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Abstract. This paper is concerned with the treatment of uncertainties in shape optimization. We consider
uncertainties in the loadings, the material properties, the geometry and the vibration frequency, both in
the parametric and geometric optimization setting. We minimize objective functions which are mean values,
variances or failure probabilities of standard cost functions under random uncertainties. By assuming that the
uncertainties are small and generated by a finite number N of random variables, and using first- or second-
order Taylor expansions, we propose a deterministic approach to optimize approximate objective functions.
The computational cost is similar to that of a multiple load problems where the number of loads is N . We
demonstrate the effectiveness of our approach on various parametric and geometric optimization problems
in two space dimensions.

Math. classification. 65C20, 65K10, 93C95.
Keywords. Shape optimization, random uncertainties, Level Set method.

1. Introduction

Over the last decades, shape and topology optimization has proved to be a reliable tool in the design of
mechanical structures, using only very general specifications like design space, applied loads, material
properties, etc... Unfortunately, in most concrete situations, these data are imperfectly known, and
optimal shapes may exhibit a dramatic dependence on these parameters. Here are two manifestations
of this phenomenon.

• It is a well-known result from Michell truss theory [39] that, for a given applied load, the
optimal truss exhibit two orthogonal systems of bars which are aligned with the principal stress
directions. Variations in the imposed loads may have a strong impact on these directions, thus
on the geometry of the optimal design (see also [27] for a recent contribution on this problem).

• Many optimal compliant mechanisms feature very small hinges [42], [5] that could be bro-
ken during their manufacturing process. Therefore, small variations in the final manufactured
design can completely ruined their optimality.

For these reasons, it seems necessary to take into account the effects of ‘small’ uncertainties plaguing
the physical data (and by this, we include the geometry of shapes itself) in the formulation of structural
optimization problems. Depending on the available informations, two main classes of methods can be
considered to achieve this purpose.
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• When no information is available on the uncertainties but for a maximum bound on their am-
plitude, several authors worked out a ‘worst-case’ design approach [3, 7, 15, 24] and references
therein. In a nutshell, the idea is to minimize the worst or maximal value of the cost function
over all potential perturbations. The main drawback of this approach is that it may be too
pessimistic, leading to structures with poor nominal performances.

• When some statistical information is available for the uncertain data (for instance, moments
of the perturbations have been reconstructed from a set of sample data, or more complicated
information has been obtained by statistical inference), one may use a probabilistic description
of the uncertain data. Then, it is possible to minimize the mean value and the variance of the
resulting perturbed cost function. The main drawback of this approach is its high computa-
tional cost in most situations.

In this paper we focus on the latter point of view, contrary to our previous work [3] which was devoted
to the worst-case design approach. Nevertheless, both works are linked by our quest of computationally
cheap algorithms using approximations based on an assumption of ‘small’ uncertainties. Both works
share a similar mechanical setting, namely that of mechanical structures submitted to the linear
elasticity regime. The considered shapes are optimized with respect to a given cost criterion (e.g. the
compliance), which depends on their geometry, and on small, uncertain parameters. In the sequel, the
uncertain parameters will be either the applied loads, the material elasticity coefficients, the geometry
of shapes itself, or the imposed frequency of the vibrating loads.

In this context, we study the minimization of two classes of objective functions: on the one hand,
moments of the cost function evaluating the performances of shapes are considered - e.g. its mean
value or its standard deviation. On the other hand, we investigate failure probabilities - that is, the
probability that the cost exceeds a given threshold, above which the situation is deemed unsafe.

We derive deterministic approximations to these functionals, which are also computationally
tractable. Our approximations rely on two key ingredients. First, assuming that the uncertainties
are ‘small’, we perform a first- or second-order Taylor expansion of the cost criterion with respect to
these uncertainties. This truncated Taylor expansion has moments or excess probabilities that can be
computed explicitly. Second, we systematically assume that the uncertain data show up as finite sums
of deterministic data functions weighted by random variables. This is clearly a natural assumption
that arises, for example, by spatial discretization of a distributed random field (see Section 2.4 for
more details). But in many practical cases it is not a restriction as, for example, the imposed loads
are very often a finite sum of point forces.

The proposed approximations are proved to be consistent with their exact counterparts in most
situations. The resulting deterministic functionals can then be minimized owing to standard tools
from shape optimization, for a moderate computational cost. More precisely, the number of instances
of the state equation to be solved is of the order of the number of independent random variables in
the definition of uncertainties.

The question of influence of random uncertainties has already aroused much interest in the shape
optimization community - see [34] for an overview. In [19], the authors consider uncertain loads, and
assume cost functions that are sum of linear and quadratic terms functions of the elastic displace-
ment. They rely on the hypothesis of multiple load scenarii, which are combinations of a given set of
individual loads. In [26], uncertain loads are modelled as sums of deterministic loads, whose coeffi-
cients are uncorrelated random variables. The mean value and standard deviation of the compliance
are considered as objective functions, and the authors take advantage of the quadratic structure of
the compliance as a function of loads to derive explicit and deterministic objective functions. This
approach is generalized in [20] to the case of quadratic cost functions of the elastic displacement, and
uncertain loads described as general random fields. In particular, it turns out that, in such case, the
mean value of the cost function depends solely on the correlation function of the loads.
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Shape optimization under random uncertainties

In [8], stochastic finite element methods are introduced for the numerical simulation of partial
differential equations involving random coefficients. These methods are used in [33] to deal with a
diffusion problem with random coefficients and source terms in a purely probabilistic setting. Let us
also mention the recent work [16] which provides an efficient and low-cost methodology for computing
solutions of parametric equations in high dimensions.

In [14], the authors deal with shape optimization in the context of linear elasticity, under uncertain
loads and material parameters. A Karhunen-Loève expansion of the uncertain data is performed; the
objective function whose minimization is at stake, which is a moment of the cost function (mean
value, standard deviation), is discretized by using Gauss-type quadrature formulae, which essentially
transform it into a weighted average of the cost function under several fixed, deterministic sets of
data. In [13], the authors elaborate on this idea to address the problem of shape optimization under
geometric uncertainties. The geometric uncertainties acting on a shape Ω are represented by normal
vector fields of ‘small amplitude’, defined on the boundary ∂Ω, and the correlation matrix of these
uncertainties is assumed to be known. The additional complexity is that, in this case, the objective
function is a weighted sum of the cost function taken at different shapes, which are perturbations of
the actual one. This induces some difficulties in the derivation of the shape sensitivities which are
evaluated on perturbed shapes but have to be pulled backed to the reference shape.

The technique proposed in [40] is rather similar and is applied in the context of geometric uncer-
tainties in aerodynamic design. Here also, the authors discretize the objective function at stake, which
is a probabilistic integral of the cost function, by using Gauss-type quadrature formulae. In this work,
the calculation of the shape gradient of the objective function is easier than in [13], since the geometry
of shapes is parameterized by a rather small number of physical parameters. On the other hand, the
authors improve the accuracy and computational efficiency of their strategy with a ‘smart’ construc-
tion procedure of the Karhunen-Loève expansion of the uncertain data and an adaptive-grid method
for the evaluation of the probabilistic integrals. In [41], the same authors consider failure probability
constraints by using the First-Order Reliability Method (see the description in Section 2.2 below).

Eventually, let us mention the work [31] which also deals with geometric uncertainties in the con-
text of the SIMP method. The problem of modeling the uncertainties is formulated in terms of the
filtering technology, and moments of cost functions are considered as objective functions, which are
approximated by performing Taylor approximations of the cost function and of the state with respect
to the uncertain variables - an idea which has a lot to do with the method at stake in the present
paper.

This paper is organized as follows. In Section 2 we present our main ideas in an abstract, simplified
and formal setting. As mentioned above, there are two key ingredients. First, a second-order Taylor
expansion of the cost function is performed, under a smallness assumption on the uncertainties. Sec-
ond, the uncertainties are restricted to a finite sum of N uncorrelated random variables. Thanks to
these assumptions, we deduce approximate functionals for the mean value, the variance or the failure
probability of general cost functions. The cost of evaluating these approximate functionals is of the
order of N solutions of the state equation, or even independent of N in the case of the failure probabil-
ity. Then, this abstract setting is applied in more details and with mathematical rigor in the next two
sections. Section 3 is devoted to parametric optimization, a framework which is simple enough so that
all proofs can be done completely without too much technical complexity. We also give the formulas
for the derivatives of these approximate functionals in terms of additional adjoints. The computational
cost for these derivatives is at most 2(N + 1) solutions of a partial differential equation. Section 4 is
concerned with geometric optimization, which is much more involved from a technical point of view.
The results are very similar to those of the previous section so we can take advantage of this prior
work to be more sketchy in the proofs and avoid too many technicalities (some of them can be found
in the Appendix). Eventually, many numerical experiments are displayed in Section 5, in order to
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demonstrate the effectiveness of the proposed approach. In particular we make comparisons with our
linearized worst case design approach as proposed in [3] (see Remark 5.1).

2. Formal presentation of the main ideas

The purpose of this section is to present the main ideas of this paper in a common, simplified and
formal abstract framework. Sections 3 and 4 will apply in a rigorous mathematical framework this
rough sketch to the thickness optimization setting and the geometric one, respectively.

Let H be a set of admissible designs, among which the ‘best’ element is sought, and P be a Banach
space of data characterizing the situation under consideration. The performance of a design h ∈ H
under data f ∈ P is evaluated in terms of a cost function C(f, uh,f ), which depends on h via the
solution uh,f of the state equation:

A(h)uh,f = b(f). (2.1)

In our applications, h stands for the thickness of a plate of given cross-section or for the shape of a
mechanical domain, A(h) is the (design-dependent) linearized elasticity operator (a system of partial
differential equations) and the data f are typically (yet not exclusively) applied body forces or surface
loads. The typical problem of optimal design is to minimize the cost function over all admissible
designs

inf
h∈H
C(f, uh,f ) .

We are interested in the case when f is not known with great precision. Typically, it is the sum of
a known mean value f0 ∈ P and of ‘small’, uncertain perturbations f̂ , i.e. is of the form:

f(ω) = f0 + f̂(ω), (2.2)

where ω is an event, i.e. an element of an abstract probability space (O,F ,P), and f̂ : O → P is ‘small’
in a sense to be made precise later on. There are several modelling issues about the uncertainties f̂ .

• In the first place, we assume that the uncertainties f̂ are independent of the design h itself.
This is not always the case in some physical situations. For example, in the context of linear
elastic structures, the random body forces f̂ may be caused by random thermal fluctuations
which by thermal expansion induce design-dependent uncertain loads. For simplicity we ignore
such influence of the design on f̂ , although it could be taken into account in our theoretical
framework without any additional difficulty (except more tedious calculations).

• On a different note, there are several ways of understanding the ‘smallness’ of perturbations.
From this point of view the choice of an adequate functional space for f̂ is crucial. The simplest
and most intuitive possibility is to consider f̂ as an element in L∞(O,P). Assuming that f̂ is
small in the norm of this space (i.e. that ||f̂ ||L∞(O,P)< ε for small ε > 0) amounts to enforce
that every realization f̂(ω) of f̂ is small in P (i.e. ||f̂(ω)||P< ε almost surely). Another choice
is to assume that f̂ belongs to Lp(O,P) for a given p <∞. Being small in this space does not
impose that (almost) every realization is small but that, in ‘average’, ‘most’ of the realizations
f̂(ω) are small. This last setting is interesting in practice if one is interested in large but rare
enough perturbations (see Remark 3.20 for further comments on this issue). Furthermore, the
mathematical analysis may require different choices of the functional spaces for different types
of results (see Remark 2.2 for some hints in this direction).
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For practical purposes, we shall assume that f̂ can be written as a finite sum

∀ω ∈ O, f̂(ω) =
N∑
i=1

fiξi(ω), (2.3)

where f1, ..., fN ∈ P are ‘small’, deterministic data functions, and ξ1, ..., ξN are random variables,
whose joint first and second order statistics are known. Without loss of generality, we will often
assume that the ξi are uncorrelated, centered and normalized, i.e.∫

O
ξi P(dω) = 0,

∫
O
ξiξj P(dω) = δi,j , i, j = 1, ..., N, (2.4)

where δi,j stands for the Kronecker delta function. This assumption is admittedly restrictive, and the
reasons legitimating it - or the mathematical tools involved to approximate the actual perturbation f̂
by one of the type (2.3) - may vary from one situation to another; see Section 2.4, and the examples
in Section 5 for more comments on this issue.

The main goal of this paper is to study deterministic approximations of two classes of objective
functions of the design h.

• The first category is concerned with averaged objective functions, where the outputs of the
random uncertainties are averaged with respect to the probability measure P. For example,
given a cost function C(f, uh,f ), we optimize its mean value or expectation M(h), defined by

M(h) =
∫
O
C(f(ω), uh,f(ω)) P(dω), (2.5)

or a higher-order moment of C such as its variance V(h):

V(h) =
∫
O

(
C(f(ω), uh,f(ω))−M(h)

)2
P(dω). (2.6)

• The second category falls into the framework of reliability analysis: one is interested in min-
imizing a so-called failure probability. For instance, assuming that α ∈ R is the largest ‘safe’
value of the cost C(h, uh,f ) of a design h, we minimize the functional P(h), defined as

P(h) = P
({

ω ∈ O, such that C(f(ω), uh,f(ω)) > α
})

.

Minimizing directly these objective functions,M(h), V(h), or P(h), is usually too expensive from
a computational point of view. Therefore we propose an approximation process which is based on two
key ingredients.

(1) First, taking advantage of a smallness assumption on the uncertainties f̂ , we perform a Taylor
expansion of the considered cost functions with respect to the perturbed parameters (second-
order forM(h) and V(h), first-order for P(h)).

(2) Inserting the particular structure (2.3) of the uncertain data f̂ in this truncation yields approx-
imate cost functions which depend linearly or quadratically on the random variables ξ1, ..., ξN .
This leads to a simple, deterministic approximation of the objective functions.

The next two subsections explain this approach for the two classes of objective functions.
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2.1. Minimization of the mean value, or of a higher-order moment, of the cost function

Notations. For a smooth function J(f), we write its second-order Taylor expansion

J(f0 + f̂) ≈ J(f0) + J1(f0)(f̂) + 1
2J

2(f0)(f̂ , f̂),

where J1(f0) = J ′(f0) is the first-order derivative and J2(f0) = J ′′(f0) the second-order one, evaluated
at f0. Furthermore, the map f̂ → J1(f0)(f̂) is linear and f̂ → J2(f0)(f̂ , f̂) is quadratic.

Let us focus first on the problem of minimizing the mean valueM(h) of the cost function C over the
uncertainties ω ∈ O. As previously said, the first step is to perform a second-order Taylor expansion
of the cost function f 7→ C(f, uh,f ) around the mean value f0 of f . A second-order approximation of
the solution of the state equation (2.1) is

u
h,f0+f̂ ≈ uh + u1

h(f̂) + 1
2u

2
h(f̂ , f̂),

where the first- and second-order derivatives u1
h(f̂) := ∂uh,f

∂f

∣∣∣
f=f0

(f̂) and u2
h(f̂ , f̂) := ∂2uh,f

∂f2

∣∣∣
f=f0

(f̂ , f̂)
of the state function are respectively solution to:

A(h)u1
h(f̂) = ∂b

∂f
(f0)(f̂) , A(h)u2

h(f̂ , f̂) = ∂2b

∂f2 (f0)(f̂ , f̂).

Then, by the chain-rule lemma we deduce

C(f0 + f̂ , u
h,f0+f̂ ) ≈ C(f0, uh) + ∂C

∂f
(f0, uh)(f̂) + ∂C

∂u
(f0, uh)(u1

h(f̂))

+ 1
2

(
∂2C
∂f2 (f0, uh)(f̂ , f̂) + 2 ∂2C

∂f∂u
(f0, uh)(f̂ , u1

h(f̂))

+∂2C
∂u2 (f0, uh)(u1

h(f̂), u1
h(f̂)) + ∂C

∂u
(f0, uh)(u2

h(f̂ , f̂))
)
, (2.7)

where uh = uh,f0 denotes the unperturbed state.
The second step is to replace C(f, uh,f ) by its approximation in the expected value (2.5) and to use

the finite-sum assumption (2.4) on the uncertainties f̂ . Taking the mean value of both sides in (2.7),
and using the fact that f̂ depends on N uncorrelated, centered and normalized random variables
ξ = (ξ1, ..., ξN ), we obtain the approximate mean value function M̃(h) defined by:

M(h) ≈ M̃(h) = C(f0, uh) + 1
2

N∑
i=1

∂2C
∂f2 (f0, uh)(fi, fi) +

N∑
i=1

∂2C
∂f∂u

(f0, uh)(fi, u1
h,i)

+ 1
2

N∑
i=1

∂2C
∂u2 (f0, uh)(u1

h,i, u
1
h,i) + 1

2
∂C
∂u

(f0, uh)(u2
h), (2.8)

where the reduced sensitivities u1
h,i, for i = 1, ..., N , and u2

h are the solutions to the respective systems:

A(h)u1
h,i = ∂b

∂f
(f0)(fi), A(h)u2

h =
N∑
i=1

∂2b

∂f2 (f0)(fi, fi).

The approximate mean value M̃(h) is a deterministic objective function of the design h, and can be
differentiated owing to classical techniques from optimal control theory. The resulting derivative can
then be exploited in a minimization algorithm (e.g. a gradient algorithm).
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Remark 2.1. The term u2
h is different from u2

h(f̂ , f̂); in particular, we do not need to evaluate the
N×N entries u2

h,i,j = ∂2b
∂f2 (f0)(fi, fj). This feature is a remarkable consequence of the lack of correlation

between the random variables ξi. It is reminiscent of the work [38] (see also the references therein),
where the authors introduce a simpler, randomized version of the objective function they consider, in
which many terms have vanished owing to a similar phenomenon.

Remark 2.2. This process of approximatingM(h) with M̃(h) can be made rigorous if one assumes
enough smoothness of the cost function C and carefully chooses the functional space for perturbations.
Typically, if ε measures the smallness of perturbations (in some well-chosen norm), then, for a given
design h ∈ Uad, the error is |M(h)− M̃(h)|= O(ε3), which can be uniform with respect to h.

Note that the proof of the above error estimate requires some level of regularity for the functional
space of the perturbations f̂ . However, lesser regularity is usually sufficient for properly defining M̃(h),
irrespective of its closeness toM(h).

Remark 2.3. In the above discussion, we relied on a second-order Taylor expansion of the cost
f 7→ C(h, uh,f ) to devise a second-order approximation M̃(h) of the mean-value M(h) (i.e., the
discrepancy between the two is of order O(ε3), where ε measures the smallness of perturbations). The
calculation of M̃(h) demands those of the unperturbed state uh and of the (N+1) reduced sensitivities
u1
h,i, i = 1, ..., N and u2

h.
Obviously, the same argument can be applied to higher-order Taylor expansions of the cost to

produce higher-order approximate mean-value functionals M̃(h), provided higher-order statistics of
the random variables ξi are known. However, the cost of calculating M̃(h) increases dramatically. For
instance, if the fourth-order expansion of C is used, even in the very favorable situation where the ξi
are independent, the evaluation of M̃(h) requires a number of reduced sensitivities of the order of N2.

Remark 2.4. A similar approximation procedure can be applied to the variance V(h), defined by (2.6),
of the cost function C (see for example Subsection 3.2.4). It can also be extended to higher-order
moments of the cost function C, provided that higher-order statistics of the random variables ξi are
known (as in the case of Remark 2.3; see also Remark 3.15).

Remark 2.5. We have focused our discussion on the case where the ‘mechanical’ state equation (2.1) is
linear, but a fairly similar analysis would hold, should the operator A(h) be non linear (e.g. associated
to a non linear elasticity model). In that case, the first- and second-order derivatives u1

h(f̂) and u2
h(f̂ , f̂)

of uh,f with respect to the data are solutions to linearizations of the problem (2.1). A rigorous analysis
of this setting would require assumptions on the well-posedness of both the non linear system (2.1)
and its linearized version for any admissible design h ∈ Uad.

2.2. Minimization of the failure probability

We now turn to the minimization of a failure probability P(h), defined in terms of the cost function
C(f, uh,f ). More precisely, let α ∈ R be a parameter accounting for the tolerance of the considered de-
sign in the sense that it is assumed to fail when C(f, uh,f ) > α. The function P(h) whose minimization
is under scrutiny reads:

P(h) = P
({
ω ∈ O, C(f(ω), uh,f(ω)) > α

})
=
∫
{ω∈O, C(f(ω),uh,f(ω))>α}

P(dω). (2.9)

We proposed an approximate failure probability function P̃(h), which is very much inspired by the
so-called First-Order Reliability Method (FORM) in the context of reliability-based optimization (see
e.g. [17]). We need an additional assumption on the random variables ξi which are now independent
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and Gaussian, that is, their common cumulative distribution function Φ reads:

∀α ∈ R, Φ(α) := P ({ω ∈ O, ξi(ω) < α}) = 1√
2π

∫ α

−∞
e−ξ

2/2 dξ. (2.10)

The main idea is then to replace the failure region
{
ω ∈ O, C(f(ω), uh,f(ω)) > α

}
with a half-space,

obtained by linearizing the cost function C. In other words, we replace C(f, uh,f ) by its first-order Taylor
approximation with respect to f around f0. Together with the particular structure (2.2)-(2.3) of the
perturbations, it yields

C(f0 + f̂(ω), u
h,f0+f̂(ω)) ≈ C(f0, uh) +

N∑
i=1

∂C
∂f

(f0, uh)(fi)ξi(ω) +
N∑
i=1

∂C
∂u

(f0, uh)(u1
h,i)ξi(ω), (2.11)

with the same notations as in the previous subsection. This identity can be rewritten in more compact
form as:

C(f0 + f̂(ω), u
h,f0+f̂(ω)) ≈ b(h) + a(h) · ξ(ω),

with obvious notations. Now, under the additional assumption that the random variables ξi are inde-
pendent, we approximate P(h) by the function P̃(h) defined as:

P̃(h) = P ({ω ∈ O, b(h) + a(h) · ξ(ω) > α}) = 1
(2π)N/2

∫
{ξ∈RN , b(h)+a(h)·ξ>α}

e−|ξ|
2/2 dξ.

If a(h) = 0 (a rare case, corresponding to the fact that the cost function is insensitive to the random
perturbations, at first order), then either P̃(h) = 0 or P̃(h) = 1, depending whether b(h) > α or not.
For such a discrete objective function (taking only two values), there is no point in optimizing it.

However, in the generic case when a(h) 6= 0, the last integral can be explicitly computed thanks
to a change of variables. Let indeed A be any orthogonal isomorphism of RN whose matrix in the
canonical basis fulfills:

Ae1 = a(h)
|a(h)| .

Then, a simple calculation produces:

P̃(h) = 1
(2π)

N
2

∫
A−1({ξ∈RN ,b(h)+a(h)·ξ>α})

|det(A)|e−
|Aξ|2

2 dξ

= 1
(2π)

N
2

∫{
ξ∈RN , b(h)

|a(h)|+ξ1>
α
|a(h)|

} e− |ξ|22 dξ

= 1√
2π

∫{
ξ1∈R, b(h)

|a(h)|+ξ1>
α
|a(h)|

} e− ξ212 dξ1

= Φ
(
−α−b(h)
|a(h)|

)
,

(2.12)

where Φ stands for the cumulative distribution function (2.10) of the centered normalized Gaussian
law. This last expression is a deterministic and explicit function of the design h.

Remark 2.6. The above analysis also covers the case when the threshold parameter is α = βC(f0, uh)
where β > 1 is the maximal authorized deviation of a perturbed state with respect to the unperturbed
situation. The only difference is that this threshold depends on the design h, which will have an impact
when computing the derivative of P̃(h).

Remark 2.7. This approximation as well can be justified in some particular cases; see notably Propo-
sition 3.17. As we shall see in Section 5, it turns out to be true to intuition in some cases, and may
be rough on other ones, pleading for higher-order approximations of P(h).
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Remark 2.8. Failure probabilities are often involved in realistic optimal design problems as con-
straints, rather than as objective functions so to speak. More accurately, a typical Reliability-Based
Design Optimization problems (RBDO) shows up under the form:

min
h∈Uad
P(h)≤γ

J(h),

where J(h) is a functional of the design whose minimization is sought, and γ is a maximum authorized
value for the failure probability P(h). The proposed approximation of the exact failure probability
P(h) with P̃(h) can also be of interest in such a context.

2.3. Computational cost and the possible use of adjoint states

We claim that the evaluation of the approximate objective functions M̃(h), defined by (2.8), and P̃(h),
defined by (2.12), is much more economical, from a computational point of view, than those of their
counterpartsM(h) and P(h). Indeed, M̃(h) and P̃(h) are purely deterministic and can be evaluated
exactly with a finite number of inversions of the operator A(h) (by inversion we mean solving the
associated linear system, either by a direct or an iterative algorithm).

From inspection of formula (2.8), we see that computing M̃(h) requires to solve (N + 2) equations
with the same operator A(h) (for uh, u2

h, u
1
h,i with 1 ≤ i ≤ N).

On the other hand, a naive use of formula (2.12) seems to indicate that computing P̃(h) requires to
solve (N + 1) equations (for uh, u1

h,i with 1 ≤ i ≤ N). However, one can improve this operation count
by using an adjoint approach since the coefficient a(h) in the first-order expansion (2.11) is affine with
respect to u1

h,i (the other coefficient b(h) does not depend on u1
h,i). By definition

ai(h) = ∂C
∂u

(f0, uh)(u1
h,i) .

Introducing a duality pairing, denoted by · in the following formulas, which depends on the particular
situation and that we do not make precise, we can define a gradient ∇uC by

∂C
∂u

(f0, uh)(u1
h,i) = ∇uC(f0, uh) · u1

h,i .

As is well-known in optimal control theory, the coefficient ai(h) can be rewritten as:

ai(h) = ∂C
∂f

(f0, uh)(fi)− ph · fi,

where ph is an adjoint state, solution to the system:
A(h)T ph = −∇uC(f0, uh) .

Computing a(h) and thus P̃(h) requires only to solve 2 equations for uh and ph. Introducing this
adjoint ph is sometimes useful too in order to obtain a simpler formula for the h-derivative of the
objective function.

Unfortunately, since M̃(h) depends quadratically on the reduced sensitivities u1
h,i, there is no adjoint

trick in order to reduce the cost of evaluating M̃(h).

2.4. A few words on the finite-sum structure for perturbations

The finite-dimensional hypothesis (2.3) around the perturbations f̂(ω) is ubiquitous in the literature.
Let us briefly evoke how it turns up in concrete situations.

First, there are several cases of utmost importance where it is the ‘natural’ structure for perturba-
tions. For instance, in a situation where the data f stand for body forces or surfaces loads applied on
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an elastic structure, (2.3) accounts for several load scenarii fi, weighted by a corresponding probability
of occurrence.

On a different note, (2.3) can be taken as a ‘good’ approximation of the perturbations f̂(ω) in many
situations where they are actually a random field f̂ ≡ f̂(x, ω), depending on a space variable x ∈ D
and on ω ∈ O (e.g., f̂ describes the material properties associated to an elastic structure). Then, the
relevant information about the statistics of f̂ is often known (or modelled) via its correlation function
Cor(f̂) ∈ L2(D ×D), defined as:

Cor(f̂)(x, y) =
∫
O
f̂(x, ω)f̂(y, ω) P(dω), a.e. (x, y) ∈ D ×D.

In such a case, it can be proved (see e.g. [32] Chap. 11) that f̂ admits a decomposition

f̂(x, ω) =
∞∑
i=1

√
λifi(x)ξi(ω),

where the (λi, fi) are the eigenpairs of the Hilbert-Schmidt operator ϕ 7→
∫
D Cor(f̂)(·, y)ϕ(y) dy, from

L2(D) into itself, and that the convergence of the above series holds in L2(D × O). This series can
then be truncated to produce a finite-dimensional approximation of f̂ the form (2.3). The random
variables ξi are recovered by orthogonality of the eigenfunctions fi

ξi(ω) = 1√
λi

∫
D
f̂(x, ω)fi(x) dx .

Let us eventually mention that if f̂ is a Gaussian random process - a kind of random process which is
ubiquitous in stochastic modelling - the random variables ξi turn out to be Gaussian and independent.

3. Random parametric optimization

3.1. A model problem

Let us consider a linear elastic plate with fixed cross-section Ω ⊂ Rd (in practice d = 2), whose
thickness h ∈ L∞(Ω) is subject to optimization. The plate is in plane stress situation: it is clamped
on a part of its boundary accounted for by ΓD ⊂ ∂Ω, and submitted to both body forces f ∈ L2(Ω)d
and surface loads g ∈ L2(ΓN )d, applied on the complementary part ΓN := ∂Ω \ ΓD to ΓD in ∂Ω (see
Figure 3.1).

⌦

• x

h(x)

�N

g

�D

Figure 3.1. Setting of the model parametric optimization problem.
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In this situation, the in-plane displacement uh ∈ H1(Ω)d of the plate arises as the unique solution
to the linear elasticity system: 

−div(hAe(u)) = f in Ω
u = 0 on ΓD

hAe(u)n = g on ΓN
, (3.1)

where e(u) = (∇uT +∇u)/2 is the strain tensor, n : ∂Ω→ Sd−1 is the unit outer normal vector field
to Ω, and A is the material Hooke’s law, defined for any e ∈ S(Rd) (the set of d × d real symmetric
matrices) by

Ae = 2µe+ λtr(e)I, (3.2)

with the Lamé coefficients λ, µ, satisfying µ > 0 and λ+ 2µ/d > 0. Introducing the functional space

H1
ΓD(Ω) :=

{
v ∈ H1(Ω), v = 0 on ΓD

}
, (3.3)

uh can be equivalently seen as the unique solution in H1
ΓD(Ω)d to the following variational problem:

∀v ∈ H1
ΓD(Ω)d,

∫
Ω
hAe(uh) : e(v) dx =

∫
Ω
f · v dx+

∫
ΓN

g · v ds. (3.4)

The thickness h of such a plate must belong to a set Uad of admissible designs:

Uad = {h ∈ L∞(Ω), ∀x ∈ Ω, hmin ≤ h(x) ≤ hmax} ,

where hmin and hmax are imposed lower and upper bounds for the thickness. Admittedly, in most
relevant situations, additional constraints should be imposed for the optimization problem. Yet, to
keep notations as general as possible, we chose not to incorporate them in the modeling of the present
section (see Section 5 as regards the numerical treatment of those constraints). The goal of parametric
optimization is to minimize the following cost function

inf
h∈H

{
C(h) =

∫
Ω
j(uh) dx

}
,

where uh is the solution of the state equation (3.1) for the thickness h and j is some given integrand.

Remark 3.1. The above setting of thickness optimization for a plate is completely equivalent to that
of the so-called SIMP method for topology optimization [9]. The thickness h becomes the material
density ρ (with ρmin = 0 and ρmax = 1), possibly penalized as ρp for some integer p ≥ 1. This
considerably extends the scope and applicability of the present framework of parametric optimization.

3.2. Uncertainty over the body forces in parametric optimization

In this subsection, we focus on a fairly simple setting - that of the optimization of the thickness h of
the elastic plate described in Section 3.1, in a context where random body forces are expected. Our
purpose is here to exemplify how the framework of Section 2 translates in a more realistic situation,
and how its general ideas can be applied. The next sections will involve similar techniques, in more
sophisticated situations.

For a given thickness function h ∈ L∞(Ω) and body forces f ∈ L2(Ω)d, let us denote as uh,f ∈
H1

ΓD(Ω)d the displacement of the plate, unique solution to (3.1) using this set of data (for simplicity,
we omit surface loads: g = 0).
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The cost function C(h, f) at stake in this section is of the form:

C(h, f) =
∫

Ω
j(f, uh,f ) dx, (3.5)

where j : Rd × Rd → R is a function of class C3, satisfying the growth conditions:

∀f ∈ Rd, ∀u ∈ Rd,


|j(f, u)|≤ C(1 + |f |2+|u|2),
|∇f j(f, u)|+|∇uj(f, u)|≤ C(1 + |f |+|u|),
all the partial derivatives of j of order 2 and 3 are bounded by C,

(3.6)

for some constant C > 0. We explicitly indicate the dependence with respect to f since it is the
uncertain variable which will be averaged in the sequel. Note that j could as well depend explicitly on
the space variable x ∈ Rd, with the following results being unchanged; so to keep notations compact
insofar as possible, this dependence is omitted. More general cost functions could also be considered,
e.g. cost functions involving quantities related to the values of uh,f on (a part of) ∂Ω, without any
conceptual change in the developments ahead.

3.2.1. Second-order asymptotic expansion of the cost function with respect to perturbations

Let us introduce perturbations f̂ over the body forces f = f0 + f̂ , around a particular value f0. The
natural choice of a functional space for f0 and f̂ (thus f) is L2(Ω)d. However, as evoked in Remark 2.2,
our approximation results (Propositions 3.3 and 3.5 below) can be rigorously justified if we ask for
slightly more integrability of the forces, namely f0, f̂ ∈ L3(Ω)d, which is now our standing assumption.

We shall focus on approximations of the objective functions obtained by a first- or second-order
Taylor expansion of the cost function f 7→ C(h, f) around f0. In this perspective, let us recall the
following result about the regularity of the mapping (h, f) 7→ uh,f , which will be used implicitly and
repeatedly in the following. Its proof relies on a use of the implicit function theorem which is rather
classical in optimal control theory; see e.g. [30], Chap. 5.

Lemma 3.2. Let p ≥ 2. The function Uad × Lp(Ω)d 3 (h, f) 7→ uh,f ∈ H1
ΓD(Ω)d is of class C∞.

A first calculation of interest then concerns the asymptotic expansion of the cost C.

Proposition 3.3. The cost function f 7→ C(h, f), from L3(Ω)d into R has the following expansion
around f0 ∈ L3(Ω)d:

C(h, f0 + f̂) =
∫

Ω
j(f0, uh) dx+

∫
Ω

(
∇f j(f0, uh) · f̂ +∇uj(f0, uh) · u1

h(f̂)
)
dx

+ 1
2

∫
Ω

(
∇2
f j(f0, uh)(f̂ , f̂) + 2∇f∇uj(f0, uh)(f̂ , u1

h(f̂))

+∇2
uj(f0, uh)(u1

h(f̂), u1
h(f̂))

)
dx+R(f̂). (3.7)

In this formula, we have denoted as uh = uh,f0 the displacement of the plate in the unperturbed
situation, and the sensitivity u1

h(f̂) := ∂uh,f
∂f

∣∣∣
f=f0

(f̂) is solution to the following variational problem:

∀v ∈ H1
ΓD(Ω)d,

∫
Ω
hAe

(
u1
h(f̂)

)
: e(v) dx =

∫
Ω
f̂ · v dx. (3.8)

As for the remainder R(f̂), there exists a constant C > 0, which is uniform with respect to h ∈ Uad,
such that:

∀f̂ ∈ L3(Ω)d, |R(f̂)|≤ C||f̂ ||3L3(Ω)d .
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Proof. Performing a second-order Taylor expansion of f 7→ C(h, f) around f0 (which is possible
because of Lemma 3.2) in an arbitrary direction f̂ ∈ L3(Ω)d directly yields (3.7), with a remainder
R(f̂) defined as:

R(f̂) =
∫

Ω

∫ 1

0

∂3C
∂f3 (h, f0 + tf̂)(f̂ , f̂ , f̂) dt dx.

The expression of the partial derivative ∂3C
∂f3 involves the various derivatives of j, up to order 3 (which

can be controlled owing to (3.6)), as well as those of f 7→ uh,f . Writing the variational problem satisfied
by the latter and deriving a priori estimates in the usual way provide the desired control on R(f̂).

Remark 3.4. In utter generality, the expansion (3.7) should contain an additional term, involving the
second order derivative u2

h(f̂ , f̂) := ∂2uh,f
∂f2

∣∣∣
f=f0

(f̂ , f̂) (compare with (2.7)). However, in the particular
case of this section, the mapping f 7→ uh,f is linear and this term vanishes.

3.2.2. Introduction of random perturbations, and approximation of the mean-value of the cost function

Let us now assume that the perturbations f̂ over the applied body forces are modelled as random
fields f̂ ≡ f̂(x, ω), defined for x ∈ Ω, and ω ∈ O, where (O,F ,P) is an abstract probability space.
Roughly speaking, an Rd-valued random variable is attached to each point x ∈ Ω in the ‘physical
space’. We assume that f̂ belongs to the Böchner space L3

(
O, L3(Ω)d

)
.

Let us consider the mean value M(h) of the cost function C(h, f(·, ω)), that is:

M(h) =
∫
O
C(h, f(·, ω)) P(dω).

Replacing C(h, f(·, ω)) with the right-hand side of (3.7) (without the error term), then integrating
over ω ∈ O, gives rise to the approximate mean-value functional M̃(h), defined as:

M̃(h) =
∫

Ω
j(f0, uh) dx+

∫
O

∫
Ω

(
∇f j(f0, uh) · f̂ +∇uj(f0, uh) · u1

h(f̂)
)
dx P(dω)

+ 1
2

∫
O

∫
Ω

(
∇2
f j(f0, uh)(f̂ , f̂) + 2∇f∇uj(f0, uh)(f̂ , u1

h(f̂))

+∇2
uj(f0, uh)(u1

h(f̂), u1
h(f̂))

)
dx P(dω). (3.9)

Using Proposition 3.3, we easily deduce an estimate on the error entailed by replacingM(h) with
M̃(h):

Proposition 3.5. Assume that the random field f̂ belongs to L3(O, L3(Ω)d). Then there exists a
constant C > 0 (uniform in h ∈ Uad) such that:

|M̃(h)−M(h)|≤ C||f̂ ||3L3(O,L3(Ω)d).

We now consider the minimization of M̃(h) instead of that of M(h), since it features a simpler
dependence (at most quadratic) in terms of the perturbations f̂ .

In this context, let us observe that the definition (3.9) of M̃(h) actually makes sense under less
restrictive assumptions than f̂ ∈ L3(O, L3(Ω)d). It is indeed tantalizing to consider the minimization
of M̃(h) in situations where f̂ belongs to a more intuitive functional space (even though it is then
not clear whether it is a rigorous approximation of M(h)). As such, one could for instance ask that
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f̂ belong to the Böchner space L∞
(
O, L2(Ω)d

)
, with the meaning that each realization of a small

perturbation f̂ in this space is a small function (in L2(Ω)d-norm). One could alternatively ask that
f̂ ∈ L2

(
O, L2(Ω)d

)
, thus authorizing f̂ to have large (but unlikely) realizations. We retain this last

idea in the remainder of this section.
As explained in Section 2, we rely on the hypothesis that f̂ is a finite sum of deterministic functions

fi ∈ L2(Ω)d, i = 1, ..., N , weighted by uncorrelated, normalized random variables ξi (i.e. (2.4) holds):

f̂(x, ω) =
N∑
i=1

fi(x)ξi(ω). (3.10)

Notice that the assumption that f̂ be ‘small’ in L2
(
O, L2(Ω)d

)
-norm implies that each of the functions

fi is ‘small’ in L2(Ω)d-norm, since

||f̂ ||2
L2(O,L2(Ω)d)=

N∑
i=1
||fi||2L2(Ω)d ,

as a consequence of the ξi being uncorrelated. Inserting (3.10) into (3.7) yields a simpler expression
of M̃(h):

M̃(h) =
∫

Ω
j(f0, uh) dx+ 1

2

∫
Ω

N∑
i=1
∇2
f j(f0, uh)(fi, fi) dx

+
N∑
i=1

∫
Ω
∇f∇uj(f0, uh)(fi, u1

h,i) dx+ 1
2

N∑
i=1

∫
Ω
∇2
uj(f0, uh)(u1

h,i, u
1
h,i) dx,

(3.11)

where we have introduced the reduced sensitivities u1
h,i := u1

h(fi), i = 1, ..., n, as the unique solutions
in H1

ΓD(Ω)d of 
−div(hAe(u1

h,i)) = fi in Ω,
u1
h,i = 0 on ΓD,

hAe(u1
h,i)n = 0 on ΓN .

(3.12)

3.2.3. Differentiation of the approximate mean value function

We now compute the Fréchet derivative M̃′(h) of the approximate mean value function M̃(h) given
by (3.11).

Theorem 3.6. The functional M̃(h) is Fréchet-differentiable at any h ∈ Uad, and its derivative reads:

∀ĥ ∈ L∞(Ω), M̃′(h)(ĥ) =
∫

Ω
ĥ

(
Ae(uh) : e(p0

h) +
N∑
i=1

Ae(u1
h,i) : e(p1

h,i)
)
dx, (3.13)

where p0
h, and p1

h,i for i = 1, ..., N are (N+1) adjoint states, defined as the unique solutions in H1
ΓD(Ω)d

to the respective variational problems:

∀v ∈ H1
ΓD(Ω)d,

∫
Ω
hAe(p0

h) : e(v) dx = −
∫

Ω
∇uj(f0, uh) · v dx− 1

2

∫
Ω

N∑
i=1
∇2
f∇uj(f0, uh) (fi, fi, v)dx

−
N∑
i=1

∫
Ω

(
∇f∇2

uj(f0, uh)
(
fi, u

1
h,i, v

)
+ 1

2∇
3
uj(f0, uh)

(
u1
h,i, u

1
h,i, v

))
dx, (3.14)

∀v ∈ H1
ΓD(Ω)d,

∫
Ω
hAe(p1

h,i) : e(v) dx = −
∫

Ω

(
∇f∇uj(f0, uh)(fi, v) +∇2

uj(f0, uh)
(
u1
h,i, v

))
dx. (3.15)
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Proof. The differentiability of M̃(h) is a straightforward consequence of Lemma 3.2. Taking the
derivative with respect to h in (3.4) and (3.8) yields, for any ĥ ∈ L∞(Ω):

∀v ∈ H1
ΓD(Ω)d,

∫
Ω
hAe

(
∂uh
∂h

(ĥ)
)

: e(v) dx = −
∫

Ω
ĥAe(uh) : e(v) dx, (3.16)

∀v ∈ H1
ΓD(Ω)d,

∫
Ω
hAe

(
∂u1

h,i

∂h
(ĥ)
)

: e(v) dx = −
∫

Ω
ĥAe(u1

h,i) : e(v) dx, (3.17)

Hence, for any ĥ ∈ L∞(Ω), we obtain:

M̃′(h)(ĥ) =
∫

Ω
∇uj(f0, uh) · ∂uh

∂h
(ĥ) dx+ 1

2

∫
Ω

N∑
i=1
∇2
f∇uj(f0, uh)

(
fi, fi,

∂uh
∂h

(ĥ)
)
dx

+
N∑
i=1

∫
Ω

(
∇f∇2

uj(f0, uh)
(
fi, u

1
h,i,

∂uh
∂h

(ĥ)
)

+ 1
2∇

3
uj(f0, uh)

(
u1
h,i, u

1
h,i,

∂uh
∂h

(ĥ)
))

dx

+
N∑
i=1

∫
Ω

(
∇f∇uj(f0, uh)

(
fi,

∂u1
h,i

∂h
(ĥ)
)

+∇2
uj(f0, uh)

(
u1
h,i,

∂u1
h,i

∂h
(ĥ)
))

dx. (3.18)

Let us now bring into play the adjoint states p0
h, and p1

h,i (i = 1, ..., n), defined by (3.14), and (3.15)
respectively. The first three terms in the right-hand side of (3.18) rewrite:∫

Ω
∇uj(f0, uh) · ∂uh

∂h
(ĥ) dx+ 1

2

∫
Ω

N∑
i=1
∇2
f∇uj(f0, uh)

(
fi, fi,

∂uh
∂h

(ĥ)
)
dx

+
N∑
i=1

∫
Ω

(
∇f∇2

u(f0, uh)
(
fi, u

1
h,i,

∂uh
∂h

(ĥ)
)

+ 1
2∇

3
uj(f0, uh)

(
u1
h,i, u

1
h,i,

∂uh
∂h

(ĥ)
))

dx

= −
∫

Ω
hAe(p0

h) : e
(
∂uh
∂h

(ĥ)
)

=
∫

Ω
ĥAe(uh) : e(p0

h) dx,

where the last line is a consequence of (3.16). Using similar rearrangements for the remaining terms
in (3.18), we end up with the desired formula (3.13).

Remark 3.7. Alternatively, we could have used Céa’s method for the calculation of the above deriv-
ative (see e.g. [1, 12]). The formula for the derivative of M̃(h) requires to solve 2(N + 1) equations
to obtain the solutions uh, uh,i, p0

h and ph,i, for i = 1, ..., N . All equations share the same partial
differential operator as (3.1) with merely different right-hand sides. Thus, from a practical point of
view, the attached finite element matrix needs only be inverted once. Or, if using an iterative solver,
all these independent computations could be carried out in parallel.

Remark 3.8. Let us recall that, in the definitions (3.14) and (3.15) of the adjoints, the right hand
sides feature terms of the type ∇f∇uj(f0, uh)(fi, v) which are bilinear in (fi, v) (namely the matrix
∇f∇uj(f0, uh) contracted with the two vectors fi and v) and of the type ∇2

f∇uj(f0, uh)(fi, fi, v) which
are trilinear in (fi, fi, v).

When there are no uncertainties, i.e. fi = 0 for i = 1, ..., N , then ph,i = 0 and p0
h = ph where ph is

the usual adjoint, solution of
−div(hAe(ph)) = −∇uj(f0, uh) in Ω,

ph = 0 on ΓD,
hAe(ph)n = 0 on ΓN .
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Example 3.9. Let us consider the compliance of the plate as an objective function, namely j(f, u) =
f · u. The various derivatives of j needed to perform the calculation of M̃(h) and its derivative are:

∇uj(f0, u) = f0, ∇f∇uj(f0, u)(f̂ , v) = f̂ · v, ∇2
uj(f0, u) = 0, and ∇2

f j(f0, u) = 0.

Then, p0
h = −uh and pih = −uih, while M̃(h) and its directional derivative M̃′(h)(ĥ) read:

M̃(h) =
∫

Ω

(
f0 · uh +

N∑
i=1

fi · uh,i

)
dx

and

M̃′(h)(ĥ) = −
∫

Ω
ĥ

(
Ae(uh) : e(uh) +

N∑
i=1

Ae(uh,i) : e(uh,i)
)
dx.

Interestingly, M̃(h) is nothing but the multi-load objective functional studied, e.g. in [4].

3.2.4. Approximation of the variance

The ideas presented above can be elaborated upon to produce an approximation of the variance V of
the considered cost C, defined by

V(h) =
∫
O

(C(h, f(·, ω)))−M(h))2 P(dω).

We introduce the following approximate variance

Ṽ(h) =
∫
O

(∫
Ω

(
∇f j(f0, uh) · f̂(·, ω) +∇uj(f0, uh) · u1

h(f̂(·, ω))
)
dx

)2
P(dω). (3.19)

Proposition 3.10. Assume that the perturbations f̂ belong to L4(O, L2(Ω)d), and that
∫
O f̂ P(dω) = 0.

Then, there exists a constant C (uniform with respect to h ∈ Uad) such that:

|Ṽ(h)− V(h)|≤ C||f̂ ||3L4(O,L2(Ω)d).

Proof. Arguing as in Sections 3.2.1 and 3.2.2, the following asymptotic expansions are easily derived,
for a given h ∈ Uad:

M(h) =
∫

Ω
j(f0, uh) dx+O(||f̂ ||2L2(O,L2(Ω)d)),

and for a.e. event ω ∈ O:

C(h, f(·, ω)))−M(h) =
∫

Ω

(
∇f j(f0, uh) · f̂(·, ω) +∇uj(f0, uh) · u1

h(f̂(·, ω))
)
dx

+R
(
f̂(·, ω)

)
+O(||f̂ ||2L2(O,L2(Ω)d)),

where u1
h is defined in (3.8), and the remainder function satisfies

|R
(
f̂(·, ω)

)
|≤ C||f̂(·, ω)||2L2(Ω)d ,

for a constant C > 0, independent of h. Note that L4(O, L2(Ω)d) is embedded in L2(O, L2(Ω)d).
Squaring the difference (C−M), integrating over the probability space O, using the centering condition
for f̂ as well as its higher integrability yields the desired estimate.

Remark 3.11. Since the integrand in the definition of the variance V(h) is a square, it is enough to
perform a first-order, instead of a second-order, Taylor expansion of the cost function. This greatly
simplifies the analysis, avoiding the introduction of second-order terms.
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Again, formula (3.19) actually makes sense for more general perturbations than f̂ ∈ L4(O, L2(Ω)d).
We now consider f̂ ∈ L2(O, L2(Ω)d) with the particular structure (3.10), in which case Ṽ(h) rewrites:

Ṽ(h) =
N∑
i=1

(∫
Ω

(
∇f j(f0, uh) · fi +∇uj(f0, uh) · u1

h,i

)
dx

)2
, (3.20)

where the u1
h,i are given by (3.12). The derivative of (3.20) can be calculated along the lines of the

proof of Theorem 3.6, so we omit the proof.

Theorem 3.12. The approximate variance Ṽ(h) is Fréchet-differentiable at any h ∈ Uad, and its
derivative reads:

∀ĥ ∈ L∞(Ω), Ṽ ′(h)(ĥ) =
∫

Ω
ĥ

(
Ae(uh) : e(p0

h) + 2
N∑
i=1

ah,iAe(u1
h,i) : e(p1

h)
)
dx, (3.21)

where, for i = 1, ..., N ,

ah,i :=
∫

Ω

(
∇f j(f0, uh) · fi +∇uj(f0, uh) · u1

h,i

)
dx,

and the adjoint states p0
h and p1

h ∈ H1
ΓD(Ω)d are defined as the unique solutions to the variational

problems:

∀v∈H1
ΓD(Ω)d,

∫
Ω
hAe(p0

h) : e(v) dx = −2
N∑
i=1

ah,i

∫
Ω

(
∇f∇uj(f0, uh)(fi, v) +∇2

uj(f0, uh)
(
u1
h,i, v

))
dx,

∀v∈H1
ΓD(Ω)d,

∫
Ω
hAe(p1

h) : e(v) dx = −
∫

Ω
∇uj(f0, uh) · v dx.

Remark 3.13. Note that, according to Section 2.3, one may get rid of the u1
h,i in formula (3.20)

thanks to the introduction of the adjoint state p1
h, namely

Ṽ(h) =
N∑
i=1

(∫
Ω

(
∇f j(f0, uh)− p1

h

)
· fi dx

)2
.

Therefore, the evaluation of Ṽ(h) requires to solve only two equations (for uh and p1
h). Similarly,

introducing the combination u1
h,a =

∑N
i=1 ah,iu

1
h,i, one needs to solve merely four equations (for uh,

u1
h,a, p0

h and p1
h) in order to obtain the derivative (3.21).

Remark 3.14. When there are no uncertainties, i.e. fi = 0, then u1
h,i = 0 and the approximate

variance vanishes, Ṽ(h) = 0, as well as its derivatives. Note in passing that, contrary to the case of
Theorem 3.6, it is p1

h (and not p0
h) which coincides with the usual adjoint ph introduced in Remark 3.8.

Remark 3.15. The same strategy allows to derive approximate functionals for higher-order moments
of C (e.g. its skewness or kurtosis), provided information about higher-order moments of the tuple
(ξ1, ..., ξN ) is known (e.g if the variables ξ1, ..., ξN are assumed to be independent, and not merely
uncorrelated).

Example 3.16. In the setting of example 3.9, i.e. when the cost function is the compliance, the
functional Ṽ(h) and its derivative simply read:

Ṽ(h) =
N∑
i=1

a2
h,i, Ṽ ′(h)(ĥ) = −4

N∑
i=1

ah,i

∫
Ω
ĥAe(uh) : e(uh,i) dx,

with the coefficients ah,i =
∫

Ω (fi · uh + f0 · uh,i) dx. It is possible to give an interpretation of the
minimization of the approximated variance Ṽ(h) when the cost function is the compliance.
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We consider a multiple load compliance minimization for the N loads f0 + δifi where δi > 0 are
some weighting factors to be determined. The corresponding elasticity solutions are uh + δiuh,i and
the multiple load objective functions is a weighted sum of compliances

J (h) =
N∑
i=1

ci

∫
Ω

(f0 + δifi) · (uh + δiuh,i) dx,

where ci > 0 are some other weighting factors to be determined. Developing yields

J (h) =
N∑
i=1

(
ci

∫
Ω

(f0 · uh + δ2
i fi · uh,i) dx+ δici

∫
Ω

(f0 · uh,i + fi · uh) dx
)
.

We define

ci =
(
δ

∫
Ω

(f0 · uh,i + fi · uh) dx
)2

and δi =
(
δ

∫
Ω

(f0 · uh,i + fi · uh) dx
)−1

,

with δ =
(

N∑
i=1

(∫
Ω

(f0 · uh,i + fi · uh) dx
)2
)−1/2

= Ṽ(h)−1/2,

which implies that
∑N
i=1 ci = 1 and ciδ2

i = 1. Then

J (h) =
∫

Ω
f0 · uh dx+

N∑
i=1

∫
Ω
fi · uh,i dx+

√
Ṽ(h).

Therefore, minimizing the approximated variance Ṽ(h) is equivalent to minimize a weighted sum of
N compliances with perturbed loads f0 + δifi, while maximizing the sum of (N + 1) compliances
associated to the loads f0, f1, ..., fN .

3.2.5. Approximation of the failure probability

We now come to the approximation of the failure probability, following the idea of Section 2.2, still in
the context of random perturbations of the body forces. We keep the previous notations of Section 3.2.
Let α ∈ R be the threshold value for the cost function C(h, f) above which the design of thickness h,
submitted to forces f , is assumed to ‘fail’. The objective function is the failure probability

P(h) = P ({ω ∈ O, C(h, f(·, ω)) > α}) .

We first give a first-order Taylor expansion the cost f 7→ C(h, f) around f0. It is nothing but the
truncation at first order of the second-order expansion delivered by Proposition 3.3. However, since
the remainder term is dominated by a quadratic term, it is enough to consider forces which belong to
L2(Ω)d. More precisely, for f0 ∈ L2(Ω)d and any variation f̂ ∈ L2(Ω)d,

C(h, f0 + f̂) =
∫

Ω
j(f0, uh) dx+

∫
Ω

(
∇f j(f0, uh) · f̂ +∇uj(f0, uh) · u1

h(f̂)
)
dx+R(f̂), (3.22)

and there exists a constant C > 0, uniform with respect to h ∈ Uad, such that the remainder term
R(f̂) satisfies:

|R(f̂)|≤ C||f̂ ||2L2(Ω)d .

We consider perturbations f̂ ∈ L2(O, L2(Rd)) which are a finite sum of the form (3.10), where the
random variables ξ = (ξ1, ..., ξN ) are centered, normalized, but also independent and Gaussian random
variables. The expansion (3.22) becomes:

C(h, f0 + f̂) = bh + ah · ξ + qh(ξ),
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where

bh =
∫

Ω
j(f0, uh) dx,

the entries of ah := (ah,1, ..., ah,N ) are given, for i = 1, ..., N , by

ah,i =
∫

Ω

(
∇f j(f0, uh) · fi +∇uj(f0, uh) · u1

h,i

)
dx,

where u1
h,i is the solution of (3.12), and the error term qh(ξ) satisfies:

∀ξ ∈ RN , |qh(ξ)|≤ C||f̂ ||2L2(O,L2(Ω)d)|ξ|
2.

Notice that the constant C involved in the last estimate is uniform with respect to h according to (3.22)
and Proposition 3.3. Similarly, uniform bounds with respect to h can be given to the coefficients bh
and ah, using the hypothesis hmin ≤ h ≤ hmax and the usual a priori estimates for uh and u1

h,i.
Following the discussion of Section 2.2, we consider the approximate failure probability P̃ (h), defined

as:

P̃(h) = Φ
(
−α− bh
|ah|

)
, (3.23)

where Φ stands for the cumulative distribution function of the normal law, defined by (2.10). The next
result states that it is a rigorous uniform approximation of the true failure probability.

Proposition 3.17. There exists a constant C (uniform with respect to h ∈ Uad) such that:

||f̂ ||L2(O,L2(Ω)d)≤ ε⇒ |P̃(h)− P(h)|≤ Cε2| log ε|
N+1

2 .

Proof. Denote ε = ||f̂ ||L2(O,L2(Ω)d) and consider the cube Yε :=
{
ξ ∈ RN , maxi |ξi| < rε

}
, of size rε

yet to be chosen. It follows from the definitions that:

|P̃(h)− P(h)| ≤ 1
(2π)

N
2

∫
RN

e−
|ξ|2

2

∣∣∣1{bh+ah·ξ>α} − 1{bh+ah·ξ+qh(ξ)>α}

∣∣∣ dξ
≤ 1

(2π)
N
2

(∫
Yε
e−
|ξ|2

2

∣∣∣1{bh+ah·ξ>α} − 1{bh+ah·ξ+qh(ξ)>α}

∣∣∣ dξ + 2
∫
RN\Yε

e−
|ξ|2

2 dξ

)
.

The second integral at the right-hand side can be estimated as:∫
RN\Yε

e−
|ξ|2

2 dξ ≤ C
∫
R\[−rε,rε]

e−
t2
2 dt ≤ Crε

∫
R\[−1,1]

e−
r2εt

2
2 dt ≤ Crε

∫
R\[−1,1]

e−
r2εt
2 dt ≤ C

rε
e−

r2ε
2 .

As for the first one, we have, estimating the distance between the two hyperspaces {bh + ah · ξ > α}
and {bh + ah · ξ + qh(ξ) > α}:∫

Yε
e−
|ξ|2

2

∣∣∣1{bh+ah·ξ>α} − 1{bh+ah·ξ+qh(ξ)>α}

∣∣∣ dξ ≤ CrN−1
ε sup

ξ∈Yε
|qh(ξ)|,

≤ Cε2rN+1
ε .

for some constant C, where we used the fact that, for any ξ ∈ Yε, |qh(ξ)|≤ Cε2r2
ε . Combining both

estimates, and optimizing with respect to rε, namely taking r2
ε = 4|log ε|, the desired result follows.

When it comes to the differentiation of P̃(h), the result of interest is the following:
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Theorem 3.18. The functional P̃(h), defined by (3.23), is Fréchet-differentiable at any h ∈ Uad, and
its derivative P̃ ′(h)(ĥ) in a direction ĥ ∈ L∞(Ω) reads:

P̃ ′(h)(ĥ) = 1√
2π
e
− 1

2

(
α−bh
|ah|

)2

×
∫

Ω
ĥ

(
1
|ah|

Ae(uh) : e(p0
h) + α−bh

|ah|3

(
Ae(uh) : e(p1

h) +
N∑
i=1

ah,iAe(u1
h,i) : e(p0

h)
))

dx, (3.24)

where the adjoint states p0
h, p

1
h ∈ H1

ΓD(Ω)d are defined by the respective variational problems:

∀v ∈ H1
ΓD(Ω)d,

∫
Ω
hAe(p0

h) : e(v) dx = −
∫

Ω
∇uj(f0, uh) · v dx, (3.25)

∀v ∈ H1
ΓD(Ω)d,

∫
Ω
hAe(p1

h) : e(v) dx

= −
N∑
i=1

ah,i

∫
Ω

(
∇f∇uj(f0, uh)(fi, v) +∇2

uj(f0, uh)(u1
h,i, v)

)
dx. (3.26)

Proof. This is a rather straightforward calculation; a direct differentiation in (3.23) reveals:

P̃ ′(h)(ĥ) = 1√
2π
e
− 1

2

(
α−bh
|ah|

)2 ( 1
|ah|

∫
Ω
∇uj(f0, uh) · ∂uh∂h (ĥ) dx

+ α−bh
|ah|3

N∑
i=1

ah,i

∫
Ω

(
∇f∇uj(f0, uh)

(
fi,

∂uh
∂h (ĥ)

)
+∇2

uj(f0, uh)
(
u1
h,i,

∂uh
∂h (ĥ)

)
+∇uj(f0, uh) · ∂u

1
h,i

∂h (ĥ)
)
dx

)
.

Now, using the definition (3.25)-(3.26) of the adjoint states p0
h, p

1
h in combination with (3.16)-(3.17),

we obtain the desired formula (3.24).

Example 3.19. In the situation of Example 3.9, namely when the cost function is the compliance, it
is easily seen that p0

h = −uh and p1
h = −

∑N
i=1 ah,iu

1
h,i. Then, formula (3.24) simply becomes:

P̃ ′(h)(ĥ) = − 1√
2π
e
− 1

2

(
α−bh
|ah|

)2 ∫
Ω
ĥ

(
1
|ah|

Ae(uh) : e(uh) + 2α− bh
|ah|3

N∑
i=1

ah,iAe(uh) : e(u1
h,i)
)
dx.

Remark 3.20. Overall through Section 3.2 we considered small perturbations f̂ ∈ L2(O, L2(Ω)d), in
the sense that

||f̂ ||L2(O,L2(Ω)d)≤ ε.
In particular, if we assume that f̂ is a finite sum of the form (3.10), namely f̂(x, ω) =

∑N
i=1 fi(x)ξi(ω)

with independent centered normalized random variables ξi, then necessarily the functions fi are small
in L2(Ω)d: ||fi||L2(Ω)d≤ ε. Hence, (3.10) accounts for perturbations of small amplitude, which are
distributed around 0 with respect to a normalized law.

In the case when ξi are centered and normalized Gaussian random variables, there is an interesting
equivalent meaning of our assumption. Indeed, a simple change of variables reveals that (3.10) may
be rewritten as:

f̂(x, ω) =
N∑
i=1

fi(x)
ε

ξε,i(ω), (3.27)

102



Shape optimization under random uncertainties

where the ξε,i are centered Gaussian random variables, with standard deviation ε, i.e. with cumulative

distribution function Φε(x) = 1√
2πε

∫ x
−∞ e

− ξ2

2ε2 dξ. Since ||fi||L2(Ω)d≤ ε, under the form (3.27), f̂ appears
as a sum of perturbations of unit amplitude, but which are ‘often’ concentrated around their mean
value 0. This interpretation is valid for the whole Section 3.2.

3.3. Uncertainties over the elastic material’s properties

We now turn to a somewhat different situation, in which the constituent material of the plate described
in Section 3.1 undergoes random perturbations. For the sake of simplicity, let us assume that only its
Young modulus E is prone to uncertainties, and that its Poisson ratio ν is deterministic. Under these
circumstances, the Hooke’s tensor A ≡ A(E) of the plate reads:

∀e ∈ S(Rd), A(E)e = 2µ(E)e+ λ(E)tr(e)I, (3.28)

where the Lamé moduli λ(E), µ(E) of the material depend on E via the relations:

λ(E) = Eν

(1 + ν)(1− 2ν) and µ(E) = E

2(1 + ν) . (3.29)

The displacement uh,E of the plate when the Young’s modulus is E ∈ L∞(Ω) is now the unique
solution in H1

ΓD(Ω)d of the system (3.1), where A is replaced by A(E). To bring some variety in the
model, the mechanical performance is now assessed in terms of a cost function C(h,E) which is an
integral on some part Γ of the boundary ∂Ω (instead of a bulk integral), i.e.

C(h,E) =
∫

Γ
k(uh,E) dx,

where k : Rd → R is a function of class C3, and whose dependence on the space variable x ∈ Γ is
omitted. It satisfies adequate growth conditions, namely, there exists a constant C > 0 such that:

∀u ∈ Rd, |k(u)|≤ C(1 + |u|2), |∇k(u)|≤ C(1 + |u|), |∇2k(u)|+|∇3k(u)|≤ C. (3.30)

Again, more general cost functions could be devised, leading to similar developments.

In the following, A = A(E0) (resp. λ = λ(E0), µ = µ(E0), and uh = uh,E0) is the Hooke’s tensor
(resp. the Lamé coefficients and the displacement) of the plate when no uncertainty holds. Besides, A
is the tensor defined by the relation A(E) = EA, that is:

∀e ∈ S(Rd), Ae = 1
2(1 + ν)e+ ν

(1 + ν)(1− 2ν)tr(e)I. (3.31)

3.3.1. Asymptotic expansion of the cost function

We now consider ‘small’ perturbations over the Young modulus E around a reference configuration
E0:

E(x) = E0(x) + Ê(x).
Both E0 and Ê are bounded functions which belong to L∞(Ω). We assume that E0 is essentially
bounded from below by a positive constant and we restrict ourselves to perturbations satisfying:

||Ê||L∞(Ω) ≤ α, where α is a real number such that α < inf
x∈Ω

E0(x), (3.32)

so that E is always bounded from below by a positive constant, and the system (3.1) makes sense (i.e.
is coercive) as soon as (3.32) is satisfied.
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Remark 3.21. Instead of imposing (3.32), it is customary, in particular in the engineering literature,
to work with perturbed data of the form E = E0 +χ(Ê), where Ê may assume arbitrarily large values
and χ is a cut-off function ensuring that E stays positive.

According to the general framework of Section 2, our first target is to achieve a first-, or second-order
Taylor expansion of the function Ê 7→ C(h,E0 + Ê) around 0.

Proposition 3.22. The cost function E 7→ C(h,E), from L∞(Ω) into R, has the following expansion
around E0 ∈ L∞(Ω):

C(h,E0 + Ê) =
∫

Γ
k(uh) dx+

∫
Γ
∇k(uh) · u1

h(Ê) dx

+ 1
2

∫
Γ

(
∇2k(uh)(u1

h(Ê), u1
h(Ê)) +∇k(uh) · u2

h(Ê, Ê)
)
dx+R(Ê), (3.33)

where u1
h(Ê) := ∂uh,E

∂E

∣∣∣
E=E0

(Ê), and u2
h(Ê, Ê) := ∂2uh,E

∂E2

∣∣∣
E=E0

(Ê, Ê) are the first- and second-order
sensitivities of the displacement uh,E with respect to the Young’s modulus, and arise as the solutions
to the respective variational problems:

∀v ∈ H1
ΓD(Ω)d,

∫
Ω
hAe(u1

h(Ê)) : e(v) dx = −
∫

Ω
hÊAe(uh) : e(v) dx.

∀v ∈ H1
ΓD(Ω)d,

∫
Ω
hAe(u2

h(Ê, Ê)) : e(v) dx = −2
∫

Ω
hÊAe(u1

h(Ê)) : e(v) dx.

There exist positive constants δ, C > 0 (which do not depend on h) such that, if ||Ê||L∞(Ω)≤ δ, then
the remainder term R(Ê) satisfies

|R(Ê)|≤ C||Ê||3L∞(Ω). (3.34)

Proof. First, let us notice that a similar result to Lemma 3.2 holds in the present situation (and is
proved in the same way), according to which the function Uad×L∞(Ω) 3 (h,E) 7→ uh,E ∈ H1

ΓD(Ω)d en-
joys C∞ regularity. A Taylor expansion of the cost function E 7→ C(h,E) then immediately yields (3.33),
with remainder term:

R(Ê) =
∫

Ω

∫ 1

0

∂3C
∂E3 (h,E0 + tÊ)(Ê, Ê, Ê) dt dx.

Eventually (3.34) follows from the hypotheses (3.30) and from the variational problems satisfied by
the various partial derivatives of E 7→ uh,E .

3.3.2. Introduction of uncertainties and calculation of an approximate mean value function

Let us now assume that the perturbation Ê is uncertain, i.e. it arises as a random field Ê ≡ Ê(x, ω),
depending on the space variable x ∈ Ω and on an uncertainty variable ω ∈ O, where (O,F ,P) is an
abstract probability space. The objective function of interest in this section is the mean valueM(h)
of the cost function C(h, u

h,E0+Ê(·,ω)) over all the possible events ω:

M(h) =
∫
O
C(h,E0 + Ê(·, ω))P(dω).

To give a rigorous setting to the approximation of this functional, let us first rely on the (restrictive)
assumption that Ê ∈ L∞(O, L∞(Ω)). Hence, if Ê is small for such a norm, then almost every realization
Ê(·, ω) is small in the L∞(Ω) norm.

The following proposition is now an easy consequence of Proposition 3.22.
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Proposition 3.23. The approximate mean value function M̃(h), defined as:

M̃(h) =
∫

Γ
k(uh) dx+

∫
O

∫
Γ
∇k(uh) · u1

h(Ê) dx P(dω)

+ 1
2

∫
O

∫
Γ

(
∇2k(uh)(u1

h(Ê), u1
h(Ê)) +∇k(uh) · u2

h(Ê, Ê)
)
dx P(dω), (3.35)

is a consistent approximation ofM(h) in the sense that there exist positive constants δ, C > 0 (which
do not depend on h) such that, if ||Ê||L∞(Ω)≤ δ, then∣∣∣M(h)− M̃(h)

∣∣∣ ≤ C ||Ê||3L∞(O,L∞(Ω)).

As remarked previously, the definition of the approximate mean value M̃(h) makes sense for a wider
class of perturbations, and it is somehow natural to consider the case Ê ∈ L2(O, L∞(Ω)) (which leaves
room for perturbations of large amplitude, occurring on ‘rare’ sets of events). In line with the general
framework of Section 2, we now assume that Ê is a finite sum

Ê(x, ω) =
N∑
i=1

Ei(x)ξi(ω), (3.36)

where the Ei ∈ L∞(Ω) are deterministic functions, and the ξi are uncorrelated, normalized (e.g.
Gaussian) random variables. Inserting (3.36) into (3.35) yields:

M̃(h) =
∫

Γ
k(uh) dx+ 1

2

N∑
i=1

∫
Γ
∇2k(uh)(u1

h,i, u
1
h,i) dx+ 1

2

∫
Γ
∇k(uh) · u2

h dx, (3.37)

with the reduced sensitivities u1
h,i := u1

h(Ei) and u2
h :=

∑N
i=1 u

2
h(Ei, Ei), which are respectively solu-

tions to the following variational problems:

∀v ∈ H1
ΓD(Ω)d,

∫
Ω
hAe(u1

h,i) : e(v) dx = −
∫

Ω
hEiAe(uh) : e(v) dx, (3.38)

∀v ∈ H1
ΓD(Ω)d,

∫
Ω
hAe(u2

h) : e(v) dx = −2
N∑
i=1

∫
Ω
hEiAe

(
u1
h,i

)
: e(v) dx. (3.39)

3.3.3. Derivative of the approximate mean-value function

Let us now proceed to the calculation of the derivative of M̃.

Theorem 3.24. The functional M̃(h) defined by (3.37) is Fréchet-differentiable at any point h ∈ Uad,
and its derivative M̃′(h)(ĥ) in an arbitrary direction ĥ ∈ L∞(Ω) reads:

M̃′(h)(ĥ) = 1
2

∫
Ω
ĥAe(u2

h) : e(p0
h) dx+

N∑
i=1

∫
Ω
ĥEiAe

(
u1
h,i

)
: e(p0

h) dx+
N∑
i=1

∫
Ω
ĥAe(u1

h,i) : e(p1
h,i) dx

+
N∑
i=1

∫
Ω
ĥEiAe(uh) : e(p1

h,i) dx+
∫

Ω
ĥAe(uh) : e(p2

h) dx.
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where the adjoint states p0
h, p1

h,i, for i = 1, ..., N , and p2
h are defined as the unique solutions in H1

ΓD(Ω)d
to the respective variational problems:

∀v ∈ H1
ΓD(Ω)d,

∫
Ω
hA(p0

h) : e(v) dx = −
∫

Γ
∇k(uh) · v ds, (3.40)

∀v ∈ H1
ΓD(Ω)d,

∫
Ω
hA(p1

h,i) : e(v) dx = −
∫

Γ
∇2k(uh)

(
u1
h,i, v

)
ds−

∫
Ω
hEiAe (v)) : e(p0

h) dx, (3.41)

∀v ∈ H1
ΓD(Ω)d,

∫
Ω
hA(p2

h) : e(v) dx = −
∫

Γ
∇k(uh) · v ds− 1

2

∫
Γ
∇2k(uh)

(
u2
h, v

)
ds

− 1
2

∫
Γ

N∑
i=1
∇3k(uh)

(
u1
h,i, u

1
h,i, v

)
ds−

N∑
i=1

∫
Ω
hEiAe (v) : e(p1

h,i) dx. (3.42)

Proof. Take ĥ ∈ L∞(Ω). A direct differentiation in (3.37) and some reordering lead to:

M̃′(h)(ĥ) =
∫

Γ
∇k(uh) · ∂uh

∂h
(ĥ) ds+ 1

2

∫
Γ
∇2k(uh)

(
u2
h,
∂uh
∂h

(ĥ)
)
ds

+ 1
2

∫
Γ

N∑
i=1
∇3k(uh)

(
u1
h,i, u

1
h,i,

∂uh
∂h

(ĥ)
)
ds+

∫
Γ

N∑
i=1
∇2k(uh)

(
u1
h,i,

∂u1
h,i

∂h
(ĥ)
)
ds

+ 1
2

∫
Γ
∇k(uh) · ∂u

2
h

∂h
(ĥ) ds. (3.43)

Furthermore, differentiating with respect to h in the variational formulations (3.4), (3.38), (3.39)
produces, for arbitrary test function v ∈ H1

Γd(Ω)d,∫
Ω
hAe

(
∂uh
∂h

(ĥ
)

: e(v) dx = −
∫

Ω
ĥAe(uh) : e(v) dx, (3.44)∫

Ω
hAe

(
∂u1

h,i

∂h
(ĥ)
)

: e(v) dx = −
∫

Ω
ĥAe(u1

h,i) : e(v) dx−
∫

Ω
ĥEiAe(uh) : e(v) dx

−
∫

Ω
hEiAe

(
∂uh
∂h

(ĥ)
)

: e(v) dx, (3.45)

∫
Ω
hAe

(
∂u2

h

∂h
(ĥ)
)

: e(v) dx = −
∫

Ω
ĥAe(u2

h) : e(v) dx− 2
N∑
i=1

∫
Ω
ĥEiAe

(
u1
h,i

)
: e(v) dx

− 2
N∑
i=1

∫
Ω
hEiAe

(
∂u1

h,i

∂h
(ĥ)
)

: e(v) dx. (3.46)

Combining (3.46) with (3.40) and inserting in (3.43) yield:

M̃′(h)(ĥ) = 1
2

∫
Ω
ĥAe(u2

h) : e(p0
h) dx+

N∑
i=1

∫
Ω
ĥEiAe

(
u1
h,i

)
: e(v) dx+

∫
Γ
∇k(uh) · ∂uh

∂h
(ĥ) ds

+1
2

∫
Γ
∇2k(uh)

(
u2
h,
∂uh
∂h

(ĥ)
)
ds+ 1

2

∫
Γ

N∑
i=1
∇3k(uh)

(
u1
h,i, u

1
h,i,

∂uh
∂h

(ĥ)
)
ds

+
∫

Γ

N∑
i=1
∇2k(uh)

(
u1
h,i,

∂u1
h,i

∂h
(ĥ)
)
ds+

N∑
i=1

∫
Ω
hEiAe

(
∂u1

h,i

∂h
(ĥ)
)

: e(p0
h) dx.
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Now using (3.45) together with the definition (3.41) makes it possible to eliminate the sensitivities
∂u1

h,i

∂h from the last expression:

M̃′(h)(ĥ) = 1
2

∫
Ω
ĥAe(u2

h) : e(p0
h) dx+

N∑
i=1

∫
Ω
ĥEiAe

(
u1
h,i

)
: e(v) dx+

N∑
i=1

∫
Ω
ĥAe(u1

h,i) : e(p1
h,i) dx

+
N∑
i=1

∫
Ω
ĥEiAe(uh) : e(p1

h,i) dx+
∫

Γ
∇k(uh) · ∂uh

∂h
(ĥ) ds+ 1

2

∫
Γ
∇2k(uh)

(
u2
h,
∂uh
∂h

(ĥ)
)
ds

+ 1
2

∫
Γ

N∑
i=1
∇3k(uh)

(
u1
h,i, u

1
h,i,

∂uh
∂h

(ĥ)
)
ds+

N∑
i=1

∫
Ω
hEiAe

(
∂uh
∂h

(ĥ)
)

: e(p1
h,i) dx.

Eventually, using the definition (3.42) of p2
h and (3.44) yields the desired formula.

Example 3.25. To obtain a context similar to that of Example 3.9, namely if we want to consider
the compliance as the cost function, we have to assume that f = 0, Γ = ΓN and k(u) = g · u. Then,
it is easily seen that ∇k(u) = g and ∇2k(u) = ∇3k(u) = 0, which implies p0

h = −uh, p1
h,i = −u1

h,i and
p2
h = −u0

h −
1
2u

2
h. This implies some simplifications in the formula for the derivative M̃′(h)(ĥ).

4. Random geometric optimization

4.1. Description of the setting

We now turn to the framework of geometric optimization, still in the context of linear elastic structures.
A shape is a bounded, Lipschitz domain Ω ⊂ Rd, filled with a linear elastic material with Hooke’s law
A, defined by (3.2) (we shall often assume more regularity for the shapes). Every such shape is clamped
on a part ΓD of its boundary, submitted to body forces f ∈ H1(Rd)d and surface loads g ∈ H2(Rd)d,
applied on a subset ΓN ⊂ ∂Ω disjoint from ΓD, and only its free boundary Γ := ∂Ω \ (ΓD ∪ ΓN ) is
subject to optimization (see Figure 4.1 for an illustration).

⌦

�N

�D

✓

(I + ✓)(⌦)

Figure 4.1. Setting of the geometric optimization problems.
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Recalling definition (3.3) of the space H1
ΓD(Ω)d, the displacement uΩ of a shape Ω under these

circumstances is the unique solution in H1
ΓD(Ω)d of the linear elasticity system:

−div(Ae(u)) = f in Ω
u = 0 on ΓD

Ae(u)n = g on ΓN
Ae(u)n = 0 on Γ

. (4.1)

For some objective function J(Ω) we consider the optimization problem

inf
Ω∈Uad

J(Ω),

with the set of admissible shapes

Uad :=
{

Ω ⊂ Rd is open, bounded and Lipschitz, ΓD ∪ ΓN ⊂ ∂Ω
}
. (4.2)

When it comes to evaluating the sensitivity of such functionals, we rely on Hadamard’s boundary
variation method - see e.g. [30, 35, 44]. In a nutshell, variations of a shape Ω of the form:

Ωθ := (I + θ)(Ω), θ ∈W 1,∞(Rd,Rd), ||θ||W 1,∞(Rd,Rd)< 1

are considered, thus leading to the following notion of differentiation with respect to the domain:

Definition 4.1. A functional J(Ω) of the domain is shape differentiable at Ω provided the underlying
function θ 7→ J((I + θ)(Ω)), from W 1,∞(Rd,Rd) into R is Fréchet differentiable at θ = 0. The shape
derivative J ′(Ω) of J at Ω is the corresponding Fréchet differential, and the following asymptotic
expansion holds in the vicinity of 0 ∈W 1,∞(Rd,Rd):

J(Ωθ) = J(Ω) + J ′(Ω)(θ) + o(θ), where lim
θ→0

|o(θ)|
||θ||W 1,∞(Rd,Rd)

= 0. (4.3)

In practice, so as to ensure that the considered variations of shapes Ω ∈ Uad stay admissible, we
have to restrict the set of considered deformations to:

Θad :=
{
θ ∈W 1,∞(Rd,Rd), such that θ = 0 on ΓD ∪ ΓN

}
. (4.4)

Remark 4.2. The various approximations and shape differentiability results discussed in the sequel
require some additional smoothness of solutions to linear elasticity systems of the form (4.1). Such
smoothness is a classical result in the linear elasticity theory [18] and in the shape optimization
literature [1, 30, 35, 44], provided the featured data (notably f, g, and the domain Ω itself) are smooth
enough. In the following developments, we will implicitly and systematically assume that the data at
hand are smooth enough, and that the sets Uad and Θad encompass additional regularity requirements,
so that all our calculations are legitimate.

Remark 4.3. In most cases the proposed approximate objective functionals can be proved to be
uniformly close to the original objective functionals. Since the analysis of this issue is identical to that
of its parametric counterpart in Section 3, for the sake of brevity we shall not dwell on it.

4.2. Random perturbations over the body forces in shape optimization

This section is the mirror of Section 3.2, in the context of shape optimization. Here again, our purpose
is not to achieve utter generality, but rather to investigate a simple situation, in which the ideas of
Section 2 can be conveniently illustrated.
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Let us denote as uΩ,f ∈ H1
ΓD(Ω)d the displacement of a shape Ω ∈ Uad, unique solution to the sys-

tem (4.1), when body forces f are applied but surface loads are neglected (i.e. g = 0). The performance
of such a shape Ω is evaluated in terms of a cost function C(Ω, f) of the form:

C(Ω, f) =
∫

Ω
j(f, uΩ,f ) dx,

where j : Rd × Rd → R is smooth of class C3), and satisfies the growth conditions (3.6). The body
forces f are of the form:

f = f0 + f̂ ,

where f0 is a mean value and f̂ are expected perturbations, which will soon be assumed to be random.

4.2.1. Second-order expansion of the cost function and introduction of random perturbations

As we have seen previously, a first step is to obtain a Taylor expansion of the mapping f 7→ C(Ω, f)
around f0. As in Proposition 3.3 (for parametric optimization) we assume some higher integrability
of the forces in L3(Rd)d in order to justify the following result (the proof of which is safely left to the
reader).

Proposition 4.4. The cost function f 7→ C(Ω, f), from L3(Rd)d into R has the following expansion
around f0 ∈ L3(Rd)d:

C(Ω, f0 + f̂) =
∫

Ω
j(f0, uΩ) dx+

∫
Ω

(
∇f j(f0, uΩ) · f̂ +∇uj(f0, uΩ) · u1

Ω(f̂)
)
dx

+ 1
2

∫
Ω

(
∇2
f j(f0, uΩ)(f̂ , f̂) + 2∇f∇uj(f0, uΩ)(f̂ , u1

Ω(f̂)) +∇2
uj(f0, uΩ)(u1

Ω(f̂), u1
Ω(f̂))

)
dx+R(f̂),

(4.5)

where uΩ stands for the unperturbed state uΩ,f0, and u1
Ω(f̂) is the first-order derivative u1

Ω(f̂) =
∂uΩ,f
∂f

∣∣∣
f=f0

(f̂), unique solution in H1
ΓD(Ω)d of the variational problem:

∀v ∈ H1
ΓD(Ω)d,

∫
Ω
Ae(u1

Ω(f̂)) : e(v) dx =
∫

Ω
f̂ · v dx.

There exists a constant C > 0 (depending on Ω) such that the remainder R(f̂) is controlled as:

∀f̂ ∈ L3(Rd)d, |R(f̂)|≤ C||f̂ ||3L3(Rd)d .

4.2.2. Study of the mean-value of the considered cost function

Let us now assume that the considered perturbations are described as random fields f̂ ≡ f̂(x, ω),
where ω is an event lying in the probability space (O,F ,P). As in Section 3.2, in order to achieve
rigorous approximation results, we assume at first that f̂ ∈ L3(O, L3(R)d).

The objective function of interest is the mean valueM(Ω) of C:

M(Ω) =
∫
O
C(Ω, f(·, ω)) P(dω),

which we approximate along the lines of the following result:
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Proposition 4.5. The approximate mean value function M̃(Ω), defined as:

M̃(Ω) =
∫

Ω
j(f0, uΩ) dx+

∫
O

∫
Ω

(
∇f j(f0, uΩ) · f̂ +∇uj(f0, uΩ) · u1

Ω(f̂)
)
dx P(dω)

+ 1
2

∫
O

∫
Ω

(
∇2
f j(f0,uΩ)(f̂ , f̂ )+2∇f∇uj(f0, uΩ)(f̂ ,u1

Ω(f̂ ))+∇2
uj(f0, uΩ)(u1

Ω(f̂ ),u1
Ω(f̂ ))

)
dx P(dω),

(4.6)

approximatesM(Ω) in the sense that there exists a constant C > 0 (depending on Ω) such that:

|M̃(Ω)−M(Ω)|≤ C||f̂ ||3L3(O,L3(Rd)d).

As usual, we notice that the definition (4.6) makes sense for more general perturbations than
f̂ ∈ L3(O, L3(R)d); henceforth, we assume that it belongs to L2(O, L2(Rd)d), and enjoys the particular
structure:

f̂(x, ω) =
N∑
i=1

fi(x)ξi(ω),

where the functions fi ∈ L2(Rd)d are deterministic, and the ξi are centered, normalized and uncorre-
lated random variables (i.e. (2.4) holds). In this context, M̃(Ω) rewrites:

M̃(Ω) =
∫

Ω
j(f0, uΩ) dx+ 1

2

N∑
i=1

∫
Ω
∇2
f j(f0, uΩ)(fi, fi) dx

+
N∑
i=1

∫
Ω
∇f∇uj(f0, uΩ)(fi, u1

Ω,i) dx+ 1
2

N∑
i=1

∫
Ω
∇2
uj(f0, uΩ)(u1

Ω,i, u
1
Ω,i) dx, (4.7)

with uΩ,i := u1
Ω(fi). When it comes to differentiating this functional, the result of interest is the

following, whose proof is almost identical to that of Theorem 3.6 and thus omitted.

Theorem 4.6. Assume that the functions fi enjoy additional regularity (typically, fi ∈ H1(Rd)d); the
function M̃(Ω) given by (4.7) is shape differentiable at any Ω ∈ Uad, and its derivative reads:

∀θ ∈ Θad, M̃′(Ω)(θ) =
∫

Γ
D
(
uΩ, p

0
Ω, u

1
Ω,1, ..., u

1
Ω,N , p

1
Ω,1, ..., p

1
Ω,N

)
θ · n ds,

where the integrand is:

D
(
uΩ, p

0
Ω, u

1
Ω,1, ..., u

1
Ω,N , p

1
Ω,1, ..., p

1
Ω,N

)
= j(f0, uΩ) + 1

2

N∑
i=1
∇2
f j(f0, uΩ)(fi, fi) +

N∑
i=1
∇f∇uj(f0, uΩ)(fi, u1

Ω,i)

+ 1
2

N∑
i=1
∇2
uj(f0, uΩ)(u1

Ω,i, u
1
Ω,i) +Ae(uΩ) : e(p0

Ω)

+
N∑
i=1

Ae(u1
Ω,i) : e(p1

Ω,i)− f0 · p0
Ω −

N∑
i=1

fi · p1
Ω,i,
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and p0
Ω, p1

Ω,i (i = 1, ..., N) are (N + 1) adjoint states, defined as the unique solutions in H1
ΓD(Ω)d of

the variational problems:

∀v ∈ H1
ΓD(Ω)d,

∫
Ω
Ae(p0

Ω) : e(v) dx

=−
∫

Ω
∇uj(f0, uΩ) · v dx− 1

2

N∑
i=1

∫
Ω
∇2
f∇uj(f0, uΩ)(fi, fi, v) dx

−
N∑
i=1

∫
Ω
∇f∇2

uj(f0, uΩ)(fi, uΩ,i, v) dx− 1
2

N∑
i=1

∫
Ω
∇3
uj(f0, uΩ)(u1

Ω,i, u
1
Ω,i, v) dx,

∀v ∈ H1
ΓD(Ω)d,

∫
Ω
Ae(p1

Ω,i) : e(v) dx = −
∫

Ω

(
∇f∇uj(f0, uΩ)(fi, v) +∇2

uj(f0, uΩ)(u1
Ω,i, v)

)
dx.

Example 4.7. Let us specialize the above theorem in the case of the compliance as a cost function,
that is: j(f, u) = f · u. The relevant non-zero derivatives of j are:

∇f j(f, u) = u, ∇uj(f, u) = f, ∇f∇uj(f, u) = I,

and the approximate mean value function simplifies into:

M̃(Ω) =
∫

Ω
f0 · uΩ dx+

N∑
i=1

∫
Ω
fi · u1

Ω,i dx.

The adjoint states then read: p0
Ω = −uΩ, p1

Ω,i = −u1
Ω,i, and the shape derivative of M̃(Ω) is, for any

θ ∈ Θad,

M̃′(Ω)(θ) =
∫

Γ

(
2f0 · uΩ + 2

N∑
i=1

fi · u1
Ω,i −Ae(uΩ) : e(uΩ)−

N∑
i=1

Ae(u1
Ω,i) : e(u1

Ω,i)
)
θ · n ds.

Again,M(Ω) comes down to the multiple load objective function of [4].

Remark 4.8. When the cost function C(Ω, f) is the compliance (which is a quadratic functional of f),
its second-order Taylor expansion is exact. More precisely, we find that M̃(Ω) = M(Ω), which, as
explained in the above example, coincides with the multiple load objective function. The special char-
acter of quadratic functionals for computing exactly mean values without any details of the uncertainty
distribution has already been recognized by many authors, including [20] and [26].

4.2.3. Minimization of a failure probability associated to the cost C(Ω, f).

We are now interested in the minimization of the failure probability:
P(Ω) = P ({ω ∈ O, C(Ω, f(·, ω)) > α}) ,

where α is the authorized tolerance over the values of C. As suggested in Section 2 (see also Sec-
tion 3.2.5), the approximate functional P̃(Ω) of interest is:

P̃(Ω) = Φ
(
−α− bΩ
|aΩ|

)
, (4.8)

where bΩ =
∫

Ω j(f0, uΩ) dx and

aΩ := (aΩ,1, ..., aΩ,N ), aΩ,i =
∫

Ω

(
∇f j(f0, uΩ) · fi +∇uj(f0, uΩ) · u1

Ω,i

)
dx

are the coefficients involved in the first-order truncation of (4.5) (recall also that these coefficients may
be rewritten by introducing an adjoint state; see Section 2.3). We assume that the fi enjoy additional
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regularity, and that aΩ 6= 0, otherwise the function P̃(Ω) takes only the two values 0 and 1 (see
Subsection 2.2).

Theorem 4.9. The functional P̃(Ω) defined by (4.8) is shape differentiable at any Ω ∈ Uad, and its
shape derivative reads, for any θ ∈ Θad,

P̃(Ω)′(θ) = 1√
2π
e
−
(
α−bΩ
|aΩ|

)2 ∫
Γ
D(uΩ, p

0
Ω, uΩ,1, ..., uΩ,N , p

1
Ω) θ · n ds,

where the integrand is defined by:

D(uΩ, p
0
Ω, u

1
Ω,1, ..., u

1
Ω,N , p

1
Ω) = 1

|aΩ|
j(f0, uΩ) + α− bΩ

|aΩ|3
N∑
i=1

aΩ,i (∇f j(f0, uΩ) · fi +∇uj(f0, uΩ) · uΩ,i)

+ 1
|aΩ|

(Ae(uΩ) : e(p0
Ω)− f · p0

Ω) + α− bΩ
|aΩ|3

(Ae(uΩ) : e(p1
Ω)− f · p1

Ω)

+ α− bΩ
|aΩ|3

N∑
i=1

aΩ,i(Ae(u1
Ω,i) : e(p0

Ω)− fi · p0
Ω),

and p0
Ω and p1

Ω ∈ H1
ΓD(Ω)d are two adjoint states, defined as the solutions to the following respective

variational problems:

∀v∈H1
ΓD(Ω)d,

∫
Ω
Ae(p0

Ω) : e(v) dx = −
∫

Ω
∇uj(f0, uΩ) · v dx,

∀v∈H1
ΓD(Ω)d,

∫
Ω
Ae(p1

Ω) : e(v) dx = −
N∑
i=1

aΩ,i

∫
Ω

(
∇f∇uj(f0, uΩ)(fi, v) +∇2

uj(f0, uΩ)(u1
Ω,i, v)

)
dx.

4.3. Random perturbations over the material’s properties in shape optimization

In this section, we briefly explain how the ideas of Section 3.3 readily extend to the shape optimization
context. The developments being very similar, we solely outline the main results. Let us suppose that
the Young’s modulus E of the constituent material of the shapes Ω is subject to uncertainties, and
consider the cost function C(Ω, E) defined by:

C(Ω, E) =
∫

Ω
j(uΩ,E) dx,

where the function j : Rd → R is smooth enough and satisfies adequate growth conditions, like (3.6)
and (3.30). In this formula, uΩ,E is the linear elastic displacement of Ω, solution of (4.1) when the
Hooke’s tensor A equals that A(E) given by (3.28)-(3.29). As in Section 3.3, we assume ‘small’ random
perturbations Ê around a reference Young’s modulus E0, namely

E = E0 + Ê with Ê(x, ω) =
N∑
i=1

Ei(x)ξi(ω),

where the Ei ∈ L∞(Rd) and the ξi are centered, normalized and uncorrelated random variables. In
the following we use the shortcuts A ≡ A(E0), λ ≡ λ(E0), µ ≡ µ(E0), and uΩ ≡ uΩ,E0 for quantities
attached to the unperturbed situation.

The objective function of interest is the mean valueM(Ω) of the cost C:

M(Ω) =
∫
O
C
(
Ω, E0 + Ê(·, ω)

)
P(dω).
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Following the steps of Section 3.3 gives rise to the approximate functional M̃(Ω) defined by:

M̃(Ω) =
∫

Ω
j(uΩ) dx+ 1

2

N∑
i=1

∫
Ω
∇2j(uΩ)(u1

Ω,i, u
1
Ω,i) dx+ 1

2

∫
Ω
∇j(uΩ) · u2

Ω dx, (4.9)

where the sensitivities u1
Ω,i, i = 1, ..., N and u2

Ω are the solutions in H1
ΓD(Ω)d to the variational

problems:

∀v ∈ H1
ΓD(Ω)d,

∫
Ω
Ae(u1

Ω,i) : e(v) dx = −
∫

Ω
Ei Ae(uΩ) : e(v) dx,

∀v ∈ H1
ΓD(Ω)d,

∫
Ω
Ae(u2

Ω) : e(v) dx = −2
N∑
i=1

∫
Ω
Ei Ae(u1

Ω,i) : e(v) dx,

where A is defined in (3.31). Notice that, as in Sections 3.2, 3.3 and 4.2, a rigorous framework can be
given to this approximation, which we do not insist on. The shape derivative is given by the following
result.

Theorem 4.10. Assume the functions Ei to be smooth. The functional M̃(Ω), defined by (4.9), is
shape differentiable at any shape Ω ∈ Uad, and its shape derivative reads, for any θ ∈ Θad,

M̃′(Ω)(θ) =
∫

Γ
D(uΩ, u

1
Ω,1, p

1
Ω,1, ..., u

1
Ω,N , p

1
Ω,N , u

2
Ω, p

2
Ω) θ · n dx,

where the integrand factor is defined by:

D(uΩ, u
1
Ω,1, p

1
Ω,1, ..., u

1
Ω,N , p

1
Ω,N , u

2
Ω, p

2
Ω)

=
(
j(uΩ) + 1

2

N∑
i=1
∇2j(uΩ)(u1

Ω,i, u
1
Ω,i) + 1

2∇j(uΩ) · u2

)
+Ae(u2

Ω) : e(p0
Ω) +Ae(uΩ) : e(p2

Ω)

+
N∑
i=1

(
EiAe(u1

Ω,i) : e(p0
Ω) +Ae(u1

Ω,i) : e(p1
Ω,i) + EiAe(uΩ) : e(p1

Ω,i)
)
,

and the adjoint states p0
Ω, p1

Ω,i, i = 1, ..., N , and p2
Ω are the unique solutions in H1

ΓD(Ω)d to the
respective variational problems:

∀v ∈ H1
ΓD(Ω)d,

∫
Ω
A(p0

Ω) : e(v) dx = −
∫

Ω
∇j(uΩ) · v dx,

∀v ∈ H1
ΓD(Ω)d,

∫
Ω
A(p1

Ω,i) : e(v) dx = −
∫

Γ
∇2j(uΩ)

(
u1

Ω,i, v
)
dx−

∫
Ω
EiAe(p0

Ω) : e(v) dx,

∀v ∈ H1
ΓD(Ω)d,

∫
Ω
A(p2

Ω) : e(v) dx = −
∫

Ω
∇j(uΩ) · v dx− 1

2

∫
Ω
∇2j(uΩ)

(
u2

Ω, v
)
dx

− 1
2

∫
Ω

N∑
i=1
∇3j(uΩ)

(
u1

Ω,i, u
1
Ω,i, v

)
dx−

N∑
i=1

∫
Ω
EiAe(p1

Ω,i) : e(v) dx.

4.4. Random optimization in frequency response

Let us now outline an application of the proposed framework in the setting of frequency response prob-
lems. The shapes Ω under consideration are submitted to time-harmonic surface loads with frequency
ξ ∈ R+, whose amplitude g ∈ H2(Rd)d is assumed to be independent of ξ for simplicity. Omitting
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body forces (i.e. f = 0), the displacement uΩ,ξ ∈ H1
ΓD(Ω)d is then the solution of the system:

−div(Ae(u))− ξ2u = 0 in Ω
u = 0 on ΓD

Ae(u)n = g on ΓN
Ae(u)n = 0 on Γ

. (4.10)

This system has a unique solution, provided ξ2 is not an eigenvalue of the linear elasticity operator
featured in (4.1). Without loss of generality we consider the cost function:

C(Ω, ξ) =
∫

ΓN
k(uΩ,ξ) ds,

where k : Rd → R is a smooth function, satisfying the growth conditions (3.30).
The frequency ξ is prone to perturbations in the sense that it is of the form ξ = ξ0 + ξ̂, where ξ0

is a reference frequency, such that ξ2
0 is not an eigenvalue for the system (4.1), and ξ̂ is ‘small’. Under

these circumstances, the cost function C defined above has the following expansion:

C(Ω, ξ0 + ξ̂) =
∫

ΓN
k(uΩ) ds+

∫
ΓN
∇k(uΩ) · u1

Ω(ξ̂) ds

+ 1
2

∫
ΓN

(
∇2k(uΩ)(u1

Ω(ξ̂), u1
Ω(ξ̂)) +∇k(uΩ) · u2

Ω(ξ̂, ξ̂)
)
ds+O(ξ̂3), (4.11)

a formula in which uΩ stands for the unperturbed state uΩ,ξ0 , and the sensitivities u1
Ω(ξ̂) := ∂uΩ,ξ

∂ξ

∣∣∣
ξ=ξ0

(ξ̂)

and u2
Ω(ξ̂, ξ̂) := ∂2uΩ,ξ

∂ξ2

∣∣∣
ξ=ξ0

(ξ̂, ξ̂) are respectively solution to:

∀v ∈ H1
ΓD(Ω)d,

∫
Ω
Ae(u1

Ω(ξ̂)) : e(v) dx− ξ2
0

∫
Ω
u1

Ω(ξ̂) · v dx = 2ξ0ξ̂

∫
Ω
uΩ · v dx,

∀v ∈ H1
ΓD(Ω)d,

∫
Ω
Ae(u2

Ω(ξ̂, ξ̂)) : e(v) dx− ξ2
0

∫
Ω
u2

Ω(ξ̂, ξ̂) · v dx = 2ξ̂2
∫

Ω
uΩ · v dx+ 4ξ0ξ̂

∫
Ω
u1

Ω(ξ̂) · v dx.

We now assume that the perturbation ξ̂ is uncertain, i.e. it arises as a random variable ξ̂ ≡ ξ̂(ω) ∈
L∞(O,R), defined over the probability space (O,F ,P), and is distributed according to the uniform
law over the interval (−m,m), where m > 0 is the ‘small’ amplitude of perturbations. In other words,
the cumulative distribution function of ξ̂ is:

∀ξ ∈ R, P
({
ω ∈ O, ξ̂(ω) < ξ

})
=
∫ ξ

−∞
1(−m,m)(t) dt;

its mean value is 0, and its variance equals m2/3. We are interested in the minimization of the mean
value functional

M(Ω) =
∫
O
C(Ω, ξ0 + ξ̂(ω)) P(dω).

Integrating both sides of (4.11) over the space O of events immediately leads to:

M(Ω) = M̃(Ω) +O(m3).

In this formula, the approximate mean value function M̃(Ω) is defined by:

M̃(Ω) =
∫

ΓN
k(uΩ) ds+ m2

6

∫
ΓN

(
∇2k(uΩ)(u1

Ω, u
1
Ω) +∇k(uΩ) · u2

Ω

)
ds, (4.12)

where we have introduced the reduced sensitivities u1
Ω := u1

Ω(1) and u2
Ω := u2

Ω(1, 1). In the spirit of
the previous Theorems 4.6 and 4.10 it is easy to obtain the following result.
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Proposition 4.11. Under the assumption that ξ2
0 is not an eigenvalue of the system (4.1) for Ω ∈ Uad,

the functional M̃(Ω) is shape differentiable at Ω, and:

∀θ ∈ Θad, M̃′(Ω)(θ) =
∫

Γ
D(uΩ, p

0
Ω, u

1
Ω, p

1
Ω, u

2
Ω, p

2
Ω) θ · n ds, (4.13)

where the integrand factor reads:

D(uΩ, p
0
Ω, u

1
Ω, p

1
Ω, u

2
Ω, p

2
Ω) = Ae(uΩ) : e(p2

Ω)− ξ2
0uΩ · p2

Ω + m2

3
(
Ae(u1

Ω) : e(p1
Ω)− ξ2

0u
1
Ω · p1

Ω

)
+ m2

6
(
Ae(u2

Ω) : e(p0
Ω)− ξ2

0u
2
Ω · p0

Ω

)
− m2

3
(
2ξ0uΩ · p1

Ω + 2ξ0u
1
Ω · p0

Ω + uΩ · p0
Ω

)
,

and the adjoint states p0
Ω, p1

Ω and p2
Ω are the solutions to the respective problems:

∀v ∈ H1
ΓD(Ω)d,

∫
Ω
Ae(p0

Ω) : e(v) dx− ξ2
0

∫
Ω
p0

Ω · v dx = −
∫

ΓN
∇k(uΩ) · v ds,

∀v ∈ H1
ΓD(Ω)d,

∫
Ω
Ae(p1

Ω) : e(v) dx− ξ2
0

∫
Ω
p1

Ω · v dx = −
∫

ΓN
∇2k(uΩ)(u1

Ω, v) ds+ 2ξ0

∫
Ω
p0

Ω · v dx,

∀v ∈ H1
ΓD(Ω)d,

∫
Ω
Ae(p2

Ω) : e(v) dx− ξ2
0

∫
Ω
p2

Ω · v dx = −
∫

ΓN
∇k(uΩ) · v ds

− m2

6

∫
ΓN

(
∇3k(uΩ)(u1

Ω,u
1
Ω,v) +∇2k(uΩ)(u2

Ω,v)
)
ds+ m2

3

∫
Ω
p0

Ω · v dx+ 2ξ0m
2

3

∫
Ω
p1

Ω · v dx.

Example 4.12. Let us consider the compliance of shapes as a cost function, that is k(u) = g · u.
Straightforward calculations lead to the identifications:

p0
Ω = −uΩ, p

1
Ω = −u1

Ω, and p2
Ω = −uΩ −

m2

6 u2
Ω.

Then, the approximate functional M̃(Ω) reads:

M̃(Ω) =
∫

ΓN
g · uΩ ds+ m2

6

∫
ΓN

g · u2
Ω ds,

and the formula (4.13) for its shape derivative simplifies into:

∀θ ∈ Θad, M̃′(Ω)(θ) =
∫

Γ
D(uΩ, u

1
Ω, u

2
Ω) θ · n ds,

where:

D(uΩ, u
1
Ω, u

2
Ω) = −(Ae(uΩ) : e(uΩ)− ξ2

0uΩ · uΩ)− m2

3 (Ae(uΩ) : e(u2
Ω)− ξ2

0uΩ · u2
Ω)

− m2

3 ((Ae(u1
Ω) : e(u1

Ω)− ξ2
0u

1
Ω · u1

Ω)) + m2

3 (4ξ0uΩ · u1
Ω + uΩ · uΩ)

4.5. Shape optimization under random geometric uncertainties

4.5.1. A foreword about the modeling of random geometric uncertainties

The definition of random perturbations over the geometry of shapes adopted in this note follows the
most prevalent approach in the literature [13, 21, 41] - see however [31] for another idea in the frame-
work of density-based topology optimization methods, relying on the so-called filtering technology.
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Let Ω ∈ Uad be an admissible shape. We introduce two fixed open neighborhoods U1 b U2 of the
region ΓD ∪ ΓN , and a smooth ‘cut-off’ function η : Rd → R, taking its values in [0, 1], enjoying the
properties:

η ≡ 0 in U1, and η ≡ 1 in cU2. (4.14)
Perturbations of a shape Ω ∈ Uad are assumed of the form (I + V )(Ω), where V is a vector field with
the structure:

∀x ∈ Rd, V (x) = η(x)v(x)nΩ(x). (4.15)
The scalar function v : Rd → R appearing in (4.15) is smooth enough, and nΩ stands for an extension
of the normal vector to Ω to the whole ambient space Rd. We assume that the fixed parts ΓD and ΓN
are not prone to uncertainties and the role of the cut-off function η is also to avoid any singularity
due to the change of boundary conditions on Γ, ΓN , ΓD.

At this point, let us hint at the minimal regularity we should impose on shapes and their perturba-
tions so that the developments ahead make sense. As we should now anticipate, deriving approximate
mean value, variance functionals of some (smooth) cost criterion C(Ω) require to differentiate it twice
with respect to the domain. Hence, we need to assume at least that the shapes at hand are of class C3,
and that the scalar perturbation functions v are of class C2. Doing so, there exists an extension of nΩ
to Rd which is also of class C2 (see e.g. [25], chapter 7, Thm. 3.1, 3.3 and [30], §5.4.4 for a proof), so
that the vector V is of class C2. These hypotheses are precisely those required for second-order shape
calculus (see e.g. [30], §5.9).

Let us now evoke the context where the perturbation function v is uncertain - i.e. it arises as a
random field v ≡ v(x, ω), the event variable ω lying in the probability space (O,F ,P). The ‘natural’
functional space as for v when it comes to performing rigorous approximation analyses will obviously
turn out to be L∞(O, C2,∞(Rd)), so that (4.15) defines smooth enough perturbed shapes for a.e. event
ω ∈ O as soon as v is ‘small enough’. However, as a second step, in the same spirit as before, the
derived approximate functionals will turn out to be well-defined for a wider class of perturbations.

4.5.2. Some definitions in tangential calculus

The calculations of second-order shape derivatives ahead will involve several concepts of tangential
calculus, which we now briefly outline. A more thorough reminder may be found in Section 2 in [2].

Definition 4.13. Let Γ ⊂ Rd be an oriented C2 submanifold of Rd, of dimension (d− 1).

• Let V ∈ C(Γ,Rd) be a d-dimensional vector field defined on Γ. The tangential part VΓ of V is
the tangential vector field defined as:

VΓ = V − (V · n)n.

• Let f ∈ C1(Γ,R) be a function, and, for an arbitrary point x ∈ Γ, let df(x) : TxΓ → R be its
differential. The tangential gradient ∇Γf of f is the (unique) vector field on Γ defined by the
following identity:

∀x ∈ Γ, ∀v ∈ TxΓ, df(x)(v) = 〈∇Γf(x), v〉,

where 〈·, ·〉 stands for the Euclidean scalar product on Rd. Alternatively, ∇Γf may be defined
as:

∇Γf = (∇f̃)Γ = ∇f̃ − (∇f̃ · n)n,

where f̃ is any C1 extension of f to a neighborhood of Γ.
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• The tangential divergence divΓ(V ) : Γ→ R of a vector field V ∈ C1(Γ,Rd) is the function:

divΓ(V ) = div(Ṽ )−∇Ṽ n · n,

where Ṽ is any C1 extension of V to a neighborhood of Γ.

• Let σ : Γ→ S(Rd) be a tensor field defined on Γ. The tangential part σττ of σ is the symmetric
bilinear form on the tangent bundle TΓ satisfying:

∀x ∈ Γ, ∀v, w ∈ TxΓ, σττ (x)(v, w) = σ(x)(v, w).

In a local orthonormal basis (τ, n) of Rd obtained by gathering (d− 1) unit tangent vectors to
Γ (collectively denoted by τ) and the normal vector n, σ may be expressed as:

σ =
(
σττ στn
σnτ σnn

)
Under the additional assumption that σ ∈ C1(Γ,S(Rd)), the tangential divergence divΓ(σ) :
Γ→ Rd of σ is the vector field whose coordinates read:

(divΓ(σ))i = (div ((σi,j)j=1,...,d))Γ , i = 1, ..., d.

Let us also mention that integration by parts formula involving these operators exist, which are very
much alike their more classical ‘volumetric’ counterparts - see e.g. [30] (Prop. 5.4.9) and [22] (Prop.
5.3 and 5.4) for statements and proofs.

4.5.3. Second-order asymptotic expansion of the cost function with respect to the perturbations

Let us start by computing a second-order approximation of the mean value of random perturbations
of a cost functions of the type:

C(Ω) =
∫

Ω
j(uΩ) dx, (4.16)

where j : Rd → R is a smooth function satisfying the growth conditions (3.6), and uΩ is the elastic
displacement of the shape Ω, solution of (4.1).

From the previous sections, we anticipate that the approximation of the mean-value of (4.16) will
involve the second-order shape derivative as defined in Definition A.1. This involves quite tedious
computations as shown in the following result, the proof of which is given in the Appendix.

Theorem 4.14. The functional C(Ω), defined by (4.16) is twice shape differentiable and the following
asymptotic expansion holds, for any θ ∈ Θad,

C((I + θ)(Ω)) = C(Ω) + C′(Ω)(θ) + 1
2C
′′(Ω)(θ, θ) +R(θ),

where the remainder term R(θ) satisfies:
∃ δ, C > 0 such that ∀θ ∈ Θad, ||θ||C2,∞(Rd,Rd)≤ δ ⇒ |R(θ)| ≤ C||θ||3C2,∞(Rd,Rd).

The shape derivative of C appearing in the above formula reads:

C′(Ω)(θ) =
∫

Γ
(j(uΩ) +Ae(uΩ) : e(pΩ)− f · pΩ) θ · n ds,

where pΩ is the adjoint state, defined as the unique solution in H1
ΓD(Ω)d of the system:

−div(Ae(p)) = −∇j(uΩ) in Ω
p = 0 on ΓD

Ae(p)n = 0 on ΓN ∪ Γ
. (4.17)
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The shape Hessian of C reads:

C′′(Ω)(θ, ξ) = BΩ(θ, ξ) + C′(Ω)(Z(θ, ξ)), (4.18)

where

BΩ(θ, ξ) =
∫

Γ
( ∂
∂n

+ κ)(j(uΩ) +Ae(uΩ) : e(pΩ)− f · pΩ) (θ · n)(ξ · n) ds

−
∫

Ω
∇2j(uΩ)(qΩ(θ · n), qΩ(ξ · n)) dx

−
∫

Ω
(Ae(qΩ(θ · n)) : e(zΩ(ξ · n)) +Ae(qΩ(ξ · n)) : e(zΩ(θ · n))) dx

and
Z(θ, ξ) := (∇nT θΓ) · ξΓ − ξΓ · ∇Γ(θ · n)− θΓ · ∇Γ(ξ · n).

In these formulae, the adjoint states qΩ(w) and zΩ(w) are defined as the unique solutions in H1
ΓD(Ω)d

of 
−div(Ae(q)) = 0 in Ω

q = 0 on ΓD
Ae(q)n = 0 on ΓN

Ae(q)n = fw + divΓ (w(Ae(uΩ))ττ ) on Γ

, (4.19)


−div(Ae(z)) = −∇2j(uΩ)qΩ(w) in Ω

z = 0 on ΓD
Ae(z)n = 0 on ΓN

Ae(z)n = −j′(uΩ) w + divΓ (w(Ae(pΩ))ττ ) on Γ

. (4.20)

Remark 4.15. The shape Hessian (4.18) agrees with the general structure theorem 5.9.2 in [30] for
shape Hessians of smooth functionals of the domain. In particular, it is symmetric and BΩ(θ, ξ) is a
symmetric bilinear form of θ and ξ which only depends on their normal components θ · n and ξ · n.
Furthermore, the adjoint states qΩ(w) and zΩ(w) depend linearly on w, a function defined on Γ.

We now assume uncertain perturbations on shapes of the form (4.15), parameterized via a random
field v ∈ L∞(O, C2,∞(Rd)). We consider the mean-value functional:

M(Ω) =
∫
O
C((I + ηv(·, ω)nΩ)(Ω))P(dω), (4.21)

and a simple consequence of Theorem 4.14 is the following result.

Corollary 4.16. The approximate mean value function M̃(Ω), defined as:

M̃(Ω) = C(Ω) +
∫
O
C′(Ω)(ηv(·, ω)nΩ)P(dω) +

∫
O
C′′(Ω)(ηv(·, ω)nΩ, ηv(·, ω)nΩ) P(dω),

approximatesM(Ω) in the sense that there exists a constant C > 0 (depending on Ω) such that:

|M̃(Ω)−M(Ω)|≤ C||v||3L∞(O,C2,∞(Rd)).

We now specialize the random field v(x, ω) to be of the form

v(x, ω) =
N∑
i=1

vi(x)ξi(ω), (4.22)
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where the functions vi are in C2,∞(Rd,Rd), and the ξi are uncorrelated, centered and normalized
random variables. Introducing vi = ηvi, where η is the cutoff function introduced in Section 4.5.1,
satisfying (4.14), the structure (4.22) allows to rewrite M̃(Ω) as:

M̃(Ω) =
∫

Ω
j(uΩ) dx+

N∑
i=1

∫
Γ

( ∂
∂n

+ κ)(j(uΩ) +Ae(uΩ) : e(pΩ)− f · pΩ) v2
i ds

−
N∑
i=1

∫
Ω
∇2j(uΩ)(qΩ(vi), qΩ(vi)) dx− 2

N∑
i=1

∫
Ω
Ae(qΩ(vi)) : e(zΩ(vi)) dx,

where the adjoint state pΩ, qΩ and zΩ are defined in (4.17), (4.19) and (4.20) respectively.
To devise a gradient-based minimization algorithm for M̃(Ω) requires the calculation of its shape

derivative, which corresponds, in light of Corollary 4.16, to the evaluation of the third-order shape
derivative of the cost function C(Ω). In theory, this can be done but it is a formidable and tedious
computation and, in numerical practice we doubt that the resulting formulae could be tractable,
insofar as they involve third-order geometric quantities attached to ∂Ω (the derivative of curvatures);
see for instance the formulas of Lemma 2.8 in the supplementary material [2]. For this reason, we do
not proceed further in the study of the minimization of M̃(Ω), and, in the sequel, we deal instead
with the case of functionals involving only first-order shape derivatives of C.

If, instead of the mean value M(Ω), we consider the variance V(Ω) of some cost function C(Ω),
then it is possible to compute the shape derivative of its approximation since it will require at most a
second-order shape derivative (instead of a third-order one forM(Ω)). This is precisely what we are
investigating in the sequel. To vary the range of applications we change the previous cost function (4.16)
to a stress-based cost function of the form

C(Ω) =
∫

Ω
j(σ(uΩ)) dx,

where j : S(Rd) → R is a smooth function satisfying adequate growth conditions, uΩ is the elastic
displacement of the shape Ω, solution of (4.1) and σ(uΩ) is the corresponding stress tensor. Since
the technical details are very similar, we limit ourselves with stating the results. The variance V(Ω),
associated to C, is

V(Ω) =
∫
O

(
C((I + ηv(·, ω)nΩ)(Ω))−M(Ω)

)2
P(dω),

where M(Ω) is the mean value defined by (4.21). Following the same line of thought, we obtain the
second-order approximate variance functional Ṽ(Ω), defined by

Ṽ(Ω) =
N∑
i=1

a2
Ω,i with aΩ,i =

∫
Γ

(j(σ(uΩ)) +Ae(uΩ) : e(pΩ)− f · pΩ) vi ds, (4.23)

and the adjoint state pΩ ∈ H1
ΓD(Ω)d is the solution of:
−div(Ae(p)) = div(A ∂j

∂σ (σ(uΩ))) in Ω,
p = 0 on ΓD,

Ae(p)n = −A ∂j
∂σ (σ(uΩ))n on Γ ∪ ΓN .

In the spirit of Theorem 4.14 one can obtain the following result.
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Proposition 4.17. The functional Ṽ(Ω) is shape differentiable at any Ω ∈ Uad, and its shape derivative
reads:

∀θ ∈ Θad, Ṽ ′(Ω)(θ) = 2
∫

Γ
D(uΩ, pΩ, qΩ, zΩ) θ · n ds,

where the integrand factor is given by:

D(uΩ, pΩ, qΩ, zΩ) =
(
∂

∂n
+ κ

)(
(j(σ(uΩ)) +Ae(uΩ) : e(pΩ)− f · pΩ)(sumN

i=1aΩ,ivi)
)

+
(
Ae(uΩ) : e(zΩ) +Ae(pΩ) : e(qΩ)− f · zΩ + ∂j

∂σ
(uΩ) : qΩ

)
,

and the adjoint states are qΩ = q
(∑N

i=1 aΩ,ivi
)
, with q(w) the solution of (4.19), and zΩ the solution

of 
−div(Ae(z)) = div

(
A ∂2j
∂σ2 (σ(uΩ))σ(qΩ)

)
in Ω,

z = 0 on ΓD,
Ae(z)n = 0 on ΓN ,

Ae(z)n = divΓ
(
A ∂j
∂σ (σ(uΩ)) (

∑N
i=1 aΩ,ivi)

)
+ divΓ

(
(
∑N
i=1 aΩ,ivi)(Ae(pΩ))ττ

)
on Γ.

4.5.4. Approximation of the failure probability

Similarly, an approximate failure probability function may be devised as:

P̃(Ω) = Φ
(
−α− bΩ
|aΩ|

)
, (4.24)

where
bΩ =

∫
Ω
j(uΩ) dx and aΩ,i =

∫
Γ

(j(uΩ) +Ae(uΩ) : e(pΩ)− f · pΩ) vi ds.

In the spirit of Theorem 4.14 one can obtain the following result.

Proposition 4.18. The functional P̃(Ω) is shape differentiable at any Ω ∈ Uad, and its shape deriv-
ative reads:

∀θ ∈ Θad, P̃ ′(Ω)(θ) = 1√
2π
e
−
(
α−bΩ
|aΩ|

)2 ∫
Γ
D(uΩ, pΩ, qΩ, zΩ)θ · n ds,

where the integrand factor is given by:

D(uΩ, pΩ, qΩ, zΩ) = 1
|aΩ|

(j(uΩ) +Ae(uΩ) : e(pΩ)− f · pΩ)

+ α− bΩ
|aΩ|3

( ∂
∂n

+ κ)((j(uΩ) +Ae(uΩ) : e(pΩ)− f · pΩ)(
N∑
i=1

aΩ,ivi))

+ α− bΩ
|aΩ|3

(Ae(uΩ) : e(zΩ) +Ae(pΩ) : e(qΩ)− f · zΩ +∇j(uΩ) · qΩ) ,

and the adjoint states qΩ, zΩ are defined by

qΩ = q

(
N∑
i=1

aΩ,ivi

)
and zΩ = z

(
N∑
i=1

aΩ,ivi

)
,

where q(w) is the solution of (4.19) and z(w) is the solution of (4.20).
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Remark 4.19. Like what happened on several occurrences in this article, the expression (4.24) of
the approximate failure probability P̃(h) makes sense even though it cannot be proved to be a close
approximation of P(h). In this case, perturbations of a shape Ω involving a random field v(x, ω) of
the form (4.22) with Gaussian random variables ξi (an hypothesis needed for the rigorous deriva-
tion of (4.24)) are not even well-defined, since they are incompatible with the requirement that
v ∈ L∞(O, C2,∞(Rd)).

5. Numerical Illustrations

All computations are performed within the FreeFem++ software [28, 29], except otherwise mentioned.
Even though no particular effort has been put in optimizing the performance of the implementation,
we give approximate CPU times for several test cases, which are executed on a MacBook Air, 1.8 GHz
Intel Core i5 with 4 Go of RAM. Additional examples are presented in Section 1 of the supplementary
material [2].

5.1. Examples in parametric optimization

5.1.1. Brief description of the numerical implementation

This first series of examples is aimed at illustrating the material presented in Section 3. The optimiza-
tion variable is the thickness h ∈ L∞(Ω) of a plate with cross-section Ω ⊂ R2. The uncertainties occur
in the applied forces. The objective function J (h) is a moment (mean, variance) of a probabilistic cost
function C(h, ω), or a failure probability.

We rely on a standard steepest-descent algorithm, taking advantage of the general structure of the
derivative of J (h):

∀ĥ ∈ L∞(Ω), J ′(h)(ĥ) =
∫

Ω
Dh ĥ dx,

where Dh is a scalar quantity depending on the problem at stake (see its various expressions in
Theorems 3.6, 3.12, 3.18 and 3.24). More precisely, either we use a classical (projected) gradient
algorithm, or an Augmented Lagrangian algorithm (see [36], §17.4) when it comes to imposing an
equality constraint on the volume Vol(h) =

∫
Ω h dx of shapes. In addition, we systematically impose

lower and upper bounds hmin = 0.1 and hmax = 1 on h. The thickness is consistently initialized with
the constant value hini = 0.5. The Young’s modulus and Poisson ratio of the elastic material are
respectively set to E = 100 and ν = 0.3.

5.1.2. Minimization of a weighted sum of the mean value and the standard deviation of the compliance

Let us first investigate the case of perturbations over the body forces f , as described in Section 3.2,
neglecting surface loads (i.e. g = 0). The situation is as depicted on Figure 5.1 (left): body forces
f0 = (0,−10) apply on the middle of the lower part of the plate (red spot on Figure 5.1) in the
unperturbed state, and two perturbations f1, f2, both equal to (0,−10/3), are localized on two disjoint
regions of this lower part (blue spots on Figure 5.1). The total body force f(x, ω) is thus

f(x, ω) = f0(x) +
2∑
i=1

fi(x)ξi(ω),

where ξ1, ξ2 are uncorrelated, centered and normalized random variables.
The cost function of interest is the compliance of the plate, C(h, f) =

∫
Ω f · uh dx, where uh is the

solution to the linear elasticity system (3.1). We minimize a weighted sum J (h) of the mean value
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Figure 5.1. (Left) Description of the test-case of Section 5.1.2, (right) optimal shape
without uncertainties.

and of the standard deviation of C:

J (h) = M̃(h) + δ
√
Ṽ(h), (5.1)

where the functions M̃(h) and Ṽ(h) are respectively defined by (3.11) and (3.20), and δ ≥ 0 is a
weighting parameter. To minimize J (h) while imposing (at convergence) a volume constraint Vol(h) =
VT (here, VT = 0.7), we use an Augmented Lagrangian algorithm. The formula for the gradient can be
found in Theorems 3.6, 3.12, and in Example 3.9. This optimization is carried out for several values
of the parameter δ, on a triangular mesh of Ω composed of 10, 128 vertices (about twice as many
triangles). Each computation is achieved within 150 iterations of the algorithm and takes about 7
min.

As a reference, the optimal design of the plate without uncertainties is displayed on Figure 5.1
(right). In comparison, the resulting optimal designs from the optimization of (5.1) in the perturbed
situation, associated to several values of δ are reported on Figure 5.2, and the corresponding con-
vergence histories are displayed on Figure 5.3. Remember that the case δ = 0 is equivalent to the
multi-load case.

It is hard to interpret the results although, clearly, taking into account loads uncertainties make the
reinforcement (the green and red zones in Figure 5.2) more concentrated, i.e., the larger δ, the more
extreme values of the thickness are present in the resulting design from the optimization procedure.

5.1.3. Minimization of a failure probability based on the compliance of the plate

We now minimize the approximate failure probability P̃(h), defined by (3.23) in Section 3.2.5, for the
same geometry, loading condition and uncertainties as in the previous Subsection 5.1.2 (see Figure 5.1
for details).

In order to guess a relevant values of the threshold parameter α, we first minimize the compliance in
the unperturbed situation (i.e. when only the force f0 is applied), with a volume constraint VT = 0.7
(see the result in Figure 5.4, top). We call h∗ the resulting optimal thickness and its compliance is
C(h∗, f0) = 0.001729.

In a second step, always starting from the constant thickness function hini, we perform several
examples of minimization of P̃(h), associated to different values of the maximum tolerance parameter
α = 0.0017, 0.0018, 0.0019, 0.002, 0.0025, 0.003, while imposing the target volume VT . Results are dis-
played on Figure 5.4 and the convergence histories are reported on Figure 5.5. Of course, the failure
probability decreases as α increases (it is more and more seldom to get a bad design with larger and
larger compliance). The optimal designs for α ≥ 0.0018 are almost identical, which indicates that P̃(h)
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Figure 5.2. Test-case of Section 5.1.2: optimal shapes obtained in the minimization
of (5.1); from left to right, top to bottom, δ = 0, 1, 3, 7, 10, 15, 20.
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Figure 5.3. Test-case of Section 5.1.2: convergence histories for the objective func-
tion (5.1) (left), and the volume (right).

is not a very sensible objective function. In truth, it is rather used as a constraint (see Remark 2.8).

5.2. Examples in geometric optimization

5.2.1. Description of the numerical algorithm

We now turn to geometric optimization and, for its ease of implementation, as well as its ability to
change topology, we rely on the Level Set method, introduced by Osher and Sethian in [37] (see [6, 45]
for details concerning its implementation in the shape optimization context). The basic idea is to
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Figure 5.4. Test-case of Section 5.1.3: minimization of the failure probability (3.23);
from left to right, top to bottom, unperturbed design, and optimal thicknesses associated
to the values α = 0.0017, 0.0018, 0.0019, 0.002, 0.0025, 0.003.
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Figure 5.5. Test-case of Section 5.1.3: convergence histories for the objective function
(left), and the volume (right).

consider a shape Ω ⊂ Rd as the negative subdomain of an auxiliary level set function φ : Rd → R, i.e.

∀x ∈ Rd,


φ(x) < 0 if x ∈ Ω,
φ(x) = 0 if x ∈ ∂Ω,
φ(x) > 0 if x ∈ cΩ.
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The motion of a domain Ω(t), t ∈ [0, T ], according to a normal velocity field V (t, x) translates into an
Hamilton-Jacobi equation for the associated level set function φ(t, ·):

∂φ

∂t
+ V |∇φ|= 0, t ∈ (0, T ), x ∈ Rd. (5.2)

In shape optimization, t is a pseudo-time corresponding to a descent step and V stems from the
analytical formulae for the shape derivatives of the considered objective functions J (Ω), which enjoy
the common structure:

∀θ ∈ Θad, J ′(Ω)(θ) =
∫

Γ
DΩ θ · n ds,

where DΩ is a scalar function. Instead of taking V = −DΩ (which is a typical descent direction), we
rely on a regularization and extension process for DΩ based on the Laplacian as in [6].

In numerical practice, any shape Ω is constrained to belong to a large computational box D,
equipped with a fixed triangular mesh T . A shape Ω ⊂ D is represented by a level set function φ,
discretized at the vertices of T . The elastic displacement uΩ, solution to the linear elasticity sys-
tem (4.1), or the adjoint states involved in the computation of DΩ, cannot be calculated exactly since
no mesh of Ω is available, and we rely on the Ersatz material approach [6] to achieve this calculation
approximately: the problem (4.1) is transferred to a problem on D by filling the void part D \Ω with
a very soft material, whose Hooke’s law is εA, ε = 10−3.

All finite element computations are performed within the FreeFem++ software, and we rely on
algorithms from our previous works [11, 23], based on the method of characteristics for a triangular
mesh, when it comes to solve the Hamilton-Jacobi equation (5.2) or to reinitialize the level set function
as the signed distance function to the boundary ∂Ω. When we display shapes, we plot the level set
function (and not the interpolated material density).

5.2.2. Compliance minimization with force uncertainties

Our first two examples in the setting of shape optimization illustrate Section 4.2 about random per-
turbations of the forces, and deal with the compliance of shapes as a cost function:

C(Ω, f) =
∫

Ω
Ae(uΩ,f ) : e(uΩ,f ) dx =

∫
Ω
f · uΩ,f dx. (5.3)

The body forces are f = f0 + f̂ with random perturbations f̂ . In the two cases, we minimize a weighted
sum

J (Ω) := M̃(Ω) + δ
√
Ṽ(Ω) (5.4)

of the approximate mean value and standard deviation of C with a weighting parameter δ ≥ 0.
First, we deal with the optimization of a bridge - see Figure 5.6 (left) for details of the test case. The

bridge is clamped on its lower-left corner, and its vertical displacement is prevented on the lower-right
corner. Surface loads are neglected (i.e. g = 0), and the unperturbed body forces f0 = (0,−10) are
applied on the red region of the lower part. Perturbations f̂ read:

f̂(x, ω) =
2∑
i=1

fi(x)ξi(ω), (5.5)

where ξ1, ξ2 are uncorrelated, centered and normalized random variables (i.e. (2.4) holds), f1, f2 are
equal to (0,−m) and concentrated on the blue regions. Several optimal shapes are computed with the
algorithm described in Section 5.2.1, associated to different values of the parameters δ,m. In all the
cases, a target volume VT = 0.75 is imposed thanks to an Augmented Lagrangian algorithm, and 300
iterations are performed on a mesh composed of 9205 vertices (and about twice as many triangles).
Each computation takes about 14 min. and the resulting optimal shapes are displayed on Figure 5.7 for
δ = 0 (no variance), and on Figure 5.8 for δ = 3 (the objective function is a combination of the mean
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and variance), while the convergence histories are reported on Figure 5.9. As a reference, the optimal
shape without uncertainties is displayed on Figure 5.6 (right). Note that the two small bumps on the
horizontal lower bar in Figure 5.6 (right) correspond to the two non-optimizable regions associated
to the perturbations (in blue on Figure 5.6 left). The designs at the bottom of Figure 5.7 are very
similar to those obtained in [4] for multiple load compliance minimization, which is not a surprise
in light of Example 4.7 and Remark 4.8 (namely, minimizing M̃(Ω) is exactly solving the multiple
load problem). It is also worth mentioning that the optimal designs for larger values of m look more
stable from a mechanical point of view. Adding more weight to the variance in the objective function
(i.e. taking a larger value of δ) implies that the resulting design is less optimal for any given load but
is less sensitive, in its performance, to the variation of the loads. We do not know if this feature is
interesting or not for the design of rigid structures (it may make more sense in the design of compliant
mechanisms).

2

1

f

�D

Figure 5.6. Section 5.2.2: (left) description of the bridge test case, (right) optimal
shape in the unperturbed situation.

It is interesting to compare the previous optimal designs for the minimization of (5.4 with the
ones obtained in the worst-case scenario of vertical perturbations of amplitude m, that is, to the
corresponding optimal shapes with respect to the functional:

J (Ω) = sup
||f̂ ||

L2(Ω)d≤m

C(Ω, f0 + f̂). (5.6)

In our previous work [3], we proposed a linearization method for approximating such worst-case ob-
jective functions. The main idea is to perform a first-order expansion of f̂ 7→ C(Ω, f0 + f̂) (see the
first-order terms in (4.5)) before taking the supremum in (5.6), which yields an explicit approximate
worst-case functional J̃ (Ω). For the sake of comparison, we computed the optimal shapes for the
linearized worst-case functional J̃ , associated to the values m = 1, 2, 5 and 10, under the same volume
constraint VT = 0.75 as above. The resulting shapes are displayed in Figure 5.10. Moreover, Table 5.1
collects the values of the sole compliance of the optimal shapes obtained in the probabilistic and
worst-case settings. Understandably enough, they reveal that performing shape optimization with a
worst-case approach is more ‘pessimistic’ than doing so by taking into account the statistics of the
expected perturbations, when available.

Remark 5.1. We take this opportunity to explain a fundamental difference between the linearized
worst-case design approach of our previous work [3] and the present setting. In the linearized worst-case
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Figure 5.7. Section 5.2.2, bridge test case: optimal shapes for δ = 0 and (from the
left to the right, top to bottom) m = 1, 2, 5, 10.

m = 0 m = 1 m = 2 m = 5 m = 10
Probabilistic setting

δ = 0 0.1479 0.1493 0.1523 0.1586 0.1733

Probabilistic setting
δ = 3 0.1479 0.1669 0.1969 0.2369 0.3843

Worst-case setting 0.1479 0.1944 0.2095 0.2456 0.4193

Table 5.1. Section 5.2.2, bridge test case: values of the compliance for the optimal
shapes in the probabilistic and worst-case settings.

design framework, the worst-case loading f̂ is explicitly given in terms of the state u and the adjoint
p. For a symmetric test case as the bridge here, it implies that the worst-case loading is symmetric if
the design is symmetric too. However, in the present probabilistic framework, even if the problem is
simplified by making a second-order Taylor expansion of the objective function, there are realizations
of the uncertain loads which are not symmetric. On the bridge test case we intuitively expect that ‘bad’
loading perturbations are not symmetric. Therefore, it is no surprise that the results of our present
probabilistic approach on Figure 5.7 ‘look nicer’ than those of the linearized worst-case approach in
Figure 5.10.
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Figure 5.8. Section 5.2.2, bridge test case: optimal shapes for δ = 3 and (from the
left to the right, top to bottom) m = 1, 2, 5, 10.

Our second example is a short cantilever example, as depicted on Figure 5.11: it is clamped on its
left-hand side, and vertical body forces f0 = (0,−100) are applied on the red spot, in the middle of
the right-hand side. Perturbations f̂ of the form (5.5) are expected, where the functions f1, f2 are
supported on the two blue spots, and are horizontal, of the form (−m, 0). A target volume VT = 0.45
is imposed, and 200 iterations of the aforementioned Augmented Lagrangian algorithm are run for
several values of the parameters δ and m, on a mesh composed of 5151 vertices. The optimal shapes
and the convergence histories are displayed on Figures 5.12 and 5.13. These designs are in the same
spirit than those obtained in [24] for the worst-case setting. In particular, as the uncertainties over the
horizontal component of the applied loads grow, another horizontal bar appears so that the structure
is able to sustain them.

5.2.3. Optimization of the compliance of the frequency response of a bridge

Let us turn to an illustration of Section 4.4 where vibrating loads are imposed with an uncertain
frequency. A bridge, with boundary conditions as reported in Figure 5.14 (left) and volume constraint
VT = 0.185, is first optimized for maximizing its first fundamental frequency (in the absence of any
load). For this goal we use the method described in [4]. The fundamental frequency of the resulting
structure is ξ∗ ≈ 4.24 and the corresponding shape is displayed on Figure 5.14 (right). The computa-
tional mesh is here composed of 4068 vertices.
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Figure 5.9. Section 5.2.2, bridge test case: convergence histories for the objective
function (left), and the volume (right).

In a second step the bridge is submitted to time-harmonic surface loads, applied on the upper
side, with modulus g = (0,−1), and whose frequency ξ takes random, uniformly distributed values in
(ξ0−m, ξ0 +m), where ξ0 = 2 < ξ∗, and m is small. This models, for instance, the random passing of
pedestrians or vehicles on the bridge. In this second step, we minimize the mean value M̃(Ω) of the
compliance of the bridge given by (4.12). We start from an initial design which is the optimal shape
for the first eigenvalue maximization obtained in Figure 5.14 (right).
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Figure 5.10. Section 5.2.2, bridge test case: optimal shapes for the linearized worst-
case design approach with m = 1, 2, 5, 10 (from left to right, top to bottom).

�D

2

1

Figure 5.11. Section 5.2.2: (left) setting of the short cantilever test case; (right) op-
timal shape without perturbations

We perform several computations of the ‘optimal’ shape of the bridge with respect to M̃(Ω), under
the volume constraint VT = 0.185, associated to several values of the parameter m. Each calculation
takes about 4 min. (for 200 iterations) and the results are displayed on Figures 5.15.
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Figure 5.12. Section 5.2.2: optimal shapes obtained in the short cantilever test case.
The upper row corresponds to the value m = 50, and the lower one to m = 100; then,
from the left to the right, δ = 0, 2, 3.

Notice that the small ‘slit’ that appears in some of the displayed shapes is a visual artifact: we plot
the 0 isolines of the level set functions associated to shapes, and not the interpolated material density.

Of course, the first frequency of shapes decreases during the optimization process, but we checked
that this decrease is not too dramatic (the first eigenvalue varies between 3.65 and 2.89). In particular,
the fundamental frequency of the bridge stays above the expected imposed frequency ξ0 in all cases.
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Figure 5.13. Section 5.2.2: convergence histories for the objective function (left), and
the volume (right) in the short cantilever test-case.

�N
�D

g

1.6

1

Figure 5.14. Section 5.2.3, bridge with an uncertain frequency load: (left) details of
the test-case, (right) initial shape.

Figure 5.15. Section 5.2.3: optimal shapes of a bridge when perturbations are expected
over the frequency regime, associated to the parameter (from the left to the right) m =
0, 0.45, 0.6, 0.75, 0.765. A target volume VT = 0.185 is imposed.
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5.2.4. Minimization of a least-square criterion under material uncertainties

We now illustrate the setting of Section 4.3 by designing a gripping mechanism, as represented on
Figure 5.16: the considered shapes are clamped on a region ΓD of their left-hand side, and an input
force g = (0.1, 0) is applied on another region ΓN . To obtain a deformation which closes the ‘jaws’ of
the gripping mechanism (the blue rectangles), we consider the cost function

C(Ω, E) =
∫

Ω
k(x)|uΩ,E − u0|2 dx,

where uΩ,E is the elastic displacement of Ω, solution to (4.1), and k is the characteristic function of
the blue area, where the displacement of the optimal shape is expected to get close to the target u0,
which equals (0,−0.2) on the upper jaw, and (0, 0.2) on the lower jaw.

g

u01

1

0.1�N

�D

0.1

0.1

0.2

Figure 5.16. Setting of the gripping mechanism example of Section 5.2.4

Random perturbations Ê occur on the Young’s modulus E of the elastic material, which has the
structure E = E0 + E. The statistics of these perturbations are assumed to be known through the
correlation function:

Cor(Ê)(x, y) = β2e−
|x−y|
d ,

where β is a parameter quantifying the magnitude of perturbations, and the characteristic length d
is set to 0.1. A Karhunen-Loève decomposition of Ê is performed (see [10] for an overview of the
numerical methods to carry out this step), then truncated after its first three terms, so that Ê takes
the form

Ê(x) =
3∑
i=1

Ei(x)ξi(ω),

where the Ei are deterministic functions, and the ξi are uncorrelated, centered and normalized random
variables.

We minimize the objective function M̃(Ω) which is the approximate mean value of the cost C
(see Section 4.3). Several computations are performed for different values of the parameter β, and
the results are displayed on Figure 5.17 (recall that we plot the level set function which may be
disconnected at the hinge’s locations, but the material density is not). Note that, owing to the great
numerical sensitivity of the cost functional at stake, each optimization is performed in two steps so to
help the optimization process: a first one with a coefficient for the ersatz material equal to 10−2, and
a second one where this coefficient is decreased to 10−3. This particular numerical sensitivity (and
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the fact that the computational mesh is not symmetric) also accounts for the lack of symmetry of
some of the resulting shapes. On a different note, while it is a priori not necessary, a slight volume
constraint is imposed to the shapes (via the addition to M̃(Ω) of a term of the form `Vol(Ω), with a
fixed Lagrange multiplier `), to help in removing the small islands of unnecessary matter. As can be
expected, for larger β (meaning more uncertainties on the Young’s modulus), the resulting optimal
shapes have thicker hinges and are therefore more robust.

Figure 5.17. Optimal shapes in the test case of section of Section 5.2.4, associated to
values of β (from left to right, top to bottom) 0, 0.5, 1, 1.5, 2, 2.5.

5.2.5. Minimization of the stress of an L-shaped beam under geometric perturbations

Our last example fits into the context of Section 4.5. We minimize the stress distribution of an L-shaped
beam (see Figure 5.18 for details) by considering the cost function:

C(Ω) =
∫

Ω
||σ(uΩ)||p dx,

with p = 5. In the above formula, the notation ||·|| refers to the Frobenius norm of matrices.
Random perturbations over the geometries of shapes occur on a subdomain Dp of the computational

domain D (grayed area on Figure 5.18). We choose to have geometric fluctuations only in the lower
part of the domain in order that they have more impact on the resulting optimal truss structures.
The results are different and less ‘spectacular’ (see the supplementary material file for details) when
we rather take Dp = D. The random perturbations are defined by (4.15), namely are normal to the
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Figure 5.18. Section 5.2.5: details of the L-shaped beam test-case.

boundary and proportional to a random field v(x, ω) which admits the following correlation function:

∀x, y ∈ Dp, Cor(v)(x, y) = e−
|x−y|
d , (5.7)

with characteristic length d = 0.1. In order to approximate v(x, ω) by a random field with the familiar
structure v ≈

∑N
i=1 viξi, a Karhunen-Loève expansion of this field is performed, and truncated: N = 5

eigenfunctions vi are retained, which are displayed on Figure 5.19, and the corresponding random
variables ξi are uncorrelated, centered and normalized.

We minimize the following objective function

J (Ω) = C(Ω) + δ
√
Ṽ(Ω) (5.8)

of the unperturbed cost functional C(Ω) and the approximate standard deviation
√
Ṽ(Ω) defined

in (4.23). We cannot replace the unperturbed cost C(Ω) by the mean value M̃(Ω) as we did in other
previous settings because, as explained in Section 5.2.5, the approximate mean value involves second-
order shape derivatives. Therefore its optimization would require to evaluate a third-order shape
derivative, a very unusual object. Indeed, apart from their intrinsic complexity, third-order shape
derivatives feature high order geometric quantities (like the shape derivative of the mean curvature)
which are quite delicate to compute for a non-parametric geometry. We did not venture in implement-
ing third-order shape derivatives and we content ourselves with our simpler objective function (5.8).
A volume constraint VT = 0.8 is imposed on shapes, and several results are displayed in Figure 5.20,
associated to different values of the parameter δ. See also Figure 5.21 for the associated convergence
histories. We check that, indeed for larger values of δ, the design is more robust to shape variations
since it features more bars or thicker bars.
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Figure 5.19. Section 5.2.5: plots of the first five eigenfunctions vi of the correla-
tion (5.7), retained in the approximation of the random perturbation field v(x, ω). The
common scale to the five plots is displayed on the first one.

Figure 5.20. Section 5.2.5: optimal shapes in the minimization of the objective func-
tion (5.8), where the parameter δ equals (from the left to the right) 0, 0.5, 2.
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Figure 5.21. Section 5.2.5, L-beam test case: convergence history for the objective
function (5.8) (left) and the volume (right), associated to values δ = 0, 0.5, 2.

Appendix A. On second-order shape derivatives

In this appendix, we collect some definitions and results about second-order shape derivatives, and
notably the technical details of the proof of Theorem 4.14. Note that the related terminology is not
uniform in the literature; in this article, we follow the definitions in [30, 43].

A.1. Second-order shape derivatives

Definition A.1. For a given k ≥ 1, a functional J(Ω) is twice shape differentiable at Ω ⊂ Rd if the
underlying mapping Ck,∞(Rd,Rd) 3 θ 7→ J((I + θ)(Ω)) is twice Fréchet-differentiable at θ = 0. The
symmetric bilinear form over Ck,∞(Rd,Rd) corresponding to the second variation of this functional
is called the shape Hessian of J at Ω, and is denoted as: (θ, ξ) 7→ J ′′(Ω)(θ, ξ), so that the following
asymptotic expansion holds:

J((I + θ)(Ω)) = J(Ω) + J ′(Ω)(θ) + 1
2J
′′(Ω)(θ, θ) + o(||θ||2Ck,∞(Rd,Rd)).

Remark A.2. The notion of shape Hessian contains a subtlety; indeed, contrary to the situation
in vector spaces, it does not hold that the shape Hessian J ′′(Ω)(θ, ξ) of J at Ω coincides with
(J ′)′(Ω)(θ)(ξ), the derivative at Ω, in the direction ξ, of the first-derivative function Ω 7→ J ′(Ω)(θ),
evaluated in the fixed direction θ (the last quantity being actually easier to calculate in practice).
According to [43], under mild regularity assumptions on the shape Ω and the vector fields θ, ξ, the
relation between these functions is actually

J ′′(Ω)(θ, ξ) = (J ′)′(Ω)(θ)(ξ)− J ′(Ω)(∇θ · ξ). (A.1)

A.2. Proof of Theorem 4.14

First, we need the following technical lemma, which is a slight generalization of Lemma 14 in [3], and
whose proof is outlined for the sake of convenience.
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Lemma A.3.

(1) The functional of the domain C(Ω) is shape differentiable at any Ω ∈ Uad, and its shape
derivative reads:

∀θ ∈ Θad, C′(Ω)(θ) =
∫

Γ
(j(uΩ) +Ae(uΩ) : e(pΩ)− f · pΩ)θ · n ds,

where pΩ is the adjoint state defined by the system (4.17).

(2) Let ` : Rdu × Rdp × Re → R be a smooth enough function which vanishes in a neighborhood of
ΓD ∪ ΓN , and consider the functional L(Ω):

L(Ω) =
∫

Γ
`(uΩ, pΩ, Ae(uΩ) : e(pΩ)) ds,

where pΩ is defined by system (4.17). Then L is shape differentiable and its shape derivative
reads:

∀θ ∈ Θad, L
′(Ω)(θ) =

∫
Γ
D(uΩ, pΩ, qΩ, zΩ) θ · n ds,

with

D(uΩ, pΩ, qΩ, zΩ) =
(
∂

∂n
+ κ

)(
`(uΩ, σ(uΩ)ττ : e(pΩ)ττ )

)
+Ae(pΩ) : e(qΩ) +Ae(uΩ) : e(zΩ)− f · zΩ,

and the second and third adjoint states qΩ, zΩ ∈ H1
ΓD(Ω)d are respectively defined as the unique

solutions to:

−div(Ae(q)) = 0 in Ω
q = 0 on ΓD

Ae(q)n = 0 on ΓN
Ae(q)n = −∇p`(uΩ, pΩ, Ae(uΩ) : e(pΩ))

+divΓ
(
∂`
∂e(uΩ, pΩ, Ae(uΩ) : e(pΩ))(σ(uΩ))ττ

)
on Γ

,

and:

−div(Ae(z)) = −∇2j(uΩ)qΩ in Ω
z = 0 on ΓD

Ae(z)n = 0 on ΓN
Ae(z)n = −∇u`(uΩ, pΩ, Ae(uΩ) : e(pΩ))

+divΓ
(
∂`
∂e(uΩ, pΩ, Ae(uΩ) : e(pΩ))(σ(pΩ))ττ

)
on Γ

. (A.2)

(3) Let ` : Rdu×Rdp×Re be a smooth enough function, θ ∈ Θad be fixed, and consider the functional
Lθ(Ω) defined by:

Lθ(Ω) =
∫

Γ
`(uΩ, pΩ, Ae(uΩ) : e(pΩ)) θ · nΩ ds,

where n = nΩ is the exterior unit normal of Ω, uΩ and pΩ are defined by (4.1) and (4.17).
Then Lθ(Ω) is shape differentiable and:

∀ξ ∈ Θad, L
′
θ(Ω)(ξ) =

∫
Γ
Dθ(uΩ, pΩ, qΩ(θ), zΩ(θ))(ξ) ds,
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where the integrand factor reads:

Dθ(uΩ, pΩ, qΩ(θ), zΩ(θ))(ξ) = ∂

∂n
(`(uΩ, pΩ, Ae(uΩ) : e(pΩ)) θ · n) (ξ · n)

− `(uΩ, pΩ, Ae(uΩ) : e(pΩ)) [θ]Γ · ∇Γ(ξ · n)
+ κ`(uΩ, pΩ, Ae(uΩ) : e(pΩ)) (θ · n) (ξ · n) +Ae(uΩ) : e(zΩ(θ)) (ξ · n)
+Ae(pΩ) : e(qΩ(θ))(ξ · n)− f · zΩ(θ) (ξ · n) +∇j(uΩ) · qΩ(θ) (ξ · n),

and the adjoint states qΩ(θ) and zΩ(θ) are respectively defined by the systems:

−div(Ae(q)) = 0 in Ω
q = 0 on ΓD

Ae(q)n = 0 on ΓN
Ae(q)n = −∇p`(uΩ, pΩ, (Ae(pΩ))ττ : e(u)ττ ) (θ · n)

+divΓ
(
∂L
∂e (uΩ, pΩ, (Ae(pΩ))ττ : e(uΩ)ττ ) (θ · n)(Ae(uΩ))ττ

)
on Γ

. (A.3)



−div(Ae(z)) = −∇2j(uΩ)qΩ(θ) in Ω
z = 0 on ΓD

Ae(z)n = 0 on ΓN
Ae(z)n = −∇u`(uΩ, pΩ, (Ae(pΩ))ττ : e(u)ττ ) (θ · n)

+divΓ
(
∂L
∂e (uΩ, pΩ, (Ae(pΩ))ττ : e(uΩ)ττ ) (θ · n)(Ae(pΩ))ττ

)
on Γ

. (A.4)

Proof. (1): It is a very classical result in shape optimization; see for instance [6], Thm. 7.
(2): See [3], Lemma 4.2 (or the following point for a similar proof in a slightly more difficult context).
(3): The proof is essentially that of Lemma 14 in [3], and we briefly recall the argument for the sake of
convenience. Again, the shape differentiability of Lθ at Ω ∈ Uad stems from an avatar of Lemma 3.2 in
the present context. In order to calculate the associated shape derivative, we rely on Céa’s method [12].
Consider the Lagrangian function L : Uad × (H2(Rd)d ∩H1

ΓD(Rd)d)4 → R, defined by:

L(Ω, u, p, q, z) =
∫

Γ
`(u, p,Ae(u) : e(p)) θ · n ds+

∫
Ω
Ae(u) : e(z) dx

−
∫

Ω
f · z dx−

∫
ΓN

g · z ds+
∫

Ω
Ae(p) : e(q) dx+

∫
Ω
∇j(u) · q dx,

which incorporates as constraints both variational formulations for uΩ and pΩ. Notice also that the
first integral in the right-hand side of the previous formula makes sense because of the choice of
H2(Rd) ∩H1

ΓD(Rd) as the definition space for u, p (thus q, z). For a given shape Ω ∈ Uad, we look for
the critical points (u, p, q, z) ∈ (H2(Rd) ∩H1

ΓD(Rd))4 of L(Ω, ·, ·, ·, ·);

• Canceling the partial derivative of L with respect to z leads to the fact that:

∀ẑ ∈ H2(Rd)d ∩H1
ΓD(Rd)d,

∫
Ω
Ae(u) : e(ẑ) dx−

∫
Ω
f · ẑ dx−

∫
ΓN

g · ẑ ds;

since by density of H2(Rd) in H1(Rd), the above formula actually holds for any ẑ ∈ H1
ΓD(Rd)d,

u turns out to be nothing else than uΩ, the unique solution to the system (4.1).

• Similarly, canceling the partial derivative of L with respect to q yields:

∀q̂ ∈ H2(Rd) ∩H1
ΓD(Rd),

∫
Ω
Ae(p) : e(q̂) dx+

∫
Ω
∇j(u) · q̂ dx;

since u = uΩ, the same argument as above allows to conclude that p = pΩ, the solution
to (4.17).

139



G. Allaire & C. Dapogny

• The study of the derivative of L with respect to u involves a slightly more subtle argument;
indeed, at this point, we know that the critical point (u, p, q, z) of interest is such that u = uΩ
and p = pΩ. Hence, Ae(u)n = Ae(p)n = 0 on the free boundary Γ of ∂Ω, outside which θ = 0.
Hence, for any û ∈ H2(Rd)d ∩H1

ΓD(Rd)d, one has:
Ae(û) : e(p) = Ae(p) : e(û) = (Ae(p))ττ : e(û)ττ a.e. on Γ.

Consequently, the partial derivative ∂L
∂u at (u, p, q, z) reads, for any û ∈ H2(Rd)d ∩H1

ΓD(Rd)d:
∂L
∂u

(Ω, u, p, q, z)(û) =
∫

Ω
Ae(z) : e(û) dx+

∫
Γ
∇u`(u, p, (Ae(p))ττ : e(u)ττ ) · û (θ · n) ds

+
∫

Γ

∂L
∂e

(u, p, (Ae(p))ττ : e(u)ττ )(Ae(p))ττ : e(û)ττ (θ · n) ds

=
∫

Ω
Ae(z) : e(û) dx+

∫
Γ
∇u`(u, p, (Ae(p))ττ : e(u)ττ ) · û (θ · n) ds

−
∫

Γ
divΓ

(
∂L
∂e

(u, p, (Ae(p))ττ : e(u)ττ ) (θ · n)(Ae(p))ττ
)
· û ds,

where an integration by parts formula on Co-dimension 1 submanifolds was used from the
first line to the second one (see [22], Prop. 5.3 and 5.4). Under the last form, the equation
∂L
∂u (u, p, q, z)(û) = 0, which holds for û ∈ H2(Rd)d ∩ H1

ΓD(Rd)d extends, by density, to û ∈
H1

ΓD(Rd)d, and leads to the fact that z = zΩ(θ), defined by (A.4).

• Using the same argument for the partial derivative ∂L
∂p , evaluated at (u, p, q, z), we obtain that

q = qΩ(θ), defined by (A.3).

Eventually, we observe that, for any q̂, ẑ ∈ H2(Rd)d ∩H1
ΓD(Rd)d, the following identity holds:

Lθ(Ω) = L(Ω, uΩ, pΩ, q̂, ẑ).
Differentiating this expression with respect to Ω in an arbitrary direction ξ ∈ Θad, and evaluating at
q̂ = qΩ(θ) and ẑ = zΩ(θ) yield:

L′θ(Ω)(ξ) = ∂L
∂Ω(Ω, uΩ, pΩ, qΩ(θ), zΩ(θ))(ξ).

The result now stems from a straightforward, yet tedious calculation, involving the shape derivative
of the normal vector (see e.g. [35] on this issue).

Proof of Theorem 4.14. The expression of the shape derivative of C(Ω) is just Lemma A.3, (1).
As for the shape Hessian, Lemma A.3 (3) yields, for any θ, ξ ∈ Θad:

(C′)′(Ω)(θ)(ξ) =
∫

Γ
Dθ(uΩ, pΩ, qΩ(θ · n), zΩ(θ · n))(ξ · n) ds,

where the integrand factor is defined as:

Dθ(uΩ, pΩ, qΩ(θ · n), zΩ(θ · n))(ξ · n) = ( ∂
∂n

+ κ)((j(uΩ) +Ae(uΩ) : e(pΩ)− f · pΩ) θ · n) (ξ · n)

− (j(uΩ) +Ae(uΩ) : e(pΩ)− f · pΩ)θΓ · ∇Γ(ξ · n) +Ae(uΩ) : e(zΩ(θ · n)) (ξ · n)
+Ae(pΩ) : e(qΩ(θ · n))(ξ · n)− f · zΩ(θ · n) (ξ · n) +∇j(uΩ) · qΩ(θ · n) (ξ · n),
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and the adjoint states qΩ and zΩ are given by (4.19) and (4.20). The above expression for (C′)′(Ω)(θ)(ξ)
then rewrites:

(C′)′(Ω)(θ)(ξ) =
∫

Γ
( ∂
∂n

+ κ)(j(uΩ) +Ae(uΩ) : e(pΩ) θ · n) (ξ · n) ds

−
∫

Γ
(j(uΩ) +Ae(uΩ) : e(pΩ)− f · pΩ)θΓ · ∇Γ(ξ · n) ds

−
∫

Ω
∇2j(uΩ)(qΩ(θ · n), qΩ(ξ · n)) dx

−
∫

Ω
(Ae(qΩ(θ · n)) : e(zΩ(ξ · n)) +Ae(qΩ(ξ · n)) : e(zΩ(θ · n))) dx.

Now, using the relation (A.1) between (C′)′(Ω)(θ)(ξ) and C′′(Ω)(θ)(ξ) and calculating:
∂

∂n
(θ · n) ξ · n− θΓ · ∇Γ(ξ · n)− (∇θξ) · n = (∇θTn) · n(ξ · n)− θΓ · ∇Γ(ξ · n)− (∇θξ) · n

= (∇θTn) · ((ξ · n)n− ξ)− θΓ · ∇Γ(ξ · n)
= −ξΓ · (∇θTn)− θΓ · ∇Γ(ξ · n),

and
ξΓ · ∇Γ(θ · n) = ξΓ · (∇(θ · n)− (∇(θ · n) · n)n)

= ξΓ ·
(
∇θTn+∇nT θ − ((∇θTn) · n)n

)
= ξΓ · (∇θTn) + (∇nT θΓ) · ξΓ

we end up with the desired formula.
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