2 ln(ψ/ψ∞)]ψ

=
∫
T2

(∂1At − F 1
t )(∂1 lnψξ)ψξ +

∫
T2

(∂2At − F 2
t )(∂2 lnψξ)ψξ

−
∫
T2

(∂1At − F 1
t )2ψξ −

∫
T2

(∂2At − F 2
t )2ψξ

which concludes the assertion since the first line is equal to zero (by (3.4) with ϕ = ψξ(t, .)) and the
second line is non positive. Again the weighted Helmholtz decomposition helps in simplifying terms.

Proof of Theorem 3.14. We will now prove the exponentially convergence of Em(t) to zero. Re-
call (3.13):

∂tψ = div(∇V ψ +∇ψ)− ∂1((∂1At)ψ)− ∂2((∂2At)ψ),

which is equivalent to

∂tψ = div
(
ψ∞∇

(
ψ

ψ∞

))
+ ∂1[(∂1A− ∂1At)ψ] + ∂2[(∂2A− ∂2At)ψ].

Using (3.17), (3.18) and (4.1), one obtains

dE

dt
= −

∫
Tn
|∇ ln(ψ/ψ∞)|2ψ +

∫
Tn

(∂1At − ∂1A)[∂1 ln(ψ/ψ∞)]ψ

+
∫
Tn

(∂2At − ∂2A)[∂2 ln(ψ/ψ∞)]ψ,

dEM
dt

= −
∫
T2
|∇ ln(ψξ)|2ψξ.

Using then Lemma 3.8 and Lemma 4.2, one gets

dEm
dt

= dE

dt
− dEM

dt

= −
∫
Tn
|∇ ln(ψ/ψ∞)|2ψ +

∫
Tn

(∂1At − ∂1A)∂1 ln(ψ/ψ∞)ψ

+
∫
Tn

(∂2At − ∂2A)∂2 ln(ψ/ψ∞)ψ +
∫
T2
|∂1 lnψξ|2ψξ +

∫
T2
|∂2 lnψξ|2ψξ

= −
∫
Tn
|∇ ln(ψ/ψ∞)|2ψ

+
∫
Tn

(∂1At − F 1
t )[∂1 ln(ψ/ψ∞)]ψ +

∫
Tn

(F 1
t − ∂1A)[∂1 ln(ψ/ψ∞)]ψ

+
∫
Tn

(∂2At − F 2
t )[∂2 ln(ψ/ψ∞)]ψ +

∫
Tn

(F 2
t − ∂2A)[∂2 ln(ψ/ψ∞)]ψ

+
∫
T2
|∂1 lnψξ|2ψξ +

∫
T2
|∂2 lnψξ|2ψξ.
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Lemma 4.5 then yields

dEm
dt
≤ −

∫
Tn
|∇ ln(ψ/ψ∞)|2ψ

+
∫
Tn

(F 1
t − ∂1A)∂1 ln(ψ/ψ∞)ψ +

∫
Tn

(F 2
t − ∂2A)∂2 ln(ψ/ψ∞)ψ

+
∫
T2
|∂1 lnψξ|2ψξ +

∫
T2
|∂2 lnψξ|2ψξ.

Using lemma 4.2 and Fubini’s theorem, one then obtains

dEm
dt
≤ −

∫
Tn
|∇ ln(ψ/ψ∞)|2ψ

+
∫
T2

[∫
Σ(x1,x2)

∂1 ln(ψ/ψ∞) ψ
ψξ

] ∫
Σ(x1,x2)

∂1 ln(ψ/ψ∞)ψ −
∫
Tn
∂1 ln(ψξ)∂1 ln(ψ/ψ∞)ψ

+
∫
T2

[∫
Σ(x1,x2)

∂2 ln(ψ/ψ∞) ψ
ψξ

] ∫
Σ(x1,x2)

∂2 ln(ψ/ψ∞)ψ −
∫
Tn
∂2 ln(ψξ)∂2 ln(ψ/ψ∞)ψ

+
∫
T2
|∂1 lnψξ|2ψξ +

∫
T2
|∂2 lnψξ|2ψξ

≤ −
∫
Tn
|∇ ln(ψ/ψ∞)|2ψ

+
∫
T2

[∫
Σ(x1,x2)

∂1 ln(ψ/ψ∞)ψ
]2 1
ψξ
−
∫
Tn
∂1 ln(ψξ)∂1 ln(ψ/ψ∞)ψ

+
∫
T2

[∫
Σ(x1,x2)

∂2 ln(ψ/ψ∞)ψ
]2 1
ψξ
−
∫
Tn
∂2 ln(ψξ)∂2 ln(ψ/ψ∞)ψ

+
∫
T2
|∂1 lnψξ|2ψξ +

∫
T2
|∂2 lnψξ|2ψξ.

Applying the Cauchy-Schwarz inequality on the first terms of the second and third lines, we obtain

dEm
dt
≤ −

∫
Tn
|∇xn3 ln(ψ/ψ∞)|2ψ

−
∫
Tn
∂1 ln(ψξ)∂1 ln(ψ/ψ∞)ψ −

∫
Tn
∂2 ln(ψξ)∂2 ln(ψ/ψ∞)ψ

+
∫
T2
|∂1 lnψξ|2ψξ +

∫
T2
|∂2 lnψξ|2ψξ

≤ −
∫
Tn
|∇xn3 ln(ψ/ψ∞)|2ψ −

∫
T2
∂1 ln(ψξ)

[∫
Σ(x1,x2)

∂1 ln(ψ/ψ∞) ψ
ψξ
− ∂1 lnψξ

]
ψξ

−
∫
T2
∂2 ln(ψξ)

[∫
Σ(x1,x2)

∂2 ln(ψ/ψ∞) ψ
ψξ
− ∂2 lnψξ

]
ψξ.
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Applying Lemma 4.4, Lemma 4.2, the Cauchy-Schwarz inequality, Lemma 4.3 and Corollary 3.12,

dEm
dt
≤ −2ρEm +

√∫
T2
|∂1 ln(ψξ)|2ψξ

√∫
T2

2
ρ
em(t, (x1, x2))ψξ

+
√∫

T2
|∂2 ln(ψξ)|2ψξ

√∫
T2

2
ρ
em(t, (x1, x2))ψξ

≤ −2ρEm + 2γ
√

2
ρ
Em

√∫
T2
|∇x2

1
ln(ψξ)|2ψξ

≤ −2ρEm + 2γ
√

2
ρ
Em

√
I(ψξ/ψξ∞)

≤ −2ρEm + 2γ
√

2
ρ
Em

√
I0e−4π2t.

Finally we obtain

d

dt

√
Em(t) ≤ −ρ

√
Em(t) + γ

√
I0
2ρe−4π2t.

First, if ρ 6= 4π2, using Grönwall’s inequality, one obtains√
Em(t) ≤

√
Em(0) e−ρt + γ

√
I0
2ρ

∫ t

0
eρ(−t+s)e−4π2sds

≤
√
Em(0) e−ρt + γ

√
I0
2ρ

e−ρt

ρ− 4π2

(
e(ρ−4π2)t − 1

)
≤
√
Em(0) e−ρt + γ

√
I0
2ρ

e−ρt

|ρ− 4π2|
e(ρ−4π2)t.

Second, if ρ = 4π2, one has √
Em(t) ≤

√
Em(0) e−ρt + γ

√
I0
2ρ

∫ t

0
e−ρtds

≤
(√

Em(0) + γ

√
I0
2ρt

)
e−ρt,

which leads the desired estimation (3.21).
Using this convergence result, Corollary 3.13 and Lemma 3.8, it is then easy to see that E converges

exponentially fast to zero. Using (3.15), one obtains the convergence of ψ to ψ∞ since:

‖ψ − ψ∞‖L1(Tn) ≤
√

2H(ψ|ψ∞) =
√

2E.

The second point of the theorem is checked. Finally, we are now in position to prove the last point of
Theorem 3.14. Using (3.6) and Lemma 4.3,

‖∇At −∇A‖2L2
ψξ

(T2) ≤ 2‖∇At − Ft‖2L2
ψξ

(T2) + 2‖Ft −∇A‖2L2
ψξ

(T2)

≤ 4‖Ft −∇A‖2L2
ψξ

(T2)

≤ 8γ
2

ρ
Em. �
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