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Abstract. We introduce some IMEX schemes (implicit-explicit schemes with an implicit term being linear) for
approximating elastodynamic contact problems when the contact condition is taken into account with a Nitsche
method. We develop a theoretical and numerical study of the properties of the schemes, especially in terms of
stability, provide some numerical comparisons with standard explicit and implicit scheme and propose some im-
provements to obtain a more reliable approximation of motion for large time steps. We also show how selective mass
scaling techniques can be interpreted as IMEX schemes.
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1. Introduction

This paper concerns the construction of implicit-explicit time integration schemes for the dynamics
of deformable solids that can impact a rigid obstacle. The main addressed issue is to build schemes
close to the computational cost of explicit ones but allowing not to be under the constraint of a CFL
condition, i.e. allowing the use of large or very large time steps. One characteristic of the dynamic with
impact of deformable bodies is the very low regularity of the solutions and the potential ill-posedness
of the semi-discretized problem (see the analysis in [25] and the discussion in [13] for example). A
consequence is that time integration schemes must be chosen carefully, since most schemes, even the
implicit ones, are subject to instabilities (see [25, 21, 49]), except the most dissipative ones such as
implicit Euler scheme (see [24]).

This ill-posed character can then be addressed by adding an impact law, which is a classical approach
in the rigid body case, but lacks a clear physical interpretation in the context of deformable bodies.
Most of the stable schemes that have been developed so far correspond to a vanishing restitution
coefficient, which implies that they generally dissipate energy at each impact, regardless of the size
of the time step (this dissipation decreases, however, when the mesh size decreases). Among the first
stable schemes proposed are those of L.M. Taylor and D.P Flanagan [46] (see also [23]), where the
elastic terms are taken into account with Verlet’s explicit scheme (also called Leapfrog or central
difference scheme) and the contact force is treated implicitly. The scheme is not fully explicit, in
the sense that it remains a non-linear problem to solve at each time step, restricted to the contact
boundary, which, in [23], is solved iteratively. J.J. Moreau’s work on the sweeping process and its
numerical approximation [30, 31] has led to many developments, mainly in the context of rigid bodies
but also in the context of deformable ones (for instance in [48]). The developed schemes are implicit
ones, often based on an expression of the contact condition in term of sliding velocity and an implicit
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consideration of the coefficient of restitution (see also [42] for a generalization using time discontinuous
Galerkin schemes). In parallel, L. Paoli and M. Schatzman also developed and mathematically analyzed
in [35, 36] central difference schemes with an implicitation of contact condition which also implicitly
takes into account the restitution coefficient.

Notice that the ill-posed character of the finite element semi-discretization is not present in the case
of the approximation of the contact condition by a penalty method [6, 26, 17]. The penalty method is
however not consistent in the strong sense and induces an additional approximation. The interest of
Nitsche’s methods in this context (see [8, 4]) is that it combines the fact of being strongly consistent
and the well-posed character of semi-discretization (see [10, 11]). In [13] fully explicit schemes based on
Verlet’s scheme have been introduced, analyzed and compared to other schemes previously introduced
for impact dynamics. Of course, the disadvantage of schemes based on an explicit time integration
is their conditional stability, which makes it necessary to consider a time step that can be extremely
small.

In this context, using an implicit-explicit (IMEX) scheme can be advantageous. Indeed, following
D.J. Eyre approach [19], by breaking down the operators in the difference of two monotonous parts,
it is possible to build unconditionally stable schemes, i.e. without constraint on the time step size,
with the cost of a single linear system resolution per time step. This cost is not so far from an explicit
time integration scheme when the mass matrix is not lumped. These schemes therefore present an
interesting compromise by avoiding the resolution of a non-linear problem at each time step and
having stability properties close to the implicit schemes. We refer to [39] for a comprehensive theory
of unconditional stability of such IMEX schemes.

It should also be remembered that certain techniques has been developed in the context of explicit
schemes to allow the use of a larger time step than the critical one imposed by the CFL condition.
The simplest technique, the mass scaling, consists in adding some mass to the structure in order to
obtain a greater critical time step. However, for rapid transient dynamics, this additional inertia may
fundamentally change the solution. An alternative, called selective mass scaling has been proposed
in [34, 33] and further developed in [15, 47] for instance. It consists in perturbing the mass matrix
using the stiffness matrix which has the advantage not to modify too much the lowest eigenmodes of
the structure. We show that this latter strategy is equivalent to the use of an IMEX scheme, and that
it may shed light on the choice of the terms that can be used to perturb the mass matrix.

In the continuity of the work presented in [10, 11, 13] respectively for implicit and explicit schemes,
we present in this paper some IMEX schemes adapted to the contact problem approximated by
Nitsche’s method. The rest of the paper is described as follows. Section 2 is dedicated to the de-
scription of the semi-discrete formulation. Then, our IMEX schemes are proposed and their energy
conservation properties are analyzed in Section 3. Some numerical tests are presented in Section 4
that confirm the presented properties but reveal a slowing down of the motion for large time steps.
Section 5 provides an analysis of this phenomenon and interprets IMEX schemes in terms of selective
mass scaling. We then propose different techniques to improve the approximation for large time step
and end the paper with a conclusion.

2. Problem setting and Nitsche’s formulation

2.1. Problem setting

Let Ω ⊂ Rd with d = 1, 2, 3 be the reference configuration of a linearly elastic body (with plain
strain assumption for d = 2). Let us describe its dynamic evolution submitted to a contact condition
with a rigid obstacle. We suppose that ∂Ω consists in three non-overlapping parts ΓD, ΓN and the
contact boundary ΓC , with meas(ΓD) > 0 and meas(ΓC) > 0. The body is clamped on ΓD for the
sake of simplicity. It is subjected to volume forces f in Ω and to surface loads g on ΓN . The body
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is in potential contact on ΓC with a rigid foundation. We assume for simplicity a vanishing gap in
the reference configuration. Considering T > 0 the final time, the evolution of the displacement field
u : [0, T ]× Ω→ Rd satisfies the equations and conditions (2.1)–(2.2):

ρü− divσ(u) = f , σ(u) = A ε(u) in (0, T ]× Ω,
u = 0 on (0, T ]× ΓD,

σ(u)n = g on (0, T ]× ΓN ,
u(0, ·) = u0 u̇(0, ·) = u̇0 in Ω,

(2.1)

where the following notations have been used: the time derivative of a quantity x is denoted ẋ, ρ is
the density which is assumed to be constant for simplicity, u0 and u̇0 are initial displacement and
velocity, σ = (σij), 1 ≤ i, j ≤ d, is the Cauchy stress tensor field, div denotes the divergence operator
of tensor valued functions, ε(v) = (∇v + ∇vT )/2 represents the linearized strain tensor field, A
is the fourth-order symmetric elasticity tensor having the usual uniform ellipticity and boundedness
property and n is the outward normal unit vector on ∂Ω. We consider the following decomposition
into normal and tangential components

v = vnn + vt, vn = v · n, and σ(v)n = σn(v)n + σt(v), σn(v) = (σ(v)n) · n,

for any displacement field v and density of surface forces σ(v)n defined on ∂Ω. This allows to express
the frictionless unilateral contact condition on ΓC as follows:

un ≤ 0 σn(u) ≤ 0 σn(u)un = 0 σt(u) = 0. (2.2)

with u0 satisfying the compatibility condition u0n ≤ 0 on ΓC .
We refer to [18] for the mathematical analysis of elastodynamic contact problems. Apart for the

one-dimensional case, the well-posedness of Problem (2.1)–(2.2) is still an open issue. A few existence
results has been proposed for simplified models (scalar wave equations, thin structures, one-dimensional
case) in [40, 41, 29, 27, 16, 2, 37].

We note the Hilbert space

V :=
{

v ∈
(
H1(Ω)

)d
: v = 0 on ΓD

}
,

where Hs(D), s ∈ R stands for the classical Sobolev space (see [1]) on the domain D. The usual scalar
product of V is denoted (·, ·)s,D and the corresponding norm ‖ · ‖s,D. We consider the following forms,
for any u and v in V, for all t ∈ [0, T ]:

a(u,v) :=
∫

Ω
σ(u) : ε(v) dΩ, L(t)(v) :=

∫
Ω

f(t) · v dΩ +
∫

ΓN

g(t) · v dΓ. (2.3)

Classically, the assumption on the elasticity tensor A and the presence of a Dirichlet condition on a
boundary ΓD of non-vanishing measure ensure the coercivity of the bilinear form a(·, ·) on V, i.e. there
exists a constant δ > 0 such that a(v,v) ≥ δ‖v‖1,Ω,∀v ∈ V. Note that, introducing the mechanical
energy

E(t) := 1
2ρ‖u̇(t)‖20,Ω + 1

2a(u(t),u(t)), ∀t ∈ [0, T ],

and assuming that the contact force does not dissipate any energy (i.e. that the so-called persistency
condition σn(u(t))u̇n(t) = 0 is satisfied, which is expected from a mechanical viewpoint but difficult
to prove mathematically, see, e.g., [28, 5, 22]) then the solution to the dynamic contact problem (2.1)–
(2.2) is such that

d

dt
E(t) = L(t)(u̇(t)). (2.4)
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2.2. A finite element Nitsche approach

Let us now present the Nitsche-based finite element semi-discretization of the dynamic contact prob-
lem (2.1)–(2.2) which was introduced in [10, 11] together with some basic properties of well-posedness
and energy conservation.

Let Vh ⊂ V be a family of finite dimensional vector spaces (see [14]) indexed by h coming from
a finite element method on a family T h of triangulations, supposed regular in Ciarlet’s sense, of the
domain Ω (h = maxK∈T h hK where hK is the diameter of the element K). For instance, for a standard
Lagrange finite element method of degree k > 0, we have

Vh :=
{

vh ∈ (C 0(Ω))d : vh|K ∈ (Pk(K))d,∀K ∈ T h,vh = 0 on ΓD
}
.

However, any C 0-conforming finite element method would be convenient.
With the use of a piecewise constant parameter γh > 0 defined on the contact boundary ΓC satisfying

for every K ∈ T h having a face on ΓC

γh|K∩ΓC
= γ0
hK

, (2.5)

where γ0 is a positive given constant (the so-called Nitsche’s parameter), we use the following equivalent
reformulation of the contact condition (2.2) (see [3, 9]):

σn(u) = −(σn(u)− γh un)− = −(γh un − σn(u))+ (2.6)

where (·)+, the positive part is defined by (x)+ := (x+ |x|)/2 and (·)−, the negative part by (x)− :=
(−x)+.

As in [10, 11] we consider a family of methods indexed by an additional parameter Θ ∈ R (generally,
Θ = −1, 0, 1, see, e.g., [12]) which leads to the following expression of the space semi-discretized
elastodynamic contact problem (see, e.g, [8, 10]):

Find uh : [0, T ]→ Vh such that for t ∈ [0, T ] :

(ρüh(t),vh)0,Ω + a(uh(t),vh)−
∫

ΓC

Θ
γh

σn(uh)σn(vh) dΓ

−
∫

ΓC

1
γh

(
σn(uh)− γhuhn(t)

)
−

(
Θσn(vh)− γhvhn

)
dΓ = L(t)(vh), ∀ vh ∈ Vh,

uh(0, ·) = uh0 , u̇h(0, ·) = u̇h0 ,

(2.7)

where uh0 (resp. u̇h0) is an approximation in Vh of the initial displacement u0 (resp. the initial veloc-
ity u̇0).

Following [10], we consider the following mesh-dependent (piecewise-defined) norms for any v ∈
L2(ΓC):

‖v‖
− 1

2 ,h,ΓC
:= ‖ (hK)

1
2 v‖0,ΓC

, ‖v‖ 1
2 ,h,ΓC

:= ‖ (hK)−
1
2 v‖0,ΓC

,

the scalar product for all vh,wh ∈ Vh:

(vh,wh)γh
:= (vh,wh)1,Ω + (γh

1
2 vhn, γh

1
2whn)0,ΓC

,

and ‖ · ‖γh
:= (·, ·)

1
2
γh the corresponding norm.

Then we reformulate (2.7) as a system of non-linear second-order differential equations, using Riesz’s
representation theorem in (Vh, (·, ·)γh

). Let Mh : Vh → Vh, be the mass operator defined for all
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vh,wh ∈ Vh by (Mhvh,wh)γh
:= (ρvh,wh)0,Ω, and Bh : Vh → Vh, for all vh,wh ∈ Vh the non-

linear operator defined by

(Bhvh,wh)γh
:= a(vh,wh)−

∫
ΓC

Θ
γh

σn(vh)σn(wh) dΓ

−
∫

ΓC

1
γh

(
σn(vh)− γhvhn

)
−

(
Θσn(wh)− γhwhn

)
dΓ. (2.8)

Finally, we denote by Lh(t) the vector in Vh such that, for all t ∈ [0, T ] and for every wh in Vh:
(Lh(t),wh)γh

:= L(t)(wh). Problem (2.7) then reads:
Find uh : [0, T ]→ Vh such that for t ∈ [0, T ] :
Mhüh(t) + Bhuh(t) = Lh(t),
uh(0, ·) = uh0 , u̇h(0, ·) = u̇h0 .

(2.9)

The following theorem together with the boundedness of ‖(Mh)−1‖γh
(see [10]) show that Prob-

lem (2.7) (or equivalently Problem (2.9)) is well-posed.

Theorem 2.1. The operator Bh is Lipschitz-continuous in the following sense: there exists a constant
C > 0, independent of h, Θ and γ0 such that, for all vh1 ,vh2 ∈ Vh:

‖Bhvh1 −Bhvh2‖γh
≤ C(1 + γ−1

0 )(1 + |Θ|)‖vh1 − vh2‖γh
. (2.10)

As a consequence, for every value of Θ ∈ R and γ0 > 0, Problem (2.7) admits one unique solution
uh ∈ C 2([0, T ],Vh).

Concerning the energy evolution, and considering the discrete energy as follows:

Eh(t) := 1
2ρ‖u̇

h(t)‖20,Ω + 1
2a(uh(t),uh(t)), ∀t ∈ [0, T ].

associated to the solution uh(t) to Problem (2.7). We define also, as in [13], the modified energy more
suited to Nitsche’s method

Eh1 (t):=Eh(t)− 1
2γ0

∥∥∥σn(uh(t))
∥∥∥2

− 1
2 ,h,ΓC

−
∥∥∥∥(σn(uh(t))− γhuhn(t)

)
−

∥∥∥∥2

− 1
2 ,h,ΓC

 . (2.11)

The two following results are stated in [13]:

Proposition 2.2. For γ0 large enough, there exists C > 0 independent of h, of γ0 and of the solution
to Problem (2.7), such that, for all t ∈ [0, T ]:

Eh(t) ≤ CEh1 (t).

Theorem 2.3. Suppose that the system associated to (2.1)–(2.2) is conservative, i.e., that L(t) ≡ 0
for all t ∈ [0, T ]. The solution uh to (2.7) then satisfies the following identity:

d

dt
Eh1 (t) = −(1−Θ)

∫
ΓC

1
γh

((
σn(uh(t))− γhuhn(t)

)
−

+ σn(uh(t))
)
σn(u̇h(t)) dΓ.

Remark 2.4. As a result, Eh1 (t) is conserved for the symmetric variant Θ = 1, and, for Θ 6= 1 the
variations of Eh1 (t) come from the non-fulfillment of the contact condition (2.6) by uh.
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3. IMEX schemes

As mentioned in the introduction, most of the difficulties come from the treatment of the non-linear
contact term. Indeed, It raises some instability issues when using an explicit treatment while an
implicit one leads to the resolution of a non-linear system at each time step. The main idea of the
IMEX scheme is then to split the non-linear term Bh as

Bh = Kh −Ah,

using

• an implicit integration of Kh as a linear symmetric positive operator

• an explicit treatment of Ah which contains all the non-linear contributions of Bh.

In our context, a first idea would be to treat implicitly the stiffness operator and explicitly the Nitsche
contact term. It would lead to define the following splitting:

(Kh
0vh,wh)γh

:= a(vh,wh),

(Ah
0vh,wh)γh

:=
∫

ΓC

1
γh

(
σn(vh)− γhvhn

)
−

(
Θσn(wh)− γhwhn

)
dΓ +

∫
ΓC

Θ
γh

σn(vh)σn(wh) dΓ.

However, we do not use the splitting since the stability of the IMEX scheme requires that Ah is a
monotonous operator which is clearly not the case. More precisely, this means that for all vh,wh ∈ Vh,
vh 6= 0, we need

(Khvh,vh)γh
> 0, (Ahvh −Ahwh,vh −wh)γh

≥ 0.
Then, a more adequate choice of splitting decomposition for the dynamic contact problem (2.9)

verifying these properties for γ0 large enough and Θ ∈ [−1, 1] is the one defined by

(Kh
1vh,wh)γh

:= a(vh,wh)−
∫

ΓC

Θ
γh

σn(vh)σn(wh) dΓ

+
∫

ΓC

1
γh

(
σn(vh)− γhvhn

) (
σn(wh)− γhwhn

)
dΓ

+ (1−Θ)
∫

ΓC

1
γh
σn(vh)σn(wh) + γhv

h
nw

h
ndΓ,

(3.1)

(Ah
1vh,wh)γh

:=
∫

ΓC

1
γh

(
σn(vh)− γhvhn

)
+

(
σn(wh)− γhwhn

)
dΓ

− (1−Θ)
∫

ΓC

1
γh

(
σn(vh)− γhvhn

)
−
σn(wh)dΓ

+ (1−Θ)
∫

ΓC

1
γh
σn(vh)σn(wh) + γhv

h
nw

h
ndΓ,

(3.2)

where the last term of the two operators has been added for Θ 6= 1 to ensure the monotonicity of Ah
1 .

Remark 3.1. Such a splitting decomposition is not unique and the basic idea is of course to consider
the simplest non-linear operator Ah satisfying the monotonous assumption.

Proposition 3.2. The operator Kh
1 satisfies (Kh

1vh,vh)γh
> 0 for Θ ∈ [−1, 1] and γ0 large enough.

Proof. From the definition of Kh
1 we immediately obtain for Θ ∈ [−1, 1]

(Kh
1vh,vh)γh

≥ a(vh,vh) + (1− 2Θ)
∫

ΓC

1
γh

(σn(vh))2 dΓ.
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The coercivity of the bilinear form a(·, ·) allows to conclude for Θ ∈ [−1, 1/2]. From Lemma 3.2
in [12], there exists C > 0 independent of the parameter γ0 and of the mesh size h, such that
‖γ−

1
2

h σn(vh)‖20,ΓC
≤ Cγ−1

0 ‖vh‖21,Ω, for all vh ∈ Vh. This implies that for Θ ∈ (1/2, 1]

(Kh
1vh,vh)γh

≥ δ‖vh‖21,Ω + (1− 2Θ)C
γ0
‖vh‖21,Ω,

where δ is the coercivity constant of a(·, ·). The positivity is reached for γ0 >
C(2Θ−1)

δ .

Proposition 3.3. The operator Ah
1 is a monotonous one for Θ ∈ [−1, 1].

Proof. Due to the monotonicity of the positive part, the first term of (3.2) is monotonous and then

(Ah
1vh −Ah

1wh,vh −wh)γh

≥ −(1−Θ)
∫

ΓC

1
γh

((
−σn(vh) + γhv

h
n

)
+
−
(
−σn(wh) + γhw

h
n

)
+

)
σn(vh −wh)dΓ

+ (1−Θ)
∫

ΓC

1
γh

(σn(vh −wh))2 + γh(vhn − whn)2dΓ.

However, using again the monotonicity of the positive part and its Lipschitz-continuity, one obtains

−
((
−σn(vh) + γhv

h
n

)
+
−
(
−σn(wh) + γhw

h
n

)
+

)
σn(vh −wh)

≥ −1
2

((
−σn(vh) + γhv

h
n

)
+
−
(
−σn(wh) + γhw

h
n

)
+

)
σn(vh −wh)

− 1
2

((
−σn(vh) + γhv

h
n

)
+
−
(
−σn(wh) + γhw

h
n

)
+

)
γh(vhn − whn)

≥ −1
2 |σn(vh −wh)− γh(vhn − whn)|

(
|σn(vh −wh) + γh(vhn − whn)|

)
≥ −1

2
(
|(σn(vh −wh))2 − γh2(vhn − whn)2|

)
≥ −1

2(σn(vh −wh))2 − γh
2

2 (vhn − whn)2,

which allows to conclude.

Remark 3.4. Note that operator Kh
1 derives of course from the potential

ψKh
1
(vh) := 1

2(Kh
1vh,vh)γh

and, in the case Θ = 1, the operator Ah
1 also derives from the convex potential

ψAh
1
(vh) :=

∫
ΓC

1
2γh

(
σn(vh)− γhvhn

)2

+
dΓ.

3.1. A semi-implicit β-Newmark scheme

Let us now consider a uniform discretization of the time interval [0, T ]: (t0, . . . , tN ), with tn = nτ , n =
0, . . . , N where τ = T/N is the time step. In the following, we use the notation xh,n+α := (1−α)xh,n+
αxh,n+1, xh,n−α := (1−α)xh,n+αxh,n−1 for α > 0 and arbitrary quantities xh,n−1,xh,n,xh,n+1 ∈ Vh.
Moreover, we denote by uh,n (resp. u̇h,n and üh,n) the discretized displacement (resp. velocity and
acceleration) at time step tn.
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We present a family of schemes indexed by two parameters β ∈ [1
4 ,

1
2 ] and α ∈ [0, 1

2 ]. We propose
first the following two-step scheme:

Find uh,n+1 ∈ Vh such that:

Mh

(
uh,n+1−2uh,n+uh,n−1

τ2

)
+Kh

(
βuh,n+1+(1−2β)uh,n+βuh,n−1

)
−Ahuh,n−α = Lh,n,

(3.3)

with initial conditions uh,0 = uh0 and uh,1 = uh1 . Note that only a linear system corresponding to
Mh + βτ2Kh is to be solved at each time step. This scheme is based on a β-Newmark scheme [32]
for the linear part Kh and when α = 0, a central difference scheme (Störmer-Verlet scheme) for the
non-linear part Ah (a similar choice is presented in [45], for instance). This scheme is second-order
accurate for α = 0 and only first-order accurate otherwise.

From a numerical viewpoint, it is also useful to introduce the following two equivalent schemes:

• The one-step Newmark-like scheme:

Find uh,n+1, u̇h,n+1 ∈ Vh such that:

Mhuh,n+1 = Mhuh,n+τMhu̇h,n− τ
2

2 Kh
(
2βuh,n+1+(1−2β)uh,n

)
+ τ2

2
(
Lh,n+Ahuh,n

)
,

Mhu̇h,n+1 = Mhu̇h,n + τ

2
(
Lh,n+1 + Lh,n −Kh(uh,n+1 + uh,n)

)
+ τ

2
(
2Ahuh,n+1−α −Ahuh,n+1 + Ahuh,n

)
,

(3.4)

associated with the initial conditions uh,0 = uh0 , vh,0 = vh0 ,

• The Leapfrog-like scheme
Find uh,n+1, u̇h,n+ 1

2 ∈ Vh such that:

Mhu̇h,n+ 1
2 = Mhu̇h,n−

1
2 + βτ2Kh

(
u̇h,n−

1
2 − u̇h,n+ 1

2
)

+ τ
(
Lh,n −Khuh,n + Ahuh,n−α

)
,

uh,n+1 = uh,n + τ u̇h,n+ 1
2 ,

(3.5)

associated with the initial conditions uh,0 = uh0 , vh,
1
2 = vh1

2
.

Note that the latter scheme is a one-step scheme only for α = 0, however, even for α 6= 0 starting
from uh,0 and vh,

1
2 , the value of uh,1 is given by the second relation of (3.5) then the first relation

gives vh,
3
2 from uh,1, uh,0 and vh,

1
2 . Note also that the starting values uh1 and vh1

2
for schemes (3.3)

and (3.5) can be obtained from uh0 and vh0 using the one-step Newmark-like scheme (3.4).

Proposition 3.5. Apart from the initial conditions, the three family of schemes (3.3), (3.4) and (3.5)
are equivalent.

Proof. Subtracting the first relation of (3.4) with itself replacing n by n − 1 and using the second
relation of (3.4) to eliminate the velocity, one obtains directly (3.3). In a similar manner, subtracting
the second relation of (3.5) with itself replacing n by n − 1, multiplying the result by Mh + βτ2Kh

and using it in the first relation of (3.5) leads also to (3.3).

166



IMEX schemes for elastodynamic contact problems

3.2. Discrete Energy evolution

We make the additional assumption that the non-linear operator Ah derives from a positive convex
potential ψAh(uh) in the sense

(Ahuh,vh)γh
= DψAh(uh)[vh],

where DψAh(uh)[vh] := limε→0
ψ

Ah (uh+εvh)−ψ
Ah (uh)

ε is the directional derivative of ψAh at uh in the
direction vh. This means in particular that ψBh(uh) = 1

2(Khuh,uh)γh
− ψAh(uh) is the potential of

Bh and we assume also ψBh(uh) positive and convex.
For the sake of simplicity, we consider the case of a constant source term Lh,n = Lh and we integrate

the source term potential to the energy. We consider the energy at mid-point

Eh,n+ 1
2 := 1

2(Mhuh,n+1 − uh,n

τ
,
uh,n+1 − uh,n

τ
)γh

+ ψBh(uh,n+ 1
2 )− (Lh,uh,n+ 1

2 )γh
. (3.6)

A more adapted energy for the β-Newmark scheme can then be deduced as

E
h,n+ 1

2
imex1 := Eh,n+ 1

2 + 1
2

(
β − 1

4

)(
Kh(uh,n+1 − uh,n),uh,n+1 − uh,n

)
γh

, (3.7)

which is ensured to be positive for β ≥ 1
4 and can be rewritten equivalently

E
h,n+ 1

2
imex1 = 1

2

(
Mhuh,n+1 − uh,n

τ
,
uh,n+1 − uh,n

τ

)
γh

+ (1− 2β)(Khuh,n+ 1
2 ,uh,n+ 1

2 )γh

+
(
β − 1

4

)(
Khuh,n+1,uh,n+1

)
γh

+
(
β − 1

4

)(
Khuh,n,uh,n

)
γh

− ψAh(uh,n+ 1
2 )− (Lh,uh,n+ 1

2 )γh
. (3.8)

Proposition 3.6. When ψAh and ψBh are both convex potentials, for a constant source term Lh,n = Lh

and in the case α = 1
2 and 0 ≤ β ≤ 1

2 the energy Eh,n+ 1
2

imex1 decreases with respect to n.
Proof. The evolution of this discrete energy can be computed for schemes (3.3), (3.4) and (3.5)
taking the scalar product of the relation (3.3) with

uh,n+ 1
2 − uh,n−

1
2 = uh,n+1 − uh,n−1

2 = uh,n+1 − uh,n

2 + uh,n − uh,n−1

2 ,

and using the decomposition

βuh,n+1 + (1− 2β)uh,n +βuh,n−1 =
(1

2 − β
)

(uh,n+1 + 2uh,n + uh,n−1) +
(

2β − 1
2

)
(uh,n+1−uh,n−1).

This leads to
1
2

(
Mhuh,n+1 − uh,n

τ
,
uh,n+1 − uh,n

τ

)
γh

− 1
2

(
Mhuh,n − uh,n−1

τ
,
uh,n − uh,n−1

τ

)
γh

+ (1− 2β)
(
Khuh,n+ 1

2 ,uh,n+ 1
2
)
γh

− (1− 2β)
(
Khuh,n−

1
2 ,uh,n−

1
2
)
γh

+
(
β − 1

4

)(
Khuh,n+1,uh,n+1

)
γh

−
(
β − 1

4

)(
Khuh,n−1,uh,n−1

)
γh

− (Ahuh,n−α,uh,n+ 1
2 − uh,n−

1
2 )γh

= (Lh,uh,n+ 1
2 − uh,n−

1
2 )γh

,

which can be rewritten thanks to (3.8)

E
h,n+ 1

2
imex1 = E

h,n− 1
2

imex1 − ψAh(uh,n+ 1
2 ) + ψAh(uh,n−

1
2 ) + (Ahuh,n−α,uh,n+ 1

2 − uh,n−
1
2 )γh

. (3.9)
The results follows directly from the convexity of ψAh , since it implies ψAh(x) ≥ ψAh(uh) + (Ahvh,
uh − vh)γh

for all uh,vh ∈ Vh.
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This ensures the unconditional stability of the scheme α = 1
2 for 1

4 ≤ β ≤ 1
2 . However, α = 1

2
corresponds to first-order dissipative schemes where the schemes with α = 0 are second-order and
reversible in time schemes. The reversibility in time of the schemes for α = 0 make it impossible
to have a strict dissipativity property. Proving a strict conservation of energy, when this is possible,
means to find the particular conserved discrete energy. Even in the very simple case where ψAh is
a quadratic potential (i.e. Ah a linear symmetric monotonous operator), the energy Eh,n+ 1

2 is not
strictly conserved. In order to obtain a strict conservation in that case, it is necessary to consider the
slightly modified energy

E
h,n+ 1

2
imex2 = E

h,n+ 1
2

imex1 + 1
8
(
Ahuh,n+1 −Ahuh,n,uh,n+1 − uh,n

)
γh

. (3.10)

Note that the additional term is a non-negative one whenever Ah is monotonous. The following
result can be deduced from basic simplifications in equation (3.9) with the additional term considered
in (3.10).

Proposition 3.7. When ψAh and ψBh are both quadratic convex potentials, for a constant source
term Lh,n = Lh and in the case α = 0 and 0 ≤ β ≤ 1

2 the energy Eh,n+ 1
2

imex2 is constant with respect to n.

This leads also to the unconditional stability of the corresponding scheme α = 0 for 1
4 ≤ β ≤ 1

2 in
the case of quadratic potentials.

4. First numerical comparison

We now perform a numerical comparison of the IMEX schemes (3.3) described in section 3 (i.e.
corresponding to Kh

1 and Ah
1) with some standard implicit and explicit schemes. The comparison is

done first on a 1D case where an exact solution is available and then in a 2D Hertz-like case with
the help of our freely available finite element library GetFEM++ (see [38] and http://getfem.org).
The explicit scheme is Verlet’s one which corresponds to scheme (3.3) for Ah = −Bh and Kh = 0
(see also [13]) and the implicit scheme is Crank–Nicolson one (also called trapezoidal rule) which
corresponds conversely to Ah = 0 and Kh = Bh when β = 1

4 . The Nitsche variant used is the energy
conserving one Θ = 1 which gave the most satisfactory results for the approximation of elastodynamic
contact problems in [13].

4.1. 1D numerical experiments: multiple impacts of an elastic bar

We first consider the one-dimensional case d = 1 described in [16] corresponding to a single contact
point. It consists in an elastic bar Ω = (0, L) with ΓC = {0}, ΓD = {L} and ΓN = ∅. The elastodynamic
equation is then reduced to find u : (0, T ]× (0, L)→ R such that

ρü− E∂
2u

∂x2 = f, in (0, T ]× (0, L), (4.1)

where E is the Young modulus and the Cauchy stress tensor is given by σ(u) = E ∂u
∂x . We consider

a finite element space using linear finite elements and a uniform subdivision of [0, L]. Let us denote
Un := [Un0 , . . . , UnN ]T (resp. U̇n, Ün) the vector of all the nodal values of uh,n (resp. u̇h,n and üh,n).
The component of index 0 corresponds to the node at the contact point ΓC .

We take the following values for the parameters: f = 0, E = 1, ρ = 1, L = 1, u0(x) = 1
2 −

x
2 and

u̇0(x) = 0. The bar is initially compressed. Then, it is released without initial velocity. It impacts first
the rigid ground, located at x = 0, and then gets compressed again (see Figure 4.1). This problem
admits a closed-form solution u which derivation and expression is detailed in [16]. Notably, it has a
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x = 0

L

t = 0 t2 = 2 t3 = 3t1 = 1

Figure 4.1. Multiple impacts of an elastic bar. The bar is clamped at x = L and the
contact node is located at the bottom. The displacement is periodic of period 3, with
one impact during each period (here between t = 1 and t = 2).
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Figure 4.2. Simulation on the one-dimensional case for the time step τ = 0.01 (below
CFL) and the other numerical parameters Θ = 1, γ0 = 5, h = 0.02, β = 0.25 for the
different schemes.

periodic motion of period 3. At each period, the bar stays in contact with the rigid ground during one
time unit. The chosen simulation time is T = 12, so that we can observe four successive impacts.

We discretize the bar with 50 linear finite elements (h = 0.02) and take τ = 0.01 (νC = 0.5) and
τ = 0.05 (νC = 2.5), for νC := c0

τ
h =

√
E
ρ
τ
h the Courant number and c0 the wave speed.

The numerical tests are presented for a time step smaller than the critical one on Figure 4.2 and a
time step larger than the critical one on Figure 4.3. For these two figures, the left plots correspond to
the displacement on the contact point (uh,n(0) = Un0 ). The dotted red curve is the exact solution. The
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Figure 4.3. Simulation on the one-dimensional case for the time step τ = 0.05 (above
CFL) and the other numerical parameters Θ = 1, γ0 = 15, h = 0.02, β = 0.25 for the
different schemes.

right plots correspond to the evolution of the discrete energy. The plotted energy is Eh,n+ 1
2 for Verlet

and Crank–Nicolson schemes, Eh,n+ 1
2

imex1 for IMEX α = 1
2 and Eh,n+ 1

2
imex2 for IMEX α = 0. In addition to

the plots for the explicit Verlet scheme and for the implicit Crank–Nicolson one, two versions of the
IMEX scheme are considered: the version α = 1

2 which has been proved to be unconditionally stable
and the version α = 0 which is second-order and reversible in time. For both cases, we consider β = 1

4
and Nitsche’s parameter is set to γ0 = 5 for all experiments.

We see in Figure 4.2 that for a time step slightly lower and close to the critical time step, Verlet’s,
Crank–Nicolson and IMEX scheme for α = 0 give some accurate and similar results. This is not the
case for the IMEX scheme for α = 1

2 . In addition to be first-order while the other schemes are second-
order, it is excessively dissipative. Despite it ensures the unconditional stability property, it seems to
be unfeasible in that context since it would require a too small time step to retrieve an acceptable
dissipation.

This is confirmed by the results presented in Figure 4.3 where for a time step ten times larger
(and larger than the critical time step), the dissipation is so large that the motion does not resemble
the exact solution at all. Since one of the goal of the IMEX scheme is to be able to treat large time
steps, this completely disqualifies this version of the IMEX scheme. On this figure, the fact that the
time step is larger than the critical step results in the Verlet’s explicit scheme no longer stable being
stable, which was the expected behavior. The implicit Crank–Nicolson scheme still gives a reasonable
approximation of the motion and still has a good energy conserving property. The IMEX scheme for
α = 0 gives a reasonable approximation on the two first periods with a good energy conservation.
However, there is then a degradation of the solution, accompanied by a significant lengthening of the
period of the solution.
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4.2. 2D numerical experiments: multiple impacts of a disc

Figure 4.4. P2 mesh used for the disc.

Numerical experiments are then carried out in 2D on the impact of a disc on a rigid support at
y = 0. The physical parameters are the following: the diameter of the disc is D = 40, the Lamé
coefficients are λ = 3× 104 and µ = 3× 104, and the material density is ρ = 1. The total simulation
time is T = 30. The volume load in the vertical direction is set to ‖f‖ = 0.1 (gravity, oriented towards
the support). The upper part of the boundary is a traction free boundary and the lower part is the
contact zone ΓC . We consider an initial vertical displacement (u0 = (0, 2)) and no initial velocity
(u̇0 = 0). We use a P2 isoparametric finite element method, whose mesh is represented on Figure 4.4.

A first comparison is presented on Figure 4.5 for a time step τ = 0.0025 chosen smaller but close
to the critical time step for the explicit scheme. For each scheme, the three plots correspond to the
evolution of the normal displacement at the lowest point of the disc (the first point which enter
into contact with the rigid support), the contact stress at this lowest point and the evolution of the
discrete energy. The plotted energy is still Eh,n+ 1

2 for Verlet and Crank–Nicolson schemes and Eh,n+ 1
2

imex2
for IMEX α = 0. We can see a good accordance between the three schemes : Verlet’s, Crank–Nicolson
and IMEX α = 0 schemes. We no longer compare with the IMEX scheme with α = 1

2 which gives a
too poor approximation. There is some overshoots of the discrete energy at impact when using the
IMEX scheme, probably due to the non-regularity of the contact terms.

A comparison for a time step ten times larger is presented on Figure 4.6. The result for Verlet’s
scheme is not presented since the time step is larger than the critical value for stability. The implicit
Crank–Nicolson still gives a good approximation of the solution. The IMEX scheme for α = 0 is stable
and do not present some spurious oscillations, however, as in 1D, there is a significant increase of the
time between two impacts.

At this point, we can conclude that the built IMEX schemes have very good stability properties
for the contact problem. However, there is a slowing down of motion for large time steps that is not
present with the Crank–Nicolson scheme. The next section is devoted to give an interpretation of this
phenomenon.
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Figure 4.5. Simulation on the two-dimensional case for the time step τ = 0.0025
(below CFL) and the other numerical parameters Θ = 1, γ0 = 5× 105, β = 0.25 for the
different schemes.
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Figure 4.6. Simulation on the two-dimensional case for the time step τ = 0.025
(above CFL) and the other numerical parameters Θ = 1, γ0 = 5× 105, β = 0.25 for the
different schemes.

5. Selective mass scaling effects, difficulty and improvements

In this section, we try to understand the reason for the alteration of the observed motion when the
IMEX scheme (3.3), corresponding to the splitting Kh

1 and Ah
1 , is used for large time steps and the
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link with the existing works on the selective mass scaling. We also propose some variants to try to
reduce theses alterations.

We remark first that the IMEX scheme in the central difference form (3.3) for α = 0 can easily be
rewritten 

Find uh,n+1 ∈ Vh such that:(
Mh + βτ2Kh

)(uh,n+1 − 2uh,n + uh,n−1

τ2

)
+ Bhuh,n = Lh,n,

(5.1)

and the discrete energy (3.7) can be rewritten in a form more related to (5.1):

E
h,n+ 1

2
imex1 = 1

2

((
Mh +

(
β − 1

4

)
τ2Kh

) uh,n+1 − uh,n

τ
,
uh,n+1 − uh,n

τ

)
γh

+ ψBh(uh,n+ 1
2 ).

It is particularly noteworthy that (5.1) corresponds exactly to a central difference scheme (Verlet’s
scheme) applied to the original problem but with a mass operator Mh replaced by Mh + βτ2Kh.

A perturbation of the mass matrix in order to increase the critical time step in an explicit time
integration scheme is generally called a mass scaling. The perturbation of the mass matrix with a term
proportional to the stiffness matrix has been proposed in [34] and further studied in [33, 15, 47] under
the name “selective mass scaling”. As far as we know, the interpretation in term of an implicit-explicit
scheme has not been given yet, although this seems to be the most straightforward one.

The numerical study in [33] (Figure 1 in this reference) reveals a thresholding of the highest eigen-
frequencies and a moderate modification of the lowest eigenfrequencies, the rigid modes not being
impacted. Our stability result imply that the thresholding of the highest eigenfrequencies is obtained
not only for the stiffness matrix of the problem, but for any symmetric matrix Kh such that both Kh

and Ah = Kh −Bh are monotonous operators.
However, in our case, even if we recover the increase of the critical time step (even finding uncon-

ditionally stable methods), there is a consequent alteration of the rigid modes. These rigid modes are
however not impacted by a standard stiffness matrix, of course, since the rigid modes lie in its kernel.
Indeed, in our situation, the operator

(Kh
1vh,wh)γh

= a(vh,wh)−
∫

ΓC

1
γh

σn(vh)σn(wh) dΓ

+
∫

ΓC

1
γh

(
σn(vh)− γhvhn

) (
σn(wh)− γhwhn

)
dΓ (5.2)

contains, additionally to the stiffness terms, the Nitsche’s contact terms in which we can extract the
penalty term ∫

ΓC

γhv
h
nw

h
ndΓ. (5.3)

This term is in fact the only one being non-zero for a rigid motion. This is a term on the contact
boundary which adds a significant mass on the boundary in the modified mass matrix Mh + βτ2Kh.
This term is necessary to stabilize the explicit treatment of the non-linear Nitsche contact term but
causes rigid body motion alterations even in the absence of contact.

Remark 5.1. The implicit Crank–Nicolson scheme can also be rewritten in the form close to (5.1) for
Kh = Bh and β = 1

4 replacing Kh(uh,n+1− 2uh,n + uh,n−1) by Bh(uh,n+1)− 2Bh(uh,n) + Bh(uh,n−1).
The reason why the rigid body motions are not perturbed using the Crank–Nicolson scheme is simply
that the additional penalty term in Bh is only present when contact occurs which has a limited
influence since in that case the normal displacement is close to zero.

Unfortunately, keeping a constant Kh, it is not possible to add the penalty term in Kh only in the
occurrence of contact and keeping a monotonous operator Ah and so it is not possible to obtain the
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desired increase of the critical time step. However, we will see in the next sections some possible ways
to overcome this difficulty and improve the approximation for large time steps.

5.1. A non-constant splitting decomposition of Bh

Since the perturbation of the additional penalty term in Kh occurs mainly in absence of contact, a
first idea is to add this term only when there is contact with a non-constant operator Kh. This can
be done, for instance, by considering the following splitting decomposition

(Kh
2(vh,0)vh,wh)γh

:= a(vh,wh)−
∫

ΓC

1
γh

σn(vh)σn(wh) dΓ

+
∫

ΓC

H(γhvh,0n − σn(vh,0))
[ 1
γh

(
σn(vh)− γhvhn

) (
σn(wh)− γhwhn

)]
dΓ, (5.4)

and

(Ah
2vh,wh)γh

:=
∫

ΓC

1
γh

(
σn(vh)− γhvhn

)
+

(
σn(wh)− γhwhn

)
dΓ

−
∫

ΓC

H(γhvh,0n − σn(vh,0))
[ 1
γh

(
σn(vh)− γhvhn

) (
σn(wh)− γhwhn

)]
dΓ. (5.5)

Here H(·) is the Heaviside function (H(x) = 1 for x ≥ 0, H(x) = 0 for x < 0) and vh,0 is the
displacement at the previous time step.

This is of course a clear drawback that the matrix of the implicit term is changing from an iteration
to another. Moreover, the stability results of Section 3.2 no longer apply. Finally, this scheme can be
viewed as a special implicit-explicit scheme where the contact status is taken at the previous time
step.
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Figure 5.1. IMEX scheme with non-constant implicit term. Simulation on the two-
dimensional case for different time steps and Θ = 1, γ0 = 5× 105, β = 0.25.
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Some numerical tests in the two-dimensional case are shown on Figure 5.1. Compared to Figure 4.6
for our first IMEX scheme, it can be seen that a good approximation of the motion is recovered. The
stability is preserved for the time step τ = 0.025 but this is not the case for a larger time step τ = 0.1.
More precisely, the energy plotted here corresponds to Eh,n+1/2

imex2 . As expected, it is well conserved only
when the contact term is not active, i.e. between bounces. However, some articifial energy seems to
be added at each bounce, which can generate a non-negligible disturbance in the motion of the elastic
ball as using time step τ = 0.1 where the ball gains too much speed on the third bounce.

In conclusion, this first approach allows to overcome the problem of perturbation of the motion
due to the additional contact term and allows the use of larger time steps than with explicit Verlet’s
scheme. However, the unconditional stability property is not preserved and some instability issues can
be observed using a too large time step.

5.2. Small number of fixed points iterations

Another way to improve the accuracy of IMEX schemes, proposed for instance in [20], is to add a
small number of fixed points iterations taking the solution to the IMEX scheme as a predictor step. At
time step n+ 1, the quantities uh,n−1 and uh,n being known, we consider the following linear system
which consists to find uh,n+1

(i) solution to

(
Mh + βτ2Kh

)uh,n+1
(i) − 2uh,n + uh,n−1

τ2

+ Khuh,n −Gh
(i) = Lh,n. (5.6)

Notice that uh,n+1
(0) , defined as the solution to (5.6) for Gh

(0) = Ahuh,n, is the solution to our IMEX
scheme (3.3) (or (5.1)) for α = 0. Then, one obtains uh,n+1

(i+1) from uh,n+1
(i) by the recurrence relation

uh,n+1
(i+1) solution to (5.6) for Gh

(i+1) = βAh
(
uh,n−1

)
+ (1− 2β)Ah

(
uh,n

)
+ βAh

(
uh,n+1

(i)

)
.

In particular, it leads to the following fixed point iteration

uh,n+1
(i+1) = Hn −

(
Mh

βτ2 + Kh

)−1

Ah
(
uh,n+1

(i)

)
,

which is a contraction for τ small enough. Here

Hn = 2uh,n − uh,n−1 + τ2
(
Mh + βτ2Kh

)−1 (
Lh,n −Khuh,n − βAh

(
uh,n−1

)
− (1− 2β)Ah

(
uh,n

))
,

and the iteration converges toward the solution of the implicit β-Newmark scheme.
The numerical results on the two-dimensional case of Section 4.2 is presented on Figure 5.2. As

the iteration converges toward the solution of the implicit β-Newmark scheme, we consider here the
energy Eh,n+1/2. We can then observed on numerical experiments that the higher the number of
iterations the better it is preserve. Moreover, comparing with the results on Figure 4.6, one notices
that even with only one fixed point iteration, there is an important correction of the period of the
motion. However, the initial period is reached for ten fixed point iterations, which corresponds to
a non-negligible computational cost. Compared for instance with a Newton method on the implicit
scheme, note that the matrix of the linear system to be solved at each iteration do not vary, allowing
for instance a unique factorization.
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Figure 5.2. IMEX scheme with fixed point iterations. Simulation on the two-
dimensional case for the time step τ = 0.025 (above CFL) and the other numerical
parameters Θ = 1, γ0 = 5× 105, β = 0.25 for the different schemes.

5.3. Compensate the penalty term in Kh

Since the main difficulty comes from the penalty term∫
ΓC

γhv
h
nw

h
ndΓ

in the operator Kh, another option is to try to substitute it by a stiffness term which do not affect
the rigid body motion. When the bilinear form a(u, v) defined by (2.3) is coercive (i.e. in the present
case when the Dirichlet boundary ΓD is of non-zero measure in ∂Ω), then, using additionally a trace
inequality, there exists a constant αh > 0 such that

a(u,u) ≥ αh
∫

ΓC

γhu
2
ndx, ∀u ∈ V.

The fact that −
∫
ΓC
γhu

2
ndx+ 1

αh
a(u,u) ≥ 0 indicates that this term can be added to the operators

Kh and Ah without altering their monotonicity. By arguments similar to those of Proposition 3.3,
we can conclude, that in the coercive case, the following splitting corresponds to two monotonous
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operators for γ0 large enough:

(Kh
3vh,wh)γh

:=
(

1 + 2
αh

)
a(vh,wh)−

∫
ΓC

1
γh

σn(vh)σn(wh) dΓ, (5.7)

(Ah
3vh,wh)γh

:=
∫

ΓC

1
γh

(
σn(vh)− γhvhn

)
−

(
σn(wh)− γhwhn

)
dΓ + 2

αh
a(vh,wh). (5.8)
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Figure 5.3. Penalty term replaced by a stiffness one. Simulation on the one-
dimensional case for the time steps τ = 0.05 (IMEX) and τ = 0.1 (Crank–Nicolson and
IMEX) and the other numerical parameters Θ = 1, γ0 = 4, h = 0.02, β = 0.25, αh = 0.2
for the different schemes.

The numerical results are presented on Figure 5.3 for the one-dimensional case of Section 4.1 and on
Figure 5.4 for the two-dimensional case of Section 4.2. The important difference between the two test-
cases is that in the one-dimensional case the stiffness term is coercive due to the Dirichlet condition on
the top of the bar while this is not the case in the two-dimensional case. Nevertheless, the numerical
results are similar in both the two cases. For a time step approximately five time larger than the critical
time step, a reasonable approximation is obtained without the augmentation of the period noticed in
the initial IMEX scheme. However, some fluctuation of the energy Eh,n+1/2

imex2 are noted. For a larger
time step, the motion is perturbed by this augmentation of the stiffness term (the approximation with
Crank–Nicolson implicit scheme has been added for comparison). Therefore, although this technique
can be used for moderately large time steps, it fails to give a good approximation for very large time
steps.

5.4. A penalty free variant of Nitsche’s method

Another possibility to avoid the occurrence of the penalty term is to turn to the penalty-free variant of
Nitsche’s method. An alternative to the presented Nitsche-based approximation (2.7) which has been
proposed in [7], is based on the following reformulation of the contact condition (2.2):

γhun = − (γhun − σn(u))− ,
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Figure 5.4. Penalty term replaced by a stiffness one. Simulation on the two-
dimensional case for the time steps τ = 0.025 (IMEX) and τ = 0.1 (Crank–Nicolson
and IMEX) and the other numerical parameters Θ = 1, γ0 = 5×105, β = 0.25, αh = 0.2
for the different schemes.

and can be written as follows:



Find uh : [0, T ]→ Vh such that for t ∈ [0, T ] :

(ρüh(t),vh)0,Ω + a(uh(t),vh)−
∫

ΓC

σn(uh)vhn dΓ

+
∫

ΓC

(
uhn(t) +

(
uhn(t)− σn(uh)

γh

)
−

)
σn(vh), ∀ vh ∈ Vh,

uh(0, ·) = uh0 , u̇h(0, ·) = u̇h0 ,

(5.9)

There is indeed no penalty term of the form (5.3) in (5.9). Additionally, as it is noted in [43, 44],
and since

uhn(t) +
(
uhn(t)− σn(uh)

γh

)
−

= uhn(t)− σn(uh)
γh

+
(
uhn(t)− σn(uh)

γh

)
−

+ σn(uh)
γh

= 1
γh

(
σn(uh) +

(
σn(uh)− γhuhn(t)

)
−

)
,
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this formulation is equivalent to the following one still based on (2.6):

Find uh : [0, T ]→ Vh such that for t ∈ [0, T ] :

(ρüh(t),vh)0,Ω + a(uh(t),vh)−
∫

ΓC

σn(uh)vhn dΓ

+
∫

ΓC

1
γh

(
σn(uh) +

(
σn(uh)− γhuhn(t)

)
−

)
σn(vh), ∀ vh ∈ Vh,

uh(0, ·) = uh0 , u̇h(0, ·) = u̇h0 .

(5.10)

This formulation is not symmetric and consequently it does not derive from a potential. An example
of splitting that both Kh and Ah are monotonous operators is the following (the monotonicity of Ah

4
can be proved thanks to an adaptation of the proof of Proposition 3.3):

(Kh
4vh,wh)γh

:= a(vh,wh)−
∫

ΓC

σn(vh)whndΓ +
∫

ΓC

vhnσn(wh)dΓ

+
∫

ΓC

4
γh
σn(vh)σn(wh) + 3γhvhnwhndΓ, (5.11)

(Ah
4vh,wh)γh

:= −
∫

ΓC

1
γh

(
σn(vh) +

(
σn(vh)− γhvhn

)
−

)
σn(wh)dΓ

+
∫

ΓC

vhnσn(wh)dΓ +
∫

ΓC

4
γh
σn(vh)σn(wh) + 3γhvhnwhndΓ. (5.12)

However, one can note in this splitting the appearance of a penalty term. We did not find a splitting
verifying the monotonicity of the two operators that do not contain a penalty term. The numerical
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Figure 5.5. Penalty free approximation. Simulation on the two-dimensional case and
a time step τ = 0.001 (below CFL) and the other numerical parameters Θ = 1, γ0 =
5× 104, β = 0.25 for the different schemes.
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Figure 5.6. Penalty free approximation. Simulation on the two-dimensional case and
a time step τ = 0.01 (above CFL) and the other numerical parameters Θ = 1, γ0 =
5× 104, β = 0.25 for the different schemes.

results are presented on Figure 5.5 for a time step lower than the critical one and on Figure 5.6 for
a time step ten times larger. The plotted energy is Eh,n+ 1

2 for Verlet, Crank–Nicolson and also the
IMEX scheme. As expected, the energy is well preserved in each case presented on Figure 5.5 except
the overshoots when the contact becomes active. However, this is no longer the case for a large time
steps with the IMEX approach, as shown on Figure 5.6. We did not find any splitting that avoid these
instabilities.

Note also that the contact stress at lowest point in Figure 5.5 and 5.6 has smaller negative values
during impact than in Figure 4.5 and 4.6 for instance. This means that the contact area is larger
with this variant of Nitsche’s method than with the classical one. This is due to the fact that a lower
Nitsche parameter γ0 as been considered. Unlike the classical Nitsche’s method, the stability of this
variant is obtained for small values of γ0.

5.5. Second-order correction of the β-Newmark scheme

A last proposed improvement is to consider a perturbed version of β-Newmark scheme in order to
minimize the influence of the penalty term in the implicit treatment of Kh.

Recall that the first splitting introduced here reads as Bh = Kh
0 −Ah

0 where only the stiffness part
is treated implicitly. This then leads to the following β-Newmark scheme

uh,n+1 = 2uh,n − uh,n−1 +
(
Mh + βτ2Kh

0

)−1
(Lh,n −Bhuh,n), (5.13)

which is unstable in practice. Indeed, the last part of the instabilities comes from the integration of
the non-monotonous contact term Ah

0 which corresponds to(
Mh + βτ2Kh

0

)−1
(Ah

0uh,n).

We then proposed to use the splitting Bh = Kh
1 −Ah

1 where Ah
1 can be viewed as a monotonous

relaxation of Ah
0 . As expected, the new scheme

uh,n+1 = 2uh,n − uh,n−1 +
(
Mh + βτ2Kh

1

)−1
(Lh,n −Bhuh,n), (5.14)
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is numerically stable but the presence of the penalty term
∫

ΓC
γhv

h
nw

h
ndΓ in Kh

1 gives some alterations
of the rigid modes even when there is no contact. Notice that theses perturbations can be localized
on both source and stiffness terms:(

Mh + βτ2Kh
1

)−1
(Lh,n −Kh

0uh,n).

Our idea here is then to combine the benefits of the two previous schemes by introducing a correction
of the source term Lh,n and the stiffness term Kh

0u
h,n before applying the selective mass scaling effect(

Mh + βτ2Kh
1

)−1
. We can then consider the following scheme

uh,n+1 = 2uh,n − uh,n−1 +
(
Mh + βτ2Kh

1

)−1
(C1

τLh,n −C2
τKh

0uh,n − (Bh −Kh
0)uh,n).

where the consistence of the scheme requires that the two correction operators C1
τ and C2

τ satisfy the
limits

lim
τ→0

C1
τ = lim

τ→0
C2
τ = Id.

In that case, it is not difficult to see that the scheme is still a β-Newmark one

Mh

(
uh,n+1 − 2uh,n + uh,n−1

τ2

)
+Kh

(
βuh,n+1 + (1− 2β)uh,n + βuh,n−1

)
−Ãhuh,n−α = L̃h,n (5.15)

where the source and the explicit term are now given by

Ãh = Ah
1 − (C2

τ − Id)Kh
0 and L̃h,n = C1

τLh,n.

A second-order correction can then be made by constructing two operators C1
τ and C2

τ satisfying(
Mh + βτ2Kh

1

)−1
[C1
τ Lh,n] = (Mh)−1Lh,n +O(τ2), (5.16)

and (
Mh + βτ2Kh

1

)−1
[C2

τ Kh
0 uh,n] =

(
Mh + βτ2Kh

0

)−1
Kh

0uh,n +O(τ2). (5.17)
Here is an example of these operators

C1
τ =

(
Mh + βτ2Kh

1

)
(Mh)−1 and C2

τ =
(
Mh + βτ2Kh

1

) (
Mh + βτ2Kh

0

)−1
. (5.18)

However, recall that the stability of the associated β-Newmark scheme requires the monotonous prop-
erty of the operator Ãh = Ah

1 − (C2
τ − Id)Kh

0 which is satisfied only asymptotically when τ goes to
zero.

Figure 5.7 shows the result of the simulation in the two-dimensional case for the correction (5.18).
The numerical results shows a good correction of the slowing down noted in Figure 4.6 for IMEX
scheme (5.14). The plotted energy is the discrete one Eh,n+1/2

imex2 adapted to the modified operators
given in (5.15). Notice that it is well conserved but its level is different to the uncorrected schemes. In
conclusion, this variant provides a framework for correcting the undesirable effects of IMEX schemes
while maintaining their good stability properties.

Conclusion

The interest of our IMEX schemes is to allow an acceleration of the simulation compared to explicit
schemes by using larger time steps and with a cost corresponding only to the resolution of a (constant)
linear system at each time step.

We exhibited some theoretical stability results in Section 3.2 and the numerical tests of Section 4
confirm the possibility of obtaining some unconditionally stable IMEX schemes.
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Figure 5.7. Second-order correction. Simulation on the two-dimensional case and a
time step τ = 0.025 (above CFL) and the other numerical parameters Θ = 1, γ0 =
5× 104, β = 0.25.

The first-order IMEX scheme (α = 1
2) for which we have a proof of unconditional stability is however

too much dissipative in practice. The second-order schemes do not raise any stability issues in our
tests, despite we do not have such a proof of stability.

A less positive aspect is that our numerical tests have revealed a drawback of IMEX schemes in the
treatment of the penalty contact term: a slowing down of the motion is observed for large time steps.

An analysis of this phenomenon in Section 5 shows that it is due to the addition of the contact
penalty term to the mass matrix in the IMEX scheme (this also occurs for the implicit schemes but
only when contact occurs).

In this section we also provide an interpretation of the IMEX scheme in terms of selective mass
scaling, which has not been proposed before, as far as we know. We then proposed five different
techniques to try to overcome the difficulty of too large time steps.

In Subsection 5.1, we first tested a non-constant implicit term where the idea is to apply the penalty
term only when contact occurs. This effectively removes the slowing down of the motion, but a non-
constant linear system must be solved at every time step, and the unconditional stability of the scheme
is now loose. In Subsection 5.2, we also tested to add a few fixed points iterations. It is then possible
to recover a good approximation with this method for large time steps, but at the price of several
(but constant) linear resolutions. In Subsection 5.3, we tested to replace the penalty term with a
stiffness one, exploiting the coercivity of the problem. This also partially overcome the difficulty but
only for moderately large time steps. In Subsection 5.4, we tested the penalty-free version of Nitsche’s
method proposed in [7]. However, we did not find any stable splitting using this approach. Finally,
in Subsection 5.5, we proposed a framework for a second-order correction of the β-Newmark scheme
and we give an example leading to a second-order correction with a numerical example showing that
adapted corrections can improve the approximation for large time steps.
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