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NEGATIVELY CURVED EINSTEIN METRICS ON
RAMIFIED COVERS OF CLOSED
FOUR-DIMENSIONAL HYPERBOLIC MANIFOLDS

Bruno Premoselli

ABSTRACT. — This paper is a shortened version of the recent article Examples of
compact Einstein four-manifolds with negative curvature [11] written in collabora-
tion with J. Fine (ULB). Its content was presented by the author at the Séminaire
de Théorie Spectrale et Géométrie in Grenoble in December 2017. In [11], new ex-
amples of compact, negatively curved Einstein manifolds of dimension 4 have been
obtained. These are seemingly the first such examples which are not locally homo-
geneous. The Einstein metrics we construct are carried by a sequence of 4-manifolds
(X&), previously considered by Gromov and Thurston [13], and obtained as rami-
fied coverings of closed hyperbolic 4-manifolds. Our proof relies on a deformation
procedure. We first find an approximate Einstein metric on Xj by interpolating
between a model Einstein metric near the branch locus and the pull-back of the hy-
perbolic metric from the base hyperbolic manifolds. We then perturb to a genuine
solution to Einstein’s equations, by a parameter dependent version of the inverse
function theorem.

1. Introduction and Statement of the results

1.1. State of the art of Compact Einstein manifolds with
negative scalar curvature

A Riemannian manifold (M,g) is called Einstein if Ric(g) = Ag, for
some A € R. This article gives a new construction of compact Einstein
4-manifolds with negative scalar curvature, that is with A < 0. Currently
known methods for constructing compact Einstein manifolds with A < 0
are:

(1) Locally homogeneous Einstein manifolds. These are Einstein man-
ifolds whose universal cover is homogeneous, i.e, acted on transi-
tively by isometries. Negatively curved examples include hyperbolic
and complex-hyperbolic manifolds.
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(2) Kéhler-Einstein metrics. A compact Kéhler manifold with ¢; < 0
carries a Kdahler-Einstein metric with A < 0. This is due to Aubin [2]
and Yau [24].

(3) Dehn fillings of hyperbolic cusps. Given a finite volume hyperbolic
n-manifold with cusps, one can produce a compact manifold by
Dehn filling: each cusp is cut off at finite distance to produce a
boundary component diffeomorphic to a torus 77~!; this is then
filled in by gluing D? x T™~2 along their common 7™~ ! boundary.
For appropriate choices, the Dehn filling carries an Einstein metric
with A < 0. When n = 3 this is due to Thurston [22] and the
Einstein metric is in fact hyperbolic. For n > 4, the Einstein metrics
are no longer locally homogeneous. In these dimensions the original
idea is due to Anderson [1] and was later refined by Bamler [3] (see
also the excellent exposition of Biquard [6]).

Of these three constructions, only the first is known to produce Einstein
metrics which are negatively curved, i.e., with all sectional curvatures nega-
tive. We refer to Fine-Premoselli [11] for the details. It is therefore of great
interest to find new constructions of Einstein metrics and, in particular,
examples with negative curvature which are not locally homogeneous. We
address this question in this article.

1.2. Statement of the results

In [13] Gromov and Thurston investigated pinching for negatively curved
manifolds of dimension n > 4. They showed that for any € > 0, there exists
a compact Riemannian n-manifold (X, ¢g) with sectional curvatures pinched
by —1 — € < sec(h) < —1 and which does not admit a hyperbolic metric.
The positively curved analogue of this statement is false, see [4, 16, 7].

A natural question, which motivated this work is: do Gromov and Thurs-
ton’s manifolds carry Einstein metrics? We answer this question positively,
at least in dimension 4. In order to state our main result we first con-
struct a particular family of hyperbolic manifolds which belong to the class
investigated in [13]:

PROPOSITION 1.1. — For each n € N, there exists a sequence (My) of
compact hyperbolic n-manifolds with the following properties.

(1) The injectivity radius i(My,) satisfies i(M}y) — oo as k — oo.
(2) For each k, there is a nullhomologous totally-geodesic codimension-

2 submanifold ¥j, C Mj. Moreover, the normal injectivity radius of
Sy satisfies i(Sg, My) = 2i(My).
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(3) There is a constant C, independent of k such that for all sufficiently
large k, the volume of ¥ with respect to the hyperbolic metric
satisfies

2 _
(1.1) vol(Z1) < Cexp (”3’”6 )

2 i(My)

There actually are infinitely many such sequences (My,). As will be proven
in Section 2, these are obtained as a Spin analogue of the original Gromov—
Thurston construction. Since [Ex] = 0, given any fixed integer [ > 2, there is
an [-fold cover Xy — M}, branched along ;. One way to see this is to take
a hypersurface Hy bounding ¥, cut M}, along Hj to produce a manifold-
with-boundary Mj; now take [ copies of M| and glue their boundaries
appropriately. It is important to note that ¥, may have many separate
connected components.

The pull-back of the hyperbolic metric from M}, to X} is singular along
the branch locus, with cone angle 2xl. It is in particular a singular Einstein
metric since the covering X, — My is a local isometry outside of the
ramification locus. The main result of this article is that, in dimension 4
at least, the manifolds X carry smooth Einstein metrics:

THEOREM 1.2. — Fix [ > 2 and let (M},) denote a sequence of compact
hyperbolic 4-manifolds satisfying the conclusions of Proposition 1.1. Let
X be the I-fold cover of My, branched along Xj. For all sufficiently large
k (depending on 1), X} carries an Einstein metric of negative sectional
curvature which is not locally homogeneous.

It is not difficult to see that manifolds Xj carry no locally homoge-
nous Einstein metrics whatsoever (we refer to Fine-Premoselli [11] for
the details). Theorem 1.2, together with deep 4-dimensional rigidity re-
sults for Einstein metrics on compact manifolds, gives another way to
see this. Indeed, if a compact 4-manifold is either hyperbolic or complex-
hyperbolic then the locally homogeneous metric is the only possible Ein-
stein metric (up to overall scale). This was proved in the hyperbolic case by
Besson, Courtois and Gallot [5], whilst the complex-hyperbolic case is due
to LeBrun [18].

It is worth mentioning that with Theorem 1.2 we find infinitely many
compact 4-manifolds that carry negatively curved FEinstein metrics, but
that admit no locally homogeneous Einstein metrics. This is the first oc-
currence, in the compact case, of a negatively curved Einstein metric which
is not locally homogeneous. Non-compact examples are relatively easy to
find: an infinite dimensional family of Einstein deformations of the hyper-
bolic metric — negatively curved when the deformation is small — was found
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by Graham and Lee [12], and in 4 dimensions, a 1-parameter family of such
deformations with an explicit formula was given by Pedersen [21]. It was
recently observed by Cortés and Saha [10] that Pedersen’s metrics are also
negatively curved, even when far from the hyperbolic metric. Other explicit
examples can also be found in [10].

1.3. Outline of the proof

The proof of Theorem 1.2 has two steps. The first, carried out in Sec-
tion 3, is similar in spirit to that of the tightly pinched Gromov—Thurston
metrics. We smooth out the pull-back of the hyperbolic metric from M
to X} to find a metric which is approximately Einstein. The larger the
injectivity radius, the better we can make the approximation. It is impor-
tant to note, however, that our approximate Einstein metrics are not the
same as the tightly pinched metrics that Gromov and Thurston consider
in [13]. Inside a tubular neighborhood of ¥ of width at most the normal
injectivity radius we use a Riemannian Kottler metric whose sectional cur-
vatures satisfy sec < —c for some constant 0 < ¢ < 1 which depends only
on [ (and not on k). The least negative sectional curvatures, sec = —c, are
attained at points on the branch locus. At large distances from the branch
locus, this metric is asymptotic to the pull-back of the hyperbolic metric.
We interpolate between these two metrics at a distance which tends to in-
finity with k. This gives a metric g on Xj which is Einstein everywhere
except for an annular region of large radius and fixed width in the tubular
neighbourhood of the branch locus. In these annular regions g is close to
Einstein, with error that can be explicitly controlled in terms of the glueing
parameter (and that tends to zero as k tends to infinity).

The second step of the proof is to use the inverse function theorem to
prove that for all large k, the approximately Einstein metric g, can be
perturbed to a genuine Einstein metric. This new Einstein metric has sec-
tional curvatures which are very close to those of g, and so, in particular,
are also negative. The analysis involved turns out to be quite delicate. The
fact that g, has negative sectional curvatures leads to the fact that the
linearised Einstein equations (in Bianchi gauge) are invertible, with L>2-
control. However, the volume and diameter of X} are rapidly increasing
with k& and so weighted Holder spaces, rather than Sobolev spaces, are
seemingly the appropriate choice of Banach spaces in which to apply the
inverse function theorem. Even with these spaces, however, we are unable
to obtain control over the derivative in every direction. We circumvent this
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as follows. Since the metric g; is made by interpolating two Einstein met-
rics, the error is supported in a subset S C Xj. We reduce the problem in
Section 4 to controlling the inverse of the linearised Einstein equations on
sections supported in Sy and we state the key estimate on which the proof
is based. We prove this estimate in Section 5. Starting from the uniform L?
control given by the linearised Einstein equations we perform an involved
bootstrap procedure and transform it into a weighted Holder control. This
relies on Carleman-type estimates for the Green’s operator of the linearised
equations and on a precise control of the volume of the branch locus X
provided by (1.1).

We close this brief outline with a comment on dimension. The model
Einstein metric exists in all dimensions n > 4 and gives approximately Ein-
stein metrics on Gromov—Thurston manifolds for all n > 4. It is likely that
these approximate metrics can be deformed into genuine Einstein metrics
in every dimension n > 4. Unfortunately, the control of the volume of the
branch locus provided by Proposition 1.1 is only sufficient for our analytic
arguments to work in dimension four.

Acknowledgements

The author thanks again the organizers of the Séminaire de Théorie
Spectrale et Géométrie at the Institut Fourier for inviting him to speak at
the TSG seminar in Grenoble.

2. A spin version of Gromov—Thurston manifolds

In this section we sketch the proof of Proposition 1.1. The original con-
struction of Gromov and Thurston uses arithemetic hyperbolic geometry
to produce (M) satisfying the first two properties of Proposition 1.1. We
review this in the next Subsection 2.1. To bound the volume of ¥; we will
make use of recent work of Murillo [20], which does not apply to all the
sequences arising from Gromov—Thurston’s original construction, but in-
stead to a special subclass of them. Put loosely, we need the manifolds My,
to be spin.

Following Gromov—Thurston [13], consider the following quadratic form
on R+

fzo, ..., xp) = =222 + 22 + - 422

VOLUME 35 (2017-2019)
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The corresponding pseudo-Riemannian metric on R™*! restricts to a gen-
uine Riemannian metric on the hyperboloid H = {z : f(z) = —1, 2o > 0}.
This makes H isometric to hyperbolic space H" and gives an identifica-
tion between the group SO(R"*!, f) of orientation-preserving isometries of
(R™*1 f) which are isotopic to the identity, and the group of orientation
preserving isometries of H".

We write T" for those automorphisms of f which are defined over the ring
of integers Z[v/2]. Explicitly,

I = S0 (R"*!, f) NGL (Z[\/ﬁ],n + 1)

It is important that the action of I' on H" is discrete and cocompact. (This
is a classical result in the study of arithmetic hyperbolic manifolds; the use
of /2 is precisely to ensure the action is cocompact.) The quotient H" /T is
a compact hyperbolic orbifold with singularities corresponding to the fixed
points of I'. Given k € N, write I'y, < T for the kernel of the homomorphism
given by reducing the entries mod k, i.e., the homomorphism

T GL (Z[\/i],n + 1) ~ GL ((Z/kZ)[\/i],n + 1)

induced by Z — Z/kZ. The kernel Ty, is a finite-index normal subgroup and
for any k sufficiently large, M) = H" /T is a compact hyperbolic manifold
with injectivity radius i(Mj) — oc.

The next step is to find the totally geodesic submanifolds ¥, C M.
Reflection in the coordinate x; gives an isometry of (R"*!, f). Since the
subgroups I'y, < T' normalise it, this descends to give an isometric invo-
lution ry: My — Mj. For each k, the fixed locus is a totally geodesic
hypersurface H} C M. Similarly reflection in x> gives an isometric in-
volution r9: My — M) with totally geodesic fixed set H,% The fixed sets
H ;7 H,f meet transversely, since their preimages in H" are transverse. We
let ¥, = H ,1 NH ,37 a totally-geodesic codimension 2 submanifold. By pass-
ing twice to double covers if necessary, we can assume that both H ,i and
H ,3 separate Mj; then each H }c is orientable, and so Y is too; moreover,
3, is the boundary of the part of H? which lies on one side of H}. This
shows that [X;] =0 € H,_o(Mjy,7Z). It is also easily seen that the normal
injectivity radius satisfies (3, My) > $i(My) (see [11]).

The important new ingredient is a bound of the form

vol(My) < AeC1(Mi)

for constants A and C' which are independent of k. It is not difficult to
show that for the sequence M}, constructed by Gromov and Thurston, such
constants A(n), C(n) exist, depending only on the dimension n. There is a
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short self-contained proof of this fact in [14, Section 4.1]. However, for our
purposes it is important to know the precise value of C(n).

For the congruence coverings discussed here, Katz—Schaps—Vishne [15]
proved that C'(2) = 3/2 and C(3) = 3. (See also the related work [8]
of Buser—Sarnack.) For us, of course, the interest is in n > 4. This was
treated in a recent article by Murillo [20], which shows that, with a couple
of caveats, the optimal inequality has
n(n+1)

4
The first caveat is that Murillo’s argument works for sequences of con-
gruence subgroups starting with Spin(R"*!, f) rather than SO(R"*!, f).
The second is that the congruences must be determined by prime ideals
I < Z[v/2] and not just reduction modulo an arbitrary integer.
We give a brief description of Murillo’s theorem, following the original

C(n) =

article closely (where the reader can also find detailed justifications for
everything in this section). In order to keep the arithmetic to a minimum,
we continue to work with the quadratic form f which is defined over Q(v/2)
but in fact everything holds much more generally, for admissible quadratic
forms defined over totally real number fields. The interested reader can find
the details neatly summarised in Murillo’s article.

We first give the analogue of I' € SO(R”*!, f), namely the subgroup
T < Spin(R™*!, f) of elements defined over the ring of integers Z[v/2].
To do so, we use the Clifford representation of Spin(R"*?, f). The group
Spin(R"*1 f) is a subgroup of the Clifford algebra Cliff(R"*!, f) and so
acts on it by left multiplication. To use this to get a matrix representa-
tion of Spin(R™™!, f) we fix a basis of Cliff(R"!, f). Choose first a basis
€g, ..., en of R™™! with respect to which the innerproduct g; defined by
f is standard:

1 ifi=j=0
gf(ei,e5) = 1 ifi=35>0
0 ifi#j
Then Cliff(R™*1, f) has as basis the 2"*! elements of the form e;, -+ - ;.
where i1 < .-+ < i, and r =0, ..., n+ 1. With respect to this basis, left

multiplication by Spin on CIliff gives a faithful representation
prL: Spin (]R"+1, f) — GL (R, 2"+1)
We now set I' C Spin(R"*1, f) to be

T =1Imp;NGL (Z[\/i], 2”+1)

VOLUME 35 (2017-2019)
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T has an explicit description in terms of the above basis for Cliff(R"*!, f).
Given J = (i1, ..., i,) we write ey = e;, - - €;,. for the corresponding basis
element of the Clifford algebra. Then

r= {’Y = Z cses € Spin(R™, f) 1 ¢y € Z[V2]

|J| even
for J # 0, cm—lez[\@]}

T acts on H” via
T < Spin (R, f) — SO (R™*, f)

(where the second arrow is the standard double cover). The crucial fact is
that the resulting action of T is discrete and cocompact and so H"/T is a
compact hyperbolic orbifold. (Again this is a foundational fact in the study
of arithmetic hyperbolic manifolds.)

We now pass to finite covers. Let I C Z[v/2] denote an ideal. We obtain
a normal subgroup I'y < T as the kernel of the homomorphism

T — GL (2v2)/1,2"")

Explicitly,

(21) I';= v = Z CJ@]EFICJEIfOI"J#@,C@—IEI

|J| even

We are now in a position to state Murillo’s Theorem.

THEOREM 2.1 (Murillo’s volume bound [20]). — Let I C Z[v/2] be a
sequence of prime ideals with |Z[\/2]/Ix| — co and write I';, < T for the
corresponding normal subgroups of I'. Then for sufficiently large k, the
quotient M;, = H" /Ty, is smooth and there is a constant A such that for
all k,

vol(Mj,) < Aexp (Wz‘(m))

The key observation in Murillo’s proof is to control the hyperbolic dis-
placement of an element s € Spin(R"*!, f) by the size of the coefficient
of ep in the expression s = > cye; of s in terms of the chosen basis of
Cliff(R"*1, f). From here he is able to control the minimal displacement
i(I'7) from below in terms of the cardinality of the quotient Z[v/2]/I. At
the same time, the index [ : I';] can be controlled from above in terms of
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this same quantity and, since volume is proportional to index, this leads to
Theorem 2.1.

2.1. Proof of Proposition 1.1

We now give the proof of Proposition 1.1. Let I}, C Z[v/2] be a sequence of
prime ideals as in Murillo’s Theorem, let I';, C T’ and write M, = H" /Ty,
for the corresponding hyperbolic manifolds. We can for instance take I}, =
p;cZ[\/i] for a suitable increasing sequence of prime numbers (pg). Just as
before, i(My) — oo as k — 0.

To find the nullhomologous totally geodesic codimension 2 submanifold
Yk C My we copy the same argument. Recall that the natural action
p: Spin(R"*1 f) — SO(R™*!, f) is given by p(s)(v) = svs™! where we
treat v € R"*! as an element of the Clifford algebra, and the product on the
righthand side of this formula is the Clifford product. We can also represent
reflections in a similar way. Let eg, ..., e, be a basis of R"*! for which f is
standard and consider the linear transformation 71 of Cliff(R"*!, f) given
by r1(c) = ejce;. Note that for any multi-index J,

e, if1 g g
ri(es) = _1Mle,  itled

In particular, 71 preserves R™"*! C Cliff(R"*!, f) where it acts as reflection
in the hyperplane orthogonal to e;. Moreover, from the description (2.1) of
['y,, it follows that r1(I';,) = I'y,. Now for any s € Spin(R"*1, f),

r1(p(s)(v)) = p (ri(s))(r1(v))

So 71 descends to an isometry of My, with fixed locus a totally geodesic
hypersurface H} C Mj,. Similarly, there is a second totally geodesic hyper-
surface H ,f C M}, coming from reflection orthogonal to ey. Just as in the
Gromov—Thurston construction, we can assume that the H,’C each separate
M, by passing twice to a double cover if necessary. Then ¥y = H ,1 NnH ,z
is totally geodesic and bounds the part of H,f which lies on one side of
H ,% and so the homology class [Xj] vanishes. Again, as in the Gromov—
Thurston situation, we have that the normal injectivity radius satisfies
i(Sk, My) = 3i(My).

It remains to prove the volume bound (1.1) on ;. We control the
volume of ¥ in two steps. Write i(H}, Mj,) for the normal injectivity
radius of H ,i C Mjp. By considering the volume of an embedded tubular
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neighbourhood of H} of maximal radius we have
(2.2) vol (H}) e(n=D)i(Hi,My) < Aj vol(My)

where A; is independent of k. Similarly, by considering an embedded tubu-
lar neighbourhood of ¥ in H ,% of maximal radius, we find a constant As
such that

(2.3) vol () e 2 PR HE) < A, vol (HJ)

Now i(Xy, HY) > i(Xk, Mg) > $i(My) and, similarly, i(H}, M) >
1i(Mjy,). Using this and putting (2.2) and (2.3) together we see that

(2.4) vol(Zg) < Ay Ag vol(Mj,)e 2 - i(Mx)
The bound 1.1 now follows from (2.4) and Theorem 2.1. (Note that if we
passed to double covers to ensure the Hj separated and [Zx] = 0, then

the volume would at worst quadruple and at worst the injectivity radius is
unchanged.)

3. The approximate solution

In this section we give the construction of the approximate solutions to
Einstein’s equations. Recall that in the previous section we constructed
a sequence of hyperbolic n-manifolds (My, hi), each containing a totally
geodesic hypersurface Hy C M) whose boundary Yy, is also totally geodesic.
The injectivity radius i(Mj,) of Mj, tends to infinity with k and 3i(Mj) is
a lower bound for the normal injectivity radius of X, C M. We denote
by p: X — Mj the [-fold cover branched along Y. We abuse notation by
using X to also denote the branch locus in Xj.

Define a function r: X, — R by setting r(z) to be the distance of
p(z) € My, from the branch locus ¥j. As a notational convenience, we set
u = cosh(r). Write Uk, max = cosh(%z'(Mk)) and pick a sequence (Uy) which
tends to infinity, with Uy < %Uk, max- The main result of this section is the
following.

PROPOSITION 3.1. — For each k, there is a smooth Riemannian metric
g on Xy, with the following properties:

(1) For any m € N and 0 < n < 1, there is a constant A such that for
all k,

[Ric(gr) + (n — Dgillgm.n < AUL™
(2) There is a constant ¢ > 0 such that for all k, sec(gy) < —c.

SEMINAIRE DE THEORIE SPECTRALE ET GEOMETRIE (GRENOBLE)



NEGATIVELY CURVED EINSTEIN METRICS ON RAMIFIED COVERS 139

(3) Ric(gr) + (n — 1)gx is supported in the region Uy, < u < U,
(4) For any m € N, there exists a constant C such that for all k,
| Rm(gi)l[cm < C.

The metric g will be given by interpolating in the region %U E<u < U
between a model Einstein metric defined on a tubular neighbourhood of
Y C X and the hyperbolic metric p*hy pulled back via the branched
cover p: X — (Mg, hy) on the complement of this tubular neighbourhood.
In Proposition 3.1 the Holder norms are defined with respect to the metric
gr (see Definition 4.4 for the explicit definition used in this paper for the
Holder norms). We begin by describing the model.

3.1. The model Einstein metric

Write (H™, h) for hyperbolic space of dimension n. Denote by S C H" a
totally geodesic copy of H"~2. We can write h as

h = dr? + sinh?(r)d6? + cosh?(r)hg

where hg is the hyperbolic metric on S. Here, (r,0) € (0,00) x S are polar
coordinates on the totally geodesic copies of H? which are orthogonal to
S. The hypersurfaces given by setting 6 constant are the totally geodesic
copies of H"~! containing S. In fact, it will be more convenient to use the
coordinate u = cosh(r); the hyperbolic metric then becomes

du?

u? —

(3.1) h=

1t (u* —1)d6? + u’hsg

This expression is valid for (u,6) € (1,00) x S1.

We will consider a family g, of Einstein metrics depending on a parameter
a € R. When a = 0, we recover h, whilst for a # 0 the metric has a cone
singularity along S, with cone angle varying with a. By an appropriate
choice of a, the metric will have the correct cone angle to become smooth
when pulled back by an [-fold cover ramified along S.

The metrics we will consider all have the form

du?

(3.2) 9=V

+ V(u)d6?* + u*hs

where V' is a smooth positive function.

VOLUME 35 (2017-2019)
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PROPOSITION 3.2. — The metric (3.2) solves Ric(g) = —(n — 1)g
precisely when
(3.3) V(v =u? -1+ e

for some a € R.

Proof. — This follows from the expression for the curvatures of g. We
use the convention that our indices 4, j run between 1, ..., n—2. Let f? be
an orthonormal coframe for (S, hg), and write w} for the connection matrix
of the Levi-Civita connection of hg, i.e, V"s fi = wé ® fI. Let W2 =V,
then

el =uft, e l=Wldu, e"=Wdf
is an orthonormal coframe for g. We use the convention that a Roman index
takes the values 1, ..., n—2, whilst a Greek index takes the values n—1,n.
A standard calculation that we omit here gives the following expression for
the curvatures of g:

_1+w?

Rijm = 2 (Oindjn — i)
w'w
Riuiu = - U

Ruvuw = — (W'W + (W')?)

whilst the remaining components are zero:

Ripp =0
Rijuw =0
Rij, =0 unless ¢ =3 and pu=v
Rijiu =0

i Ryvpe =0 unless p=p and v=o0

The proposition easily follows from these computations. O

When V is given by (3.3), we denote the metric (3.2) by g,. We next
consider the singularity of the metric g,. The metric is smooth for those
values of u for which 0 < V(u) < co. Write u, for the largest root of V.
At least when u, > 0, the metric g, is defined for u € (u,,c0). The metric
go has a cone singularity at u = u,. The next Lemma 3.3, whose proof is
straightforward, describes how the cone angle depends on a.

LEMMA 3.3. — Let

(3.4) v=
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(1) We have u, > 0 if and only if a € (—00, Gmax|- The map a — u, is
a decreasing homeomorphism (—00, Gmax] — [v,00).

(2) When a € (—00,amax), the metric g, has a cone singularity along
S at u = ugy, with cone angle 2mc, € (0,00).

(3) The map a — ¢, is a decreasing homeomorphism (—o00, Gmax] —
[0, 00). In particular, as a runs from 0 to amax, the cone angle takes
every value from 2w to O precisely once.

As a consequence of the proof of Proposition 3.2 we also obtain the
following Lemma 3.4:

LEMMA 3.4. — For a € (0,amax), the metric g, is negatively curved,
with all sectional curvatures satisfying
n—3
sec < —1+ 3 aul™" <0

Remark 3.5. — Notice that as v — oo, the metric g, approaches the
hyperbolic metric. The metrics g, are Riemannian analogues of static gen-
eralized Kottler metrics, which are solutions of the Lorentzian Einstein’s
equations with a negative cosmological constant. We refer for instance to
Chrusciel-Simon [9] for a study of Kottler spacetimes.

3.2. The sequence of interpolated metrics

We now transfer the model metric to our sequence (Mj) of compact
hyperbolic n-manifolds. We keep the notation introduced at the beginning
of Section 3. We let (Ug) be a sequence tending to infinity with k with
U < %Uk,maw

Let Eg denote a connected component of 3. Using geodesics orthogonal
to 22, we can set up a tubular neighbourhood of Eg in which the hyperbolic
metric on My, is given by

du?

pER + (u? — 1)d92 + uhs

Here hs, is the hyperbolic metric on X? and u = cosh(r) where r is the
distance to Eg. The hypersurface § = 0 corresponds to the totally geodesic
hypersurface Hy; in general 6(p) is the angle that the shortest geodesic from
p to £ makes with Hy. This expression is valid for (u,6) € [1, Uk, max) X S*.

Let a € (0, amax). We define a new metric near Zg interpolating between
9o and the hyperbolic metric as follows. Let x: R — [0,00) be a smooth
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function with x(u) =1 for v < 1/2 and x(u) =0 for u > 1. Write

a U
3.5 Vw) =u? -1+ —=x | +—
(35) =1+ o ()
and consider the corresponding metric
d 2
S+ Vao® +uths

The factor x(u/U) has the effect of interpolating between the Einstein
model of the previous section for u < %Uk and the hyperbolic metric for
u > Uy. Since the model is close to hyperbolic at large distances from 22,
when Uy, is large this interpolation does not change the metric very much.
As we will see, this means that the result is close to Einstein.

We also note that in terms of the intrinsic distance r from Eg, we are
using the FEinstein model for r < logU) and the hyperbolic metric for
r > log Uy, + log 2, so the band on which the interpolation takes place has
fixed geodesic width, independent of k.

The expression for the interpolated metric is valid for (u,0) € (uq,
Uk, maz) X St, where u, < 1 (since a > 0). We remove the tubular neigh-
bourhood of E% at a distance Uy and glue this new metric in. The result is
a metric on the same manifold, which is smooth across © = U, and which
has a cone singularity along X9 of angle 2mc,. Carrying out this procedure
at every connected component of ¥, we obtain a metric g; on My which
is Einstein near Y, hyperbolic at long distances from X, and has cone
singularities along each component of ¥, of angle 27c,.

We now pass to the [-fold branched cover p: Xy — M. By Proposi-
tion 3.3, there is a unique value of a € (0, amax) for which the cone angles
of gy are 27/l. Tt follows that the pull-back metric g = p*gx is smooth on
the whole of X}, even across the branch locus. Proposition 3.1 now follows
from the above construction and the arguments developed in the proof of
Proposition 3.2.

4. The inverse function theorem

Our aim in this and the next section is to show that for all sufficiently
large k there is an Einstein metric on X} near to gi. In this section we will
set this up as a question about the inverse function theorem and reduce
it to a key analytic estimate. We will then prove this estimate in the case
n = 4 in the following Section 5.
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4.1. Bianchi gauge condition and invertibility of the
linearization

We will apply the implicit function theorem to a non-linear elliptic map
between appropriate Banach spaces. Einstein’s equations are diffeomor-
phism invariant and so not directly elliptic. We deal with this in the stan-
dard way (appropriate for Einstein metrics with negative scalar curvature)
by adding an additional term, a technique called Bianchi gauge fixing. We
describe this briefly here and refer to [1, 6] for proofs of the results we use.

The following applies to arbitrary closed Riemannian manifolds (X, g),
and so we momentarily drop the k subscript to ease the notation. We
write divg: C*°(S?*T*X) — C(T*X) for the divergence of a symmetric
2-tensor. In abstract index notation, we have (divy h), = —V9h,,, where
V is the Levi-Civita connection. We write div; for the L2-adjoint. Again,
in index notation, (div; @)ap = V(qp) := %(Vaab + Via).

A computation gives that the linearisation of the Ricci curvature is

(4.1) (dg Ric) (s) = %AL(S) — div, div,(s) — %Vd Try(s)
where Ay, is the Lichnerowicz Laplacian:
Ar(s) = V'V + Ricg 0s + s o Ricg —2Rmy(s)
In index notation this is
(ALS)y = VPVpsay + R.Pspy + R, spa — 257 Rapig
Define the Bianchi operator B,: C°°(S*T*X) — C*°(T*X) by
(4.2) Bgy(h) =divg h + %d (Try h)

Note that the contracted Bianchi identity gives By (Ric(g)) = 0. Now
given a pair of metrics g, h, we write

(4.3) ®,(h) = Ric(h) + (n — 1)h + div} (By(h))

Here divj, is the formal adjoint of divj, taken with respect to the L2
innerproduct defined by h. We call ®, the Einstein operator in Bianchi
gauge relative to g.

One can check that the addition of this second term produces an elliptic
map. We write Lj, for the derivative of ®, at h. The case h = g is the
simplest:

(4.4) Ly(s) = %AL +(n—1)s
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The derivative at a general point is slightly more awkward. To describe
it, we introduce the following notation. Given a metric h, a section s
€ C®(S?T*X) and a 1-form o € C°°(T*X) we consider the quantity

(divy s — divy,)o

t—0 t

i.e., the infinitesimal change of div}(«) when h moves in the direction s.
This has an expression of the form « * Vs where V is the Levi-Civita
connection of h and % denotes some universal algebraic contraction. (See
for example, the discussion in [23, Section 2.3.1].) We can now give the
formula for Ly:

(4.5) LM@:%ALA@+UwJﬁ+dwﬂmw—dwm@)
—kévthﬁg@)—1&“5D4a34h)*vh@)

(where Vj, denotes the Levi-Civita connection of h). This follows by di-
rect differentiation of (4.3) together with the linearisation of Ricci curva-
ture (4.1). Since By(g) =0, (4.4) follows from (4.5).

The precise expression for Lj is not important in what follows. What is
essential is that it is locally Lipschitz continuous in h. More precisely:

LEMMA 4.1. — Fix an integer m > 2 and 0 < n < 1. Given K > 0 there
exist constants 0, C' > 0 such that if g, h, h are Riemannian metrics on the
same n-dimensional manifold with

lg = hllgm.n s

g—qkmn<5
HRmQ”Cm—Qw < K

where the norms are defined by g, then
[(Ln — L) (s)]

for all symmetric 2-tensors s € C™". (Here Ly, and Lj, are both defined
using g as the reference metric for the Bianchi gauge.)

omsy SC =R llslcmn

This is again a standard result and we omit the proof. When there is no
ambiguity we write C™" for the space of sections of S?T*X of regularity
C™ " and the Holder norms in Lemma 4.1 are measured with respect to
g (see Definition 4.4 for the explicit definition of the Holder norms used in
this article). Lemma 4.1 implies that &,: C™ " — C™~2" is a continuously
differentiable map of Banach spaces. (Strictly speaking, the domain of ®,
is the open subset of C™" consisting of positive definite sections.)
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We next recall another important fact about Bianchi gauge: at least in
the case of negative Ricci curvature, zeros of ®, are precisely Einstein
metrics. To see this, one computes that

(46) 2Bh o diVZ = v;vh - RlC(h)

In particular, when Ric(h) is negative, By, o div}, is an isomorphism. From
this, the next result follows easily.

LEMMA 4.2. — Let (X,g) be a closed Riemannian manifold and h a
second metric on X with Ric(h) < 0. If ®,(h) = 0 then in fact Ric(h)
= —(n —1)h and By(h) = 0.

Proof. — Since By (Ric,) = 0 = By(h) the fact that By (®4(h)) = 0
implies By (divy, By(h)) = 0. Equation (4.6) and integration by parts then
implies that By(h) = 0 and so Ricj, = —(n — 1)h. O

We return to our sequence (X, gx) of approximately Einstein metrics,
constructed in Section 3. Write ®, = ®,, for the Einstein operator in
Bianchi gauge relative to gx. By Proposition 3.1, we have that ®g(gx)
= O(U, ,i_") We would like to apply the inverse function theorem to ®y
to show that for sufficiently large k there is a metric A near to g; with
@4 (h) = 0. Since g has negative curvature, the same will be true of h and
so, by Lemma 4.2, h will be the Einstein metric we seek.

The first step in applying the inverse function theorem is to show that
the linearised operator is an isomorphism. The following result proves this
with a certain amount of uniformity. We show that the linearisation L, of
®,; at g is invertible for g on a definite neighbourhood of g5, whose diameter
is bounded below independently of k. We also obtain uniform L? estimates
on the inverse operator.

PROPOSITION 4.3. — There exist constants 6 > 0 and C > 0 such that
for all sufficiently large k, if g is a Riemannian metric on X}, with

lg — gllcz <0
then, for any C? symmetric bilinear form s,
(4.7 / (Lg(s), ), dvolg > C’/ \S\Zdvolg
Xk Xk

It follows that for any m > 2 and 0 < n < 1, the linearisation L,: C™"
— C™~2" js an isomorphism.

In the statement of Proposition 4.3 it is implicit that the Holder norm is
taken with respect to the metric g;. Throughout the proof we use the fact
that, provided § is small enough, the C° norms defined by ¢ and g, are
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equivalent uniformly in k. We will switch between them without further
comment. The proof of Proposition 4.3 is an adaptation of an argument
used by Koiso [17] to investigate the rigidity of negatively curved Einstein
metrics. In our situation, there are additional complications. Firstly, gx is
not an Einstein metric, merely close to Einstein, and secondly we do not
linearise at g (the metric used to define Bianchi gauge) but instead at
nearby metrics g. We push through Koiso’s argument via a series of tech-
nical Lemmas that we omit here; for the detailed proof of Proposition 4.3
we refer to [11].

4.2. Weighted Hoélder spaces

The crux to applying the inverse function theorem to find a zero of @y, is
to obtain uniform control over the inverse L;l. Proposition 4.3 shows that
the lowest eigenvalue of L, is uniformly bounded away from zero and this
immediately gives good control of the inverse in L2. This is not sufficient
for our purposes, however. The volume of (X}, gx) grows rapidly with &, so
much so that even though we have strong pointwise control of @, (gx) it
does not even imply that ®,, (gx) tends to zero in L?. Instead we work in
Holder spaces. Moreover, since the diameter of (X, gx) tends to infinity,
weighted Holder spaces are required.

We begin with a word on the definition of unweighted Holder spaces.
When one deals with a sequence (X, gx) of Riemannian manifolds, a little
care must be taken with Holder norms. In order to make it clear that no
problems arise in our situation we will be very explicit about the way in
which we define the Hoélder norm.

DEFINITION 4.4. — Let (X, g) be a compact Riemannian manifold. Wri-
te p(g) for the conjugacy radius of g and fix py < p(g). Given x € X write
exp, : 1 X — X for the exponential map, which is a local diffeomorphism
on the ball B(0,po) C T,X. Let s be a tensor field on X. Then expk(s)
is a tensor field on the Euclidean vector space T, X and we can use the
Euclidean metric to define the Hélder coefficient of s near x:

], .= sup lexpy (s)(p) — expi (s)(9)]
p#a€ B0, po) [p—ql”

We then take the supremum over all points x and combine with derivatives
to take the full Hélder norm:

||3||Cm,n = Z ?up |V]S(:L‘)| + sup [vms]

,T
rzeX K

j<m1€
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This definition of the Holder norm is well adapted to studying sequences
(Xk, gx) for which there is a uniform bound for the curvature and its deriva-
tives: for all m € N there exists C' > 0 such that || Rm(gg)|lcm < C. Our
sequence of approximately Einstein metrics have uniform C™ bounds on
Rm(gg), thanks to part 4 of Proposition 3.1.

We now move to the weighted norms. We begin by defining the weight
function w. Near each component of the branch locus we have a distin-
guished coordinate u, used in the construction of the model metric, given
by (3.2) and (3.3). It is defined for u, < u < Uy, max (Where a is chosen so
that the metric on M}, has cone angles 27/1). We extend this to a function
w: X — R by first setting it to be constant, equal to Uy, max outside the
region {u < Uk max}. We then modify it in the region u > %Uk,max to
make this extension smooth. The smoothing is done so as to ensure the
following:

LEMMA 4.5. — For all large k, there exists a smooth function w: Xy
— R such that
(1) In the region {u < iUy max}, w = u.
(2) Outside the region {u < Uk, max}, W = Uk, max-
(3) For each m, there is a constant C (not depending on k), such that
|V™w| < Clw| (where the norm is taken with g,).

This lemma follows again easily from the arguments developed in Sec-
tion 3.

DEFINITION 4.6. — Let m € N, 0 < 1 < 1 and a > 0. Given a section
s of S?T* X}, we define the weighted Hélder norm of s to be

[l = llw*s|[gm.n
where w is the weight function of Lemma 4.5 and the norm is taken for gg.

We have been careful in our choice of weight function to ensure that we
have the following local control between weighted and unweighted norms.
This sort of argument is typical in the use of weight functions and we
refer for instance to [6, Section 3.8], . Recall that the uniform control on
sectional curvatures of g gives a uniform lower bound on the conjugacy
radius p(gr) = po of the manifolds (X, gx).

LEMMA 4.7. — Let m € N, 0 < n < 1 and 0 < p < pgo. Then there
exists a constant C' = C(m,n, p) > 0 such that for any x € Xy and any
symmetric bilinear form s of regularity C™ ", we have

1 « «
(4.8) Zw(@)*|sllem (B, (0) < Isllcm (B, () < Cw(x)?||s]

c e 1(Bap))
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where B, (p) C (Xk, gr) denotes the geodesic ball centred at x with radius
p. In particular, C is independent of both x and k.

An easy consequence is the following:

COROLLARY 4.8. — For anym, 0 < n < 1 and a > 0 there is a constant
C, independent of k, such that for all s € C"™ ",

HS”C’"’T’ g C”S”C(T’"

Proof. — This follows from Lemma 4.7, taking the supremum over x,
together with the fact that w > u, > 0, a lower bound which is independent
of k. 0

We now give the effect of the weight in measuring the failure of g to be
an Einstein metric.

LEMMA 4.9. — For all integers m > 0 and real numbers 0 < n < 1,
there is a constant A such that

Ric(gr) + (n = D)gellgm.n < AU

Proof. — Recall that Ric(gg) + (n — 1)gx is supported in the region Sy
= {Uk/2 < u < Uy }. We cover this by a finite family of geodesic balls (B;)
of fixed radius p < pg, and with centres x; € Si. By Proposition 3.1, for
each ¢ we have

[Ric(gx) + (n — 1)9k||cm,n(3i) < AUpi-n

Since the z; lie in Sy we have w*(x;) < CUZ for some constant C'. Now we
multiply the previous inequality by w®(z;), use Lemma 4.7 and take the
supremum over all i. O

We conclude this section with the weighted analogues of standard elliptic
estimates, whose proof is standard and can again be found in [11]:

LEMMA 4.10 (Uniform Lipschitz continuity of the linearisation). — Fix
an integer m > 2, and real numbers 0 < n < 1 and « > 0. There are
constants §, C > 0, independent of k, such that if g and h are Riemannian
metrics on X;, with

om+2,n < 1)

lg — grllcmr2.n, [|h — gkl

then for all symmetric bilinear forms s of regularity C™2" we have

1 (Lg = Ln) (s)llcz-n < Cllg — Al

cm+2,n S||Cm+2, n
@

(where all norms are taken with respect to gi).
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Remark 4.11. — Note that by Corollary 4.8, we are free to replace the
unweighted norms on the metrics in this result by weighted ones (at the
expense of shrinking ¢). We will frequently do this in applications of this
result.

LEMMA 4.12 (Uniform elliptic estimate). — For any integer m and real
numbers 0 < n < 1 and « > 0 there are constants §, C > 0, independent of
k, such that if g is a Riemannian metric on Xy, with

lg = grllgrvan <O

then for all sections s of S?T* X, of regularity C™ 12" we have

Isllgzezn < C (ILg(8)llczm + llslleg)

(where all norms are taken with respect to gx).

Fix an integer m > 2, and real numbers 0 < n < 1 and a > 0. We claim
that there are constants § > 0 (independent of k) and Cj > 0 (depending
on k) such that if g is a Riemannian metric on X}, with

lg = grllgmran <6
then for all symmetric bilinear forms s of regularity C™" we have
(4.9) Il e n < Crll Lg ()l

This follows from the previous results of this section and is essentially
the standard contradiction argument used to remove the C° term in the
elliptic estimate, based on the fact that L, is invertible by Proposition 4.3.
Note that the constant in (4.9) depends on k, because the contradiction
argument must be carried out on each Xy separately.

4.3. The inverse function theorem assuming a key estimate

We now explain how to perturb g to an Einstein metric, assuming tem-
porarily one critical estimate, Theorem 4.14 below. We will prove this es-
timate in the case dim X = 4 in the following section.

The first step in the proof is to apply a version of the inverse function
theorem to & with uniformity in g, if not in k. We state the result here:

PRroPOSITION 4.13. — Fix an integer m > 0 and real numbers0 < n < 1
and o > 0. There exist constants 6 > 0 (independent of k) and ri > 0
(depending on k) such that if g is a Riemannian metric on X with

lg = grllgm+a.n <6
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then B(®(g),rx) C CI»" is contained in the image of ®; and there is a
differentiable map
V.: B ((I)k(g), T’k) — C;TJFZU

inverting ®;, on a neighbourhood of g € C™+2:1,

Proof. — This is just an application of the inverse function theorem to
®; at g, where the invertibility is given by Proposition 4.3. The inverse
function theorem provides a quantitative estimate on the radius of a ball
centred at ®x(g) which is contained in the image of ®;. By the uniform
Lipschitz continuity of ®; (Lemma 4.10) this radius depends only on the
square inverse of the operator norm of L, = d®x(g). By (4.9) we can choose
such a bound to only depend on k. (|

Of course, this is far from enough to prove the existence of an Einstein
metric. Whilst @ (gr) tends to zero as k tends to infinity, the radius 7y
may tend to zero even quicker. To remedy this problem we will use a much
sharper estimate on L;l. It is at this point our argument requires dim Xy,
= 4. As a matter of notation, write

1
Sk{QUk<U<Uk}

Recall that Ric(gi) + 3¢k is supported in Si. Recall also that until now,
our choice of gluing parameter Uy has only had to satisfy the requirements
that U, — oo and Uy, < %Uk,max. We will need to be more careful in our
choice of Uy, in order to prove the estimate we want.

THEOREM 4.14. — Let dim X}, = 4. There is a choice (Uy) of gluing
parameters such that for the corresponding approximately Einstein mani-
folds (X, gx) the following holds. For any integer m > 1 and real number
0 < n < 1 there exists real numbers 0 < a < 3 and § > 0 and a sequence
(ex) of positive real numbers, with ¢, — 0 as k — oo which have the
following property. For all large k, if g is a Riemmanian metric on X, with

lg = grll g+ <0

then for any symmetric bilinear tensor s € C™*%"  with Ly(s) supported
in S;, we have

Isllcy < exlg ™ ILg(s)llcz»

It is crucial in Theorem 4.14 that we restrict attention to those s with
L,(s) supported in Si. It seems that the sought-after estimate will not
hold otherwise. Whilst our proof does not extend to arbitrary dimensions,
it seems plausible that the analogous estimate could hold in dimension n
(with the power U ,?71+a on the right-hand side). This would then imply

SEMINAIRE DE THEORIE SPECTRALE ET GEOMETRIE (GRENOBLE)



NEGATIVELY CURVED EINSTEIN METRICS ON RAMIFIED COVERS 151

the existence of Einstein metrics for these higher dimensional Gromov—
Thurston manifolds.

Theorem 4.14 is the core of the analysis of this paper and we prove it in
the following section. For the remainder of this section we show how this
refined estimate proves the existence of an Einstein metric.

Proof of Theorem 1.2, assuming Theorem 4.14. — Let

Y(t) = (1 = t)Pr(gk)-
Proposition 4.13 gives a smooth path of Riemannian metrics g(t) solving

Py (g(t)) =~(t) for
Tk

gl
We will show this path can be extended up to t = 1, and then g(1) is the
Einstein metric we seek.

Let 6 > 0 be small enough so that Lemma 4.12, Proposition 4.13 and
Theorem 4.14 all apply simultaneously. Write Bs C C+2:7 for the ball of
radius 0 centred at gi. Consider the set

0<t<
[| @ (

T ={7>0: there is a differentiable map g: [0,7] — B;s
with x(g(t)) = 7(t), 9(0) = g1 }

Let 0 = supT. By Proposition 4.13 we know that
Tk
o2 —
~ ekl

We will show that o < 1 gives a contradiction. Consider
Tk
c— -k
2[5 (g )l o

We have 0 < 7 < o and so the path g(¢) exists on [0, 7] and stays inside
Bs. By Proposition 4.13, @y is a local diffeomorphism at ¢g(7) and its image
contains the ball of radius r, centred at (7). In particular it contains ()
for

T =

"™
2(| P (gr)|

m,n
cy

te 1,0+

So we can actually extend g(t) smoothly to solve ®4(g(t)) = v(t) for values
of t slightly larger than o. The crux is to show that in doing so we do not
leave Bs.

To prove this, differentiate @y (g(t)) = (1 — ¢)Px(gx) with respect to ¢
to get

Loy (9’ () = —®r(gx)
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For t € [0,0), g(t) € Bs and so, for these times, we can apply the elliptic
estimate Lemma 4.12 and Theorem 4.14. This, together with the error
estimate Lemma 4.9, gives

o' Ol < € (I1@x(g8)lczen + 9’ Bl
SAC (14 Up~ 7o) Uy mte

This bound tends to zero as k tends to infinity and so for all large k& we
have [|g/(t)[|gm+2.» < 0. Integrating this from ¢t = 0 to t = o, we see that

lg(o) — ngc;”+2m < oo

So the assumption that o < 1 means g(o) € Bs and hence g(t) € B; for ¢
slightly larger that o. This is a contradiction with the fact that o = supT.

We write g for the Einstein metric on X}, found in this way. To check that
the sectional curvatures of g are negative, recall that there is a constant
¢ > 0 such that the sectional curvatures of the approximate solution g all
satisfy sec(gr) < —c. By construction, our Einstein metric g is of the form
g = gr + si where ||sg|/c2.n — 0. From this it follows that the sectional
curvatures of g satisfy sec(g) < —c/2.

We now check that g is not simply locally homogeneous. There is a con-
stant b > 0 such that the model metric of Proposition 3.2 has at least one
sectional curvature at finite distance from the branch locus, which satisfies
sec > —1 + b. (This follows from the explicit form of the sectional curva-
tures given in the proof of Lemma 3.4.) Since g is a C2-small perturbation
of this metric near the branch locus, it must have a a sectional curvature
which satisfies sec > —1 + b/2. However, the approximate solution g is
genuinely hyperbolic at large distances and so at these distances all sec-
tional curvatures of the Einstein metric g satisfy sec < —1+b/2. It follows
that g near the branch locus is not locally isometric to g at large distances
and hence g is not locally homogeneous. O

5. Proving the key estimate

In this section we prove Theorem 4.14, which completes the proof of The-
orem 1.2. The proof in Fine-Premoselli [11] goes through a contradiction
argument and requires to study three different cases corresponding the dif-
ferent possible locations of the maximum point of an hypothetical tensor
field sy failing Theorem 4.14. For the sake of clarity, in the present paper,
we will discuss the ideas involved in the proof but will only sketch the proof
in one of these three cases.
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5.1. Setting the problem

We quickly recall some of our notation. Uy, max = cosh(%i(Mk)), where
i(My) is the injectivity radius of M}, with the hyperbolic metric; the gluing
is carried out in the region %Uk < u < Ug, where U, < %Uk,max. In the
course of the proof, it will be important how we choose the gluing parameter
Uy. For now, we stipulate only that Uy — oo whilst Uy /Uk, max — 0. The
precise choice will be made later.

The proof is by contradiction and so we assume Theorem 4.14 is false.
Le.:

HYPOTHESIS WHICH WILL LEAD TO A CONTRADICTION. — Let m > 1.
Let a > 0, 69 > 0, (ex) be a sequence of positive real numbers with €, — 0
and let Ny € N. Then there exist ko > Ny, gk, a metric on Xj, with

Hgko - gkg”cglrJrQ,n < 50

and sy, € C™T2" with Lg, (sk,) supported in Sy,, such that

9ko
(5.1) llskollce > exoUp |1 Lgy, (sko)ll o

We fix o and take ¢, = U, ” for some small positive number p. Both
«a and p will be determined in the course of the proof. We now apply our
hypothesis with Jy replaced by a sequence §,, > 0 with §,, — 0 and Ny
replaced by a sequence N,, € N with N,, — oo. This gives a sequence
Jk,, of metrics and symmetric bilinear forms s, on Xj,  such that the
conclusions of the hypothesis are satisfied. To ease the notation, we pass to
this subsequence and drop the m subscript. This leads to a sequence (gy)
of metrics with

(5.2) 9k — gr|

as k — oo, and a sequence (si) of symmetric bilinear forms for which
Lg, (si) is supported in Sy and

(5.3) (£

We will prove that (5.3) actually never holds, giving our contradiction.
To do this, for each k& we pick x; € X} at which

C;n+2,71 — 0

co > U7 Ly, (si)ll g

w*(zx) |sk(@r)l,, = lIskllco

where w is the weight constructed in Lemma 4.5.
First, a word on notation. Given sequences (py) and (gi) of real numbers,
We write pr < gr to mean that there is a constant C' > 0 such that for all
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k, pr < Cqi. In a chain of such inequalities, pr < g < rg, the constant C
may change, but will always be independent of k.

The first step in the proof is a preliminary lemma, showing that the
CY-norm of L, (si) gives control of s in W2, It is at this point that
the crucial bound on the volume of the branch locus, derived in Section 2,
enters the analysis. Recall part (3) of Proposition 1.1, which says that, in
arbitrary dimension,

2 _
vol(Xy) < Aexp <n3n+6 )

1 i(Mg)

In our case, n = 4. By definition of Uy, mq, We deduce that

(5.4) Vol(Z4) S UF s

LEMMA 5.1. — We have
(5.5) Lo (52 S Uf Ui~ 12 (58l o
(5.6) lsllze + 1Vsel 2 S UE U2~ g (58)

Both the L? and Hélder norms here are taken with respect to the metric
k-

Proof. — Lg, (sy) is supported in Sy, so

1
L5, (sk)ll L2 S vol(Sk)2 [ Lgy ()l co

But, by definition of Sk, at all points of Sy the weight function w satisfies
w 2 Uy from which we have ||Lg, (si)llco S U, *|Lg, (sk)llco. We have
vol(Sk) S U vol(Ex). Now (5.4) implies (5.5).

From here, Proposition 4.3 gives ||sk|lz2 < ||Lg, (sk)| L2. Proposition 4.3
gives this with the L?-norms defined by g, but by (5.2) these norms are
equivalent to those defined by gi. By (5.5) this proves (5.6) for ||sg||z2-

We now use (4.7) together with a Bochner formula, which gives

/ |V5k|§k dVOlf]k 5 / <L£7k (Sk)v 5k>gk Jr‘/ |Sk|§k dV01§k7
Xk Xk Xk

from which (5.6) follows by the previous arguments (we have used here the
fact that Rmg, is bounded uniformly in &.) O

At this point we divide the argument into three separate cases.

(1) There exists a constant C' > 0 such that, after passing to a subse-
quence, for all large k we have

1
U}(ifk) 2 aUk, max
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The points xy are further and further from the branch locus. More-
over, since we choose the gluing distance with Uy /Uy, max — 0, for
large k the points zj lie in the region of X} where gj is genuinely
hyperbolic.

(2) There exists a constant C' such that, after passing to a subsequence,

w(zk) < C

The points xj remain at bounded distance from the branch locus
Y C Xj and so lie in the region where gj is given by the model
Einstein metric of Section 3.

(3) The remaining possibility is that w(zy) — oo and w(zk)/Uk, max
— 0. In this case the points zj live in a region where the model
coordinate system near the branch locus makes sense, but they are
moving further and further from the branch locus.

We will treat each of these cases separately, but each time the argument
follows similar lines. We translate the problem onto a non-compact space
(either H* or the model metric of Section 3). We use a Green’s represen-
tation formula in this non-compact space to give an expression for si(zy).
We then prove estimates for the Green’s operator. In cases 1 and 2 these
are weighted integral estimates which enable us to turn L? estimates on sy,
into pointwise ones. In case 3 we can even use pointwise estimates on the
Green’s operator.

In order to fix our notation and conventions, we quickly recall the general
form of the representation formula for systems which are not necessarily
self adjoint. More details are given in [11, the Appendix]. Suppose D is an
elliptic operator on sections of a vector bundle F with a fibrewise metric,
over a Riemannian manifold. Let G(y,z) € Hom(E,, E,) be defined for
all z,y € X with x # y, depending smoothly on x and y. We say that G
is a fundamental solution for D if it satisfies the following distributional
equation: let o € E, and write G(-, z)(o) for the section y — G(y, x)(o) of
FE; then

D(G(,z)(0)) = a0

Explicitly, for any compactly supported section s of E,

/X (G(y,x)(0), D*s(y)) dvol, = (s(z), o)

This is equivalent to the following representation formula: for any com-
pactly supported section s of F,

(5.7) s(z) = /X Gly, 2)! (D*s(y)) dvol,
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Notice in particular that a fundamental solution for D gives a representa-
tion formula for s in terms of D*s.

In the following, for simplicity, we only sketch the proof of the contradic-
tion when x;, satisfies Case 2 listed above. A detailed account of the other
cases can again be found in [11].

5.2. Case 2

We assume that, after passing to a subsequence, w(zy) < C for some con-
stant C' independent of k. By definition of g, this means that the geodesic
distance from xj to ¥y is uniformly bounded and so less than the normal
injectivity radius (for all large k). We denote by X the nearest component
of ¥j to x. Just as in Section 3, we identify a tubular neighbourhood of
¥, with

[ta, Uk, max) X St x
The quotient by the relation ~ denotes that we have collapsed the S!
factor over {u,} x X to produce a smooth manifold without boundary.

We use u € [ug, Uk, max) for the corresponding coordinate function in the
radial direction, as in Section 3, which behaves at large distances as the
exponential of the distance to ¥. Here the minimal value u, is the constant
defined in the course of Lemma 3.3. We recall that it depends only on the
degree [ of the cover, and not on k. We then transfer everything to the
non-compact manifold

y, — [tUg, 00) X ST x

The approximate Einstein metric gi restricts from X} to the region u <
Uk, max Of Yg; it is hyperbolic for w > U, max/2 and so extends directly, re-
maining hyperbolic, to the rest of Y. We continue to denote this extension
by gx. The metric gy, satisfying (5.2) restricts to the region u < Uy, max/2
of Yj; we then extend it to the whole of Y; by interpolating with g, over
the region Uk max/2 < @ < Uk max. This gives a metric on the whole of
Yy which we continue to denote by gi. We remark that we still have the
analogue of (5.2), namely

(5.8) 19k = gkl gm+2.n(y,) = 0

The strategy is the following: we prove weighted L? estimates on the
Green’s operator which, together with the global W 2-estimates of Lem-
ma 5.1 lead to a contradiction with (5.3). Here we use the function u as
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a weight. This choice is motivated by the fact that for the asymptotically
hyperbolic model of Section 3, ©v~! is a boundary defining function, and
such functions are the appropriate weight to use in that context.

For any pair x,y of disjoint points of Y}, denote by ék(y, x) the fun-
damental solution of L7 in Yy, centred at z. (See [11, the Appendix] for
the construction of Gy, and for a description of its properties.) We have the
following weighted L? estimate on G’k.

PROPOSITION 5.2. — Given 0 < € < 3, there exists a constant C' (de-
pending only on €, but not on k) such that for any x € Yy, and for all large

k,
/ u(y)®=*
Yk\BQk (:E,l)

Proof. — The proof follows the ideas in [19]. More precisely, [19, Lem-

2

ék(y,w) _ dvolg, < C’u(90)3_e
r

ma 7.14] shows that for any 6 > 0 there exists Uy such that for any smooth
s compactly supported in {u > Uy} we have
(5.9)
* 9 5 2
/ <L§k (s), S> dvolg, = / <L§k (s),5) dvolg, > (8 - 2) / |5|§k dvolg,

Y Yi Y

This follows because g is exactly hyperbolic at large distances, with
boundary defining function u~?.

Fix § > 0 small and an associated Up as in (5.9). Let n: [0, 00) — [0, 00)
be a smooth function with n(u) = 0 when u < Up and n(u) = 1 for u > 2U.
We will use 7 to support the Green’s function in the region {u > Up}.
Meanwhile we will use a second cut-off function x to cut-off at large values
of u. For this, pick M > 1 and let x: [0,00) — [0,00) be smooth with
x(u) = Up + 1 when u < Uy, x(u) = u for Uy+1 < u < M —1 and
x(u) = M when u > M + 1. We choose x so that |x/| < 1.

Let x € Y}, and o € S?T'Y}, with |o|, = 1 and as before, put

F(y) = Gi(y, 2)(0)
Let 1) be a smooth cut-off function centred at =, with ¢» = 0 in B, (x,1/2)
and ¥ = 11in Y, \ By, (z,1). We put
Fy) = v (y)n(u() F(y)
L, (F) is supported in the union of the annulus By, (x,1) \ By, (z,1/2)
and the region {Uy < u < 2Up}. Stiaightforward computations using the
distributional equation satisfied by G(+, z) show that

(5.10) /Y N

~ 2 .
LEkF(y)’% dvol, < Cu(z)?
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where C' does not depend on ¢, M or k but does depend on Uy. Two points
in the proof of (5.10) need special care. On the one hand, to control the
contribution of the integrand supported in By, (x,1) \ By, (x,1/2) we must
first bound uniformly the volume of the unit ball:

vol(By, (x,1)) < C

This follows from the Bishop—Gromov inequality and the fact that the
Ricei curvature of gy is uniformly bounded below. Then, we use that for
large k we have |dulj, < 2V(u)Y/? < 2u, where V is defined in (3.5).
It follows that there is a constant C' such that for any y € By, (z,1),
u(y) < Cu(x).

On the other hand, the other possible support of the integrand in (5.10)
is the region {Uy < u < 2Up}. For such y, we also have u(y) < Cu(z)
where C' now depends on Uy (this is because u(z) > u, > 0), and therefore
x(u(y))3~¢ < Cu(x)3~¢. Together with the global uniform L? control on
Gr(y,z) and its covariant derivative (see again [11, the Appendix]), this
proves (5.10).

A variation on [19, the proof of Lemma 7.14] now gives that, for any
0<pB<3/2,

[ xtuw)y|Fw)
Yi

Here C depends only on 8 and Uy, but not on M, k or z. Now letting
M — oo gives, by definition of 1 and :

2
~ dvoly, < Cu(z)??
9k

/ u(w)* |F()f, dvoly, < Cufa)*
{u>2Uo}\Bg,, (z,1)

Finally, the integral over the region {u < 2Up}\ By, (, 1) is independently
estimated by a global L2 bound on Gy (y,«) which is uniform in k. This
completes the proof of Proposition 5.2. O

With this weighted L2-estimate in hand, we prove the following bound
on si(xr) which gives a contradiction with (5.3) (again with p = 1/8). We
let 0 < a < 1/4 and choose the gluing parameter Uy so that

(5.11) Ut Uit o

k, max

If we only cared about Case 2, we could have used a weaker constraint on
U}, but this choice turns out to be also suitable for Cases 1 and 3.

PROPOSITION 5.3. — Let 1/8 < a < 1/4 and choose the gluing param-
eter U, so that

Ut Uit o

k, max
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Then for all sufficiently large k,
3—a—1
Iskllce < U™ % ILgi (1)l co

Proof. — We first transport s; from X, to the model space Yj. Let
Nk [0,00) — [0,00) be a smooth cut-off function with nx(u) = 1 for u <
Uk max/4, ni(w) = 0 when u > Uy max/2 and

1
|77;c| + Uk, max |77g| N U
k,max

For such a choice of n; we have, in particular, that

(5.12) [V (u(-)lg, + A0k (u(-)]5, S 1

Let S, = ngsk. This defines a symmetric tensor field supported in the region
u < Ug, max and we extend it by zero to a tensor on the whole of Yj,. We
now take the Green’s representation formula for s:

sk(wr) = Sp(ar) = g Gy, z1)" (Lg, (31) () dvolg, (y)

Now Ly, (sx) is by assumption supported in the region Sy = {Ux/2 < u <
Uy}, where 1, = 1. Tt follows that

(5.13)  sklzr)l,, S </sk

T Uk, max Uk, max
</4<u<'2

(we used here the uniform bounds (5.12) on the derivatives of ny.)

We make use of Proposition 5.2. Since we are assuming here that u(xy) <
C' is uniformly bounded, we can replace the bound of this result by a
uniform constant, and we in particular have that z; & Sk.

By Cauchy—Schwarz,

A
< </Sk U(y)e‘?’Olvolgk(y)y/2 (/Sk u(y)®=

SUZ vol(Sy)1 2

Gut )], avolg, ) U g, (50l
k

1/2
~ 2
Gy )| ) (Isellz + 1 Vsellz2)
k

ék(y7 l’k)

~ dVOlgk

9k

~ 2
Gk (y7 .'L'k)

1/2
dVOng (y)>
k

g

Now vol(Sy) < U vol(Zy,) where vol(3y) is the hyperbolic volume of the
branch locus Xj. By part (3) of Proposition 1.1, we have vol(Xy) < U,f, o
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(as discussed before (5.4)) and from here we have that

(5.14) /S k

(where we have used the condition on Uy in the hypotheses, with € > 0
chosen sufficiently small).

This deals with the first term in (5.13). For the second term we use
Proposition 5.2 to write

[]k.max Uk, max
—homax g R nax

From this and Lemma 5.1 we get that the second term in (5.13) is bounded
by

ék(y7 xk)

dvoly, SUE UF e =0 (UF)
k

gk ~ k, max
g

2 <U€73
kN

. k, max
g

ék(ya :Ek?)

£41 3_ =+1 -3 —
U8~ s (sl = (Ul ) UF 2 1L (k) o

When ¢ is sufficiently small, using the hypothesis on the choice of Uy we

have . )
Ul " =0 (U 7)
Together with (5.13) and (5.14), this completes the proof of Proposition 5.3.

O

Proposition 5.3 contradicts assumption (5.1) and shows in particular that
Case 2 can actually never occur. Hence, xj, satisfies either Case 1 or Case
3. By repeating the same kind of arguments (with, however, substantial
modifications depending on the underlying geometry) we prove that neither
Case 1 nor Case 3 can occur, and obtain a contradiction. This concludes
the proof of the key estimate in Theorem 4.14.
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