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INTRODUCTION TO MEAN CURVATURE FLOW

Roberta Alessandroni

Abstract. — This is a short overview on the most classical results on mean
curvature flow as a flow of smooth hypersurfaces. First of all we define the mean
curvature flow as a quasilinear parabolic equation and give some easy examples of
evolution. Then we consider the M.C.F. on convex surfaces and sketch the proof of
the convergence to a round point. Some interesting results on the M.C.F. for entire
graphs are also mentioned. In particular when we consider the case of dimension
one, we can compute the equation for the translating graph solution to the curve
shortening flow and solve it directly.

1. Notation and definitions

We consider an n−dimensional smooth, orientable manifold M and a
smooth immersion in Euclidean space F : M → Rn+1. Given local coordi-
nates

ϕ : Rn →M

(x1, . . . , xn) 7→ ϕ (x1, . . . , xn)

we denote by g the metric on F(M) induced by the standard scalar product
〈·, ·〉 of Rn+1

∀p =ϕ (x) gij (p) =
〈
∂F
∂xi

(p) , ∂F
∂xj

(p)
〉
.

The elements of the inverse matrix gij = {gij}−1 are also used to arise
indices in the Einstein summation convention.

Since F (M) is orientable, there exists an outer normal vector field ν

on M and we can define the second fundamental form

hij (p) =
〈
∂F
∂xi

(p) , ∂ν
∂xj

(p)
〉

= −
〈

∂2F
∂xi∂xj

(p) , ν (p)
〉
,

Keywords: mean curvature flow, curve shortening flow, mean curvature flow for graphs.
Math. classification: 53C44.
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then the elements of the Weingarten map are hji = hikg
kj . The eigenvalues

of the Weingarten operator are called principal curvatures and denoted
by λ1, . . . , λn. Finally we define the mean curvature as H =

∑n
i=1 λi and

the norm of the second fundamental form |A|2 =
∑n
i=1 λ

2
i .

Actually we are going to consider just two kinds of manifold: closed
manifolds (compact and without boundary) and entire graphs (defined on
all Rn). In the first case we choose the outward orientation of the normal
vector field ν in such a way that convex surfaces have positive mean cur-
vature, and, to be consistent to this notation, the normal ν points below
in the case of graphs.

Now we are able to define the mean curvature flow: it is the 1-parameter
family of immersions satisfying the following initial value problem

(M.C.F.)

{
∂F
∂t (p,t) = −H (p,t) ν (p,t) for t > 0
F (p,0) = F0 (p)

where the initial datum F0 is a given smooth immersion.

2. Examples

A) Minimal surfaces, having H ≡ 0, are the stationary solutions for
this problem.

B) The first nontrivial example of mean curvature flow is given by the
evolution of spheres. Let F0 = ∂Bn+1

r0 be the boundary of a ball of
radius r0, by symmetry the evolving surfaces are all spheres of ra-
dius r (t). In this case, since the principal curvatures are λi (t) = 1

r

for any i = 1, . . . , n, and the mean curvature is H = n
r(t) every-

where, the M.C.F. gives an ordinary differential equation for r (t)
d

dt
r (t) = − n

r (t)
.

The solution r (t) =
√
r2

0 − 2nt does not exist for times larger than
T = r2

0
2n : at time T the evolving spheres shrink to a point and the

flow develops a singularity.
C) Let us consider the cylinder F0 = ∂Bkr0 × Rn+1−k with 1 6 k 6 n.

In this case the flat component is stationary under the flow, whereas
the round one tends to shrink as we have seen with spheres. Hence
we have again the formation of a singularity in finite time when the
cylinder shrinks to a line.
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3. Mean curvature flow as a nonlinear heat equation

Mean curvature flow can be written as
∂F
∂t

= ∆F.

This expression looks very much like a heat equation, but what we mean
here with ∆ is, instead, a nonlinear operator: it is the contraction of two
covariant derivatives of the vector F. Component by component we com-
pute

∆F = gij∇i (∇jF) = gij∇i (∂jF)

= gij∂i (∂jF)− gijΓkij∂kF,
(3.1)

and, since ∂i∂jF = Γkij∂kF− hijν, we have

∆F = −gijhijν = −Hν.

Looking at (3.1) one can recognize the standard form of a quasilinear
parabolic operator. Hence the short time existence and uniqueness of a
solution to M.C.F. is a consequence of well known results about quasilinear
parabolic equations.

An important tool in studying the mean curvature flow is the following
avoidance principle.

Proposition 3.1 (Comparison principle). — Any two smooth solutions
of M.C.F. which are initially disjoint, stay disjoint.

The proof relies on the use of maximum principle for parabolic equations.
As a consequence of this statement we can easily see that

Remark 3.2. — All compact manifold develop a singularity in finite time
under M.C.F.

Proof. — For any compact hypersurface N in Euclidian space Rn+1,
there exist a ball Bn+1

R s. t. N ⊂ Bn+1
R for a sufficiently large R, hence

the sphere ∂Bn+1
R encloses N . Now we can apply the mean curvature flow

to both ∂Bn+1
R and N . The comparison principle assures that smooth so-

lutions of the flow never touch each other, i. e. as long as the evolution
of N is smooth, it is enclosed in the shrinking sphere. Finally we have
two possible situation: or N shrinks to a point before the extinguish time
of the enclosing sphere, or it develops a singularity before shrinking to a
point. �

VOLUME 27 (2008-2009)
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4. Convex surfaces

The first important result on mean curvature flow, at least in the ap-
proach we consider here, as a flow of smooth surfaces, is a quite complete
description of the behavior of convex surfaces.

Theorem 4.1 (Huisken). — If M0 is a smooth, embedded, compact and
convex hypersurface of Rn+1, then the solution of the M.C.F.{

∂F
∂t (p,t) = −H (p,t) ν (p,t) for t > 0
F (·,0) = M0

is smoothly embedded, compact and convex until it converges to a point
in finite time.

After a suitable rescaling it converges smoothly to a round sphere.

Proof. — We have already seen that a solution for this flow exists and
it is unique. Now we consider the evolution of some important geometric
quantities such as the metric, the measure µ =

√
det{gij} and the mean

curvature
∂gij
∂t

= −2Hhij
∂µ

∂t
= −H2µ

∂H

∂t
= ∆H + |A|2 H.

As an immediate consequence of the second equation we see that the area of
the evolving surfaces is monotonically decreasing, in fact the mean curva-
ture flow is the gradient flow of the area functional, i.e. it gives the steepest
decay of the area functional.

Looking at the evolution equation for the mean curvature and applying
the maximum principle for parabolic equations we can deduce that if H > 0
on the initial manifold M0, then it stays positive for all times. Actually
something stronger can be proved using the maximum principle for tensors
(see [6]).

Remark 4.2. — Convexity is preserved along the M.C.F.: if ε is a suffi-
ciently small positive number, then the positive definiteness of the matrix
hij − εHgij is preserved.

The following step of the proof consists in showing that the pinching of
curvatures is also preserved along the flow.

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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Definition 4.3. — On every hypersurface Mt = Ft (M) of the flow we
define the function f as

f := |A|2 − 1
n
H2 = 1

n

∑
i<j

(λi − λj)2
.

If on Mt we have f < γ for a given constant γ ∈ R, then we say that the
curvatures of Mt are γ-pinched.

Note that f > 0 and if f ≡ 0 on a compact surface, then it is a sphere.
Hence the function f gives a characterization of spheres and its value is
measure of how much a surface differ from being a sphere.

Applying the maximum principle to the evolution equation of f

∂f

∂t
= ∆f + 2

H
〈∇f,∇H〉 − 2

H4 |H∇ihlk − hlk∇iH|
2

we deduce that f is monotonically nonincreasing in time. Although, this
is not sufficient to prove that it converges to zero: to do this we need to
introduce a new function fσ := fHσ where σ is a small positive constant.

An estimate on the high Lp-norm of fσ, combined with Sobolev inequal-
ities and interpolation inequalities allows to deduce that also fσ is a non-
increasing function. Hence we have

f = H−σfσ 6 H−σmax
M0

fσ → 0 as H →∞,

i.e. f converges to zero at those points where the mean curvature diverges.
Finally, long time existence of the flow is proved by an iterative process

showing that the curvatures have bounded derivatives of any order: for any
m ∈ N, there exist c (m) s. t. |∇mA| 6 c (m).

Now we know that as long as |A|2 is bounded, the flow can be continued
as a smooth flow. On the other side, since our manifold is compact, it
develops a singularity in finite time. This implies that there exist a time
T <∞ such that max |A|2 diverges as t→ T . Moreover one can show that
the ratio maxH/minH converges to one as time T is approached, hence
the mean curvature diverges everywhere. As consequences we have:

=⇒: The evolving surfaces converge to a point in finite time
=⇒: The pinching function f → 0 everywhere.

The first part of the theorem is then proved.
As for the second part, we need to rescale the evolving surfaces:

F̃ :=ψ (t) F,

VOLUME 27 (2008-2009)
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for instance we can choose the to rescale them keeping the area fixed. It
can be proved that the rescaled surfaces M̃τ converge exponentially fast to
a sphere in the C∞-topology. �

5. Nonconvex surfaces

n = 1. — If we consider the M.C.F. in dimension one we obtain a flow
of planar curves driven by their curvature, it is also called "curve shortening
flow". A quite strong and surprising result is known for this flow.

Theorem 5.1 (Grayson). — Any closed, smoothly embedded planar
curve retains these properties under the curve shortening flow and becomes
convex in finite time.

At this point we are dealing with a convex curve and we can apply an
analog theorem to the one in the previous section (see [4]) deducing that
any closed and smoothly embedded planar curve converges to a point under
the curve shortening flow.

n > 1. — In dimension greater than one, instead, the theorem holding
for convex surfaces can not be extended to nonconvex ones. There exist
in fact compact surfaces developing singularities before contracting to a
point. The most important example of this behavior is the "neck pinching"
singularity formation. It can be obtained letting evolve by M.C.F. a surface
formed by two big spheres connected by a neck: if the neck is long enough
and thin enough, it becomes singular (as a cylinder does) while the spheres
have still positive radius.

6. Graphs

Now we want to study the evolution by M.C.F. of surfaces written as
graphs.

Let us assume that our initial surface is an entire graph and it can be
written on all Rn as the graph of a function u0. Then for at least small
times t > 0 the evolution can be described as{

Ft (x) = (x1, . . . , xn,u (x1, . . . , xn, t))
F0 (x) = (x,u0 (x)) .

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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We choose, as said, the unit normal vector field ν pointing below, so we
define

ν (x, t) = (Du (x, t) ,−1)√
1 + |Du (x, t)|2

.

The differential equation M.C.F. becomes then ∂F
∂t = du

dt en+1. Now we
observe that

−H =
〈
∂F
∂t
, ν

〉
= du

dt
〈en+1, ν〉 = − 1√

1 + |Du|2
du

dt

hence dudt =
√

1 + |Du|2H, and on the other side, the mean curvature can
be considered as the divergence of the unit normal vector ν:

H = gijhij = gij
〈
∂F
∂xi

,
∂ν

∂xj

〉
= gijei

∂ν

∂xj
= div (ν) .

Finally the parabolic equation defining the flow can be written as a scalar
equation for the function u : Rn × [0, T )→ Rn+1

du

dt
=
√

1 + |Du|2div

 (Du,−1)√
1 + |Du|2

 =

(
δij −

DiuDju

1 + |Du|2

)
DiDju

where sum over repeated indices is assumed.

Lemma 6.1. — A graph evolving by M.C.F. stays a graph as long as
the flow exits.

Proof. — Notice that a graph satisfies the property
〈
−ν (x) , en+1

〉
> 0

for all point x in the domain. In order to prove the lemma it is sufficient to
show that this property is preserved along the flow. We then consider the
function v :=

〈
−ν (x) , en+1

〉−1 and compute its evolution equation

∂v

∂t
= ∆v − 2 |∇v|

2

v
− |A|2 v.

Applying the maximum principle we deduce that v is monotonically nonin-
creasing and then

〈
−ν (x) , en+1

〉
is kept bounded away from zero as long

as the flow exists. �

The following result was initially proved for graphs with controlled growth
at infinity and then was extended to entire graphs of arbitrary growth.

Theorem 6.2 (Ecker-Huisken). — If the initial surface M0 is a locally
Lipschitz continuos entire graph, then the M.C.F. has a smooth solution
for all times.

VOLUME 27 (2008-2009)
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Remark 6.3. — The short time existence of a smooth solution for M.C.F.
was also proved by a localization process for graphs defined on a bounded
domain.

An other interesting issue about mean curvature flow is to check if there
exist translating graph solutions and what is their shape. Without loss
of generality we can write the equation describing translating solution as
u (x, t) = u0 (x) + t, it means√

1 + |Du0|2div

 Du0√
1 + |Du|2

 = du

dt
= 1.

Example 6.4. — n = 1
In dimension one the above equation can be written as

1 =
(

1− u′20
1 + u′20

)
u′′0 = u′′0

1 + u′20
= (arctan u′0)′

where u′0 = Du0. This can be easily solved: arctan u′0 = x and u′0 = tan x.
This means that, modulo additive constants, for x ∈

(
−π2 ,

π
2
)

we have

u0 (x) = − log cosx
ut (x) = u0 (x) + t.

This function is know with the name of "grim reaper".

7. Applications

The mean curvature flow is a quite natural flow coming out also in the
study of some physical phenomena, for instance evolutionary surfaces with
prescribed mean curvature model the behavior of grain boundaries in an-
nealing pure metal.

Here we mention just two mathematical applications.

Isoperimetric inequality. — A proof of the isoperimetric inequality can
be provided using the M.C.F. and exploiting the fact that the area of the
evolving surfaces decreases according to

d

dt
A (Mt) = −n

∫
|H|2 dµ

where at the right hand side we have the Willmore energy.

Classification by surgery. —

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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Theorem 7.1 (Huisken-Sinestrari). — Any smooth, closed hypersur-
face of Rn+1, with n > 3, s. t. the first two smallest principal curvatures
satisfy λ1 + λ2 > 0 is diffeomorphic to the sphere Sn or to a finite number
of connected sum Sn−1 × S1#...Sn−1 × S1.

This result has been recently proved letting surfaces evolve by M.C.F.
and applying a surgery procedure (the converse of a connected sum) just
before a singularity is formed. In this way one can keep track of the topology
of the surface while the flow can be continued as a smooth flow.
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