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Heegaard Floer Homologies and Rational Cuspidal Curves.
Lecture notes.

ADAM BARANOWSKI, MACIEJ BORODZIK AND JUAN SERRANO DE RODRIGO

Abstract

This is an expanded version of the lecture course the second author gave at Winter-
braids VI in Lille in February 2016.

1. Introduction

Heegaard Floer homologies were defined around 2000 by Ozsváth and Szabó. Since then a
lot of research has been done in the subject and the number of papers that have appeared
in the last 15 years is immense. It appears now that the whole knot theory and topology of
three–manifolds has been affected at least in some way by this new theory.

Even though it is generally believed and almost completely proved (see [43]) that Hee-
gaard Floer theory contains the same amount of information as the Seiberg–Witten theory,
the Heegaard Floer theory has an advantage over the latter, namely often problems in Hee-
gaard Floer theory can be reduced to combinatorics of Heegaard diagrams, which makes
Heegaard Floer theory more accessible to an inexperienced reader. Moreover, this combina-
torial flavor of Heegaard Floer theory sometimes makes it possible to effectively calculate
Heegaard Floer homology groups, for example from a surgery formula [91, 92, 58].

As for the knot Floer theory: given any knot, there is not only an algorithm calculating
knot homology groups [78], but also one often understands general properties of Floer chain
complexes for knots, like torus knots and alternating knots, including two–bridge knots.

The immense speed of the development of Heegaard Floer theory makes it quite difficult
for a non–expert to get an overview of the field. In the ever-growing pile of articles on the
subject it might be hard not to get lost and to find the most important articles. Luckily, a
few excellent survey papers have appeared: those by Ozsváth and Szabó [89, 90], and more
modern ones of Juhász [34] and Manolescu [55]. A recent book [78] covers the grid diagram
approaches to Heegaard Floer theory.

The aim of these notes is to give another introduction into the subject but this time with
a clear view towards algebraic geometry. We focus on parts of the theory which are relevant
in the applications, like L–space knots and d–invariants. We omit parts which, at least at
present, have little application in algebraic geometry.

1.1. What is not in the notes?

Actually only a small part of the theory is covered in the notes. We do not mention any an-
alytic difficulties with defining the Heegaard Floer theory rigorously, like compactness and
smoothness of the moduli space of holomorphic disks used in [82]. We focus mostly on
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rational homology three–spheres, not mentioning technical issues with defining Heegaard
Floer homologies on manifolds with b1(Y) > 0. In particular, we do not discuss the action of
Λ∗H1(Y;Z) on the Heegaard Floer chain complex. Refer to [45] for more details.

Knot Floer homology is defined via Heegaard diagrams and only for knots. In the notes
we do not give any construction via grid diagrams, even though it is purely combinatorial
and has much less prerequisite knowledge; nonetheless it seems somehow that the original
approach of Rasmussen and Ozsváth–Szabó reveals better why knot Floer homology is such
a powerful tool. For a detailed account on grid Floer homology we refer to an excellent book
of Ozsváth, Stipsicz and Szabó [78] mentioned above. For other ways to define the knot Floer
homology we refer to the survey of Manolescu [55] and references therein.

We do not discuss the construction and properties of Heegaard Floer theory for links. The
definition might seem very similar for links as it is for knots, yet the applications are much
harder. In particular, the surgery formula for links is very hard, see [58] for details and [48]
for exemplary applications.

We do not introduce the τ–invariant, which is a smooth concordance invariant that detects
the four-genus of many knots, including torus knots, see [81]: for algebraic links it is equal to
the three–genus anyway, so it does not bring any new piece of information about algebraic
knots. Likewise, we do not discuss the ϒ function of Ozsváth, Stipsicz and Szabó [77], which
is a significant refinement of the τ invariant. For algebraic knots the ϒ function is related to
the Vm invariants; see [5].

Concordance invariants are only mentioned in the paper, we refer to a recent survey of
Hom [30] for more details. The whole research concerning alternating links and Heegaard
Floer–thin links is not mentioned in the article; see [80, 57]. We do not discuss double
branched covers of links and their d–invariants, like in [56]. We do not provide any relations
of Heegaard Floer theory with Khovanov homology; like in [80].

Sutured Heegaard Floer theory [33] as well as its younger cousin, the bordered Floer the-
ory, see [51, 52, 53], is not covered in these notes. Bordered Heegaard Floer theory is a gen-
eralization of the Heegaard Floer theory for three-manifolds with boundary, with the aim to
calculate Heegaard Floer homology groups by a cut-and-paste method. The algebraic setup
for the bordered Floer theory is rather complicated, but the theory itself contains a lot of
information, for example the S-equivalence class of a Seifert matrix of a knot can be read off
from the bordered Floer homology of the knot complement, see [31]. It is known that knot
Floer homology does not determine the Seifert matrix, see the discussion in [31, Section 1].

On the singularity theory side, we do not give full details on the classification of algebraic
knots (and links). A concise but self–contained description is given in the book of Eisenbud–
Neumann [14], which is also very well suited for topologists. We discuss only quickly and
superficially the theory of rational cuspidal curves, referring to the thesis of Moe [62] or to
a book of Namba [67] for a more classical version. The techniques such as spectrum semi-
continuity or applications of the Bogomolov–Miyaoka–Yau inequality are not given. A reader
wishing to learn methods of spectrum semicontinuity is referred to [16], a nice application of
the Bogomolov–Miyaoka–Yau inequality in the theory of rational cuspidal curves is given also
in [76].

1.2. What is in the notes?

Compared to what is not in the notes, the content of the paper is very scarce. With a view
towards applications in algebraic geometry we try to give just about enough details for the
reader to understand the two results about semigroup distribution property of rational cus-
pidal curves: Theorem 7.13 and Theorem 7.14, as well as their proofs. Consequently, we
introduce Heegard Floer homology in Section 2, where we also give a very brief description
of Spinc structures on three– and four–manifolds. In Section 3 we state two main results on
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Heegaard Floer theory: the adjunction inequality and the surgery exact sequence. These re-
sults are used in proofs of most of the main theorems on Heegaard Floer theory. Section 4
deals with cobordisms in Heegaard Floer theory, in particular, we define d–invariants, show
their behavior on the cobordism and define the absolute grading in the Heegaard Floer ho-
mology. At present, Theorem 4.6 is the most important result of Ozsváth–Szabó from the
point of view of applications in algebraic geometry.

Next we discuss knot Floer homology in Section 5. Our emphasis is on the Vm–invariants
for knots introduced in Section 5.4 and then on L–space knots, which we discuss in detail in
Section 5.6.

Section 6 contains a (short and by no means complete) account on cuspidal singulari-
ties. We give basic definitions and pass quickly to the construction and basic properties of
semigroups of singular points. We provide relations between semigroups and Alexander poly-
nomials. We finish by linking the semigroups of singular points with the Vm–invariants of the
links of singularities.

In Section 7 we first go quickly through recent results on rational cuspidal curves and give
Theorem 7.13 and 7.14, which are central results of these notes. We then discuss a relation
of these results with the FLMN conjecture (Conjecture 7.17), whose motivation we also recall.
Finally, we show highlights and weak points of Theorem 7.14, as well as a counterexample to
the original Conjecture 7.17 found by Bodnár and Némethi.

We have decided to give the reader a lot of problems to solve. Most of these are quick
observations, some of them might require extra work. There is one problem, namely Prob-
lem 73, which is a research problem.

Acknowledgements. The authors would like to thank the organizers of Winterbraids VI for
their effort in organizing the conference and for creating a place for disseminating new ideas
and building new perspectives in low-dimensional topology. The authors would also like to
thank Marco Golla, Jen Hom, Charles Livingston and András Stipsicz for many valuable com-
ments on a preliminary version of the notes. We are particularly indebted to the referee for
his/her remarks that led to a significant improvement of the article.

2. Heegaard Floer homology

2.1. Preliminaries. Spinc structures on three– and four–manifolds.

This section gathers some facts about Spinc structures, which will be used in later sections.
We will consider only Spinc structures on the tangent bundle of a manifold. We refer to [19,
Chapter 2] for a more detailed discussion. Other, concise references are [21, Section 1.4] or
[75, Section 1.3]. A reader might want to skip this section at first reading.

Recall that for n ≥ 3 the fundamental group of the special orthogonal group SO(n) :=
SO(n,R) is π1(SO(n)) = Z2. We define the spin group Spin(n) to be the non-trivial double
cover of SO(n), thus in the case n ≥ 3, it is the universal cover of SO(n). By the construction
there is a canonical inclusion Z2 ,→ Spin(n). The group Spinc(n) is defined to be

(2.1) Spinc(n) :=
�

Spin(n) × U(1)
�

/Z2.

It fits into the following short exact sequence

1→ U(1)
−→ Spinc(n)

p
−→ SO(n)→ 1,

where  sends z to [1, z] and p is the projection of Spinc(n) onto SO(n) via Spin(n).

Problem 1. Verify that the projection p is well defined and gives rise to the short exact
sequence above.

Consider now an oriented, n–dimensional Riemannian manifold M. We can regard the tan-
gent bundle TM as associated to the SO(n)–principal bundle PSO(n) of oriented orthonormal
frames.
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Definition 2.1 (Spinc structure). A Spinc structure on M is a pair (P,Λ) consisting of a
Spinc(n)–principal bundle P over M and a map Λ : P→ PSO(n) such that the diagram

Spinc(n) × P //

p×Λ

��

P

Λ

��

""
M

SO(n) × PSO(n) // PSO(n)

<<

with horizontal maps being the group actions on principal bundles, commutes. We denote
the set of all Spinc structures on M as Spinc(M).

There is a group homomorphism π : Spinc(n) → S1, a projection on the second factor in
(2.1) given by [g, z] 7→ z2. The composition π ◦  is then a double cover of S1. Thus, given
a Spinc structure (P,Λ) on M, the map π can be used to construct an S1–principal bundle
P1 = P/ Spin(n) over M. From this we can define the so-called determinant line bundle L→ M,
which is given by L = P1 ×S1 C. One can in fact think of a Spinc structure on M as of a choice
of a complex line bundle L and a Spin structure on TM ⊗ L−1. We refer to [75, Section 1.3]
and [19, Section 2.4] for more details.

Definition 2.2. The first Chern class of a Spinc structure s on a manifold M is c1(s) = c1(L).

As TM ⊗ L−1 is a Spin bundle, its second Stiefel–Whitney class vanishes. A quick calculus
on characteristic classes yields the following fact, see [75, Section 1.3.3].

Proposition 2.3. We have that c1(s)mod 2 ≡ 2(M), where 2(M) is the second Stiefel–
Whitney class of M.

Remark 2.4. The meaning of ‘mod 2’ can be made precise by considering the short exact

sequence 0→ Z
·2→ Z→ Z2 → 0. Associated with it is a long cohomology exact sequence (this

is best seen, when using Čech homology, see [75]), in particular there is a well-defined map
Hj(X;Z) → Hj(X;Z2) for any compact topological space X and any j ≥ 0. This map is often
denoted  7→ mod 2.

Proposition 2.5 (see [75, Proposition 1.3.14, Exercise 1.3.12]). Let M be a closed oriented
manifold. Let LM ⊂ H2(M;Z) be the set of integral lifts of the second Stiefel–Whitney class
2(M). The map c1 : Spnc(M)→ LM is surjective. Moreover, if H2(M;Z) has no 2-torsion, then
this map is also injective.

Problem 2. Show that if M is simply connected, then H2(M;Z) has no 2-torsion.

Definition 2.6. An element  ∈ LM is called a characteristic element.

In other words for manifolds such that H2(M;Z) has no 2-torsion, Spinc structures corre-
spond precisely to characteristic elements.

Another way of understanding Spinc structures on a manifold is to see that two different
Spinc structures on M differ by a complex line bundle, hence the class of isomorphisms of
complex line bundles (which in the smooth category is the same as H2(M;Z)) acts on the
set of all Spinc structures on M. This action can be shown to be transitive and free, see
again [75, Section 1.3], however there is (usually) no canonical identification of Spinc(M)
with H2(M;Z). Anyway, if H2(M;Z) is finite, then the number of Spinc structures on M is equal
to the cardinality of H2(M;Z).

We also recall another equivalent formulation of Spinc structures on three–manifolds due
to Turaev [109]. Let M be a closed, connected, oriented three–manifold. An Euler structure
is an equivalence class of non-vanishing vector field on M, where two vector fields  and 
are said to be equivalent if there exists a closed ball B ⊂ M such that  is homotopic to 
through non-vanishing vector fields on M \ ntB.
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Proposition 2.7 (see [109]). The set of Euler structures on a three–manifold is in a one-to-
one correspondence with the set of Spinc structures.

Problem 3. Construct geometrically a transitive and free action of H1(M;Z) on the set of all
Euler structures on a closed three–manifold.

We pass to a description of Spinc structures on four—manifolds. We begin with the follow-
ing fact.

Lemma 2.8 (see [21, Proposition 1.4.18]). Let M be a four–manifold with the intersection
form Q : H2(M;Z)×H2(M;Z)→ Z. Then for any  ∈ H2(M;Z) we have 〈2(M), 〉 ≡ Q(, )mod
2.

Corollary 2.9. If M is a closed simply-connected four–manifold, then Spinc structures on
M are in a one-to-one correspondence with the elements K ∈ H2(M;Z) such that Q(, ) ≡
〈K, 〉mod 2 for all  ∈ H2(M;Z).

2.2. Heegaard diagrams

A genus g handlebody U is the boundary connected sum of g copies of a solid torus D2 × S1.
In other words, it is a three–manifold diffeomorphic to a regular neighborhood of a bouquet
of g circles in R3. The boundary of U is an oriented surface  of genus g.

Definition 2.10 (Heegaard decomposition). Let M be a closed, oriented, connected three–
manifold. A Heegaard decomposition is a presentation of M as a union U0 ∪ U1, where U0
and U1 are handlebodies and  is a closed, connected surface.

Problem 4. Show that the only manifold admitting a Heegaard decomposition of genus 0 is
S3.

Example 2.11. If U0 and U1 are two solid tori glued along their boundary, then M is either S3,
S2 × S1 or a lens space.

To see this, denote by m and  the meridian and the longitude of the solid torus U,  = 1,2.
In order to glue the two tori we need to determine which curve on the torus ∂U0 will be the
meridian of ∂U1, that is, m1 = pm0 + q0 for some p, q ∈ Z. Since m1 is a closed curve,
gcd(p, q) = 1. We consider two cases: if q = 0, then p = 1, and we identify m0 with m1 and
0 with 1. The resulting three–manifold is S2 × S1. For the case q 6= 0 we will show that the
construction above is equivalent to the usual construction of a lens space defined as the
quotient of S3 by an action of Zq. In order to do that, consider S3 as a subset of C2 obtained
by gluing two solid tori U0 = {(z1, z2) ∈ C2 : |z1|2+ |z2|2 = 1, |z1|2 ≥ 1

2 ≥ |z2|
2}, U1 = {(z1, z2) ∈

C2 : |z1|2 + |z2|2 = 1, |z2|2 ≥ 1
2 ≥ |z1|

2} along the torus  = {(z1, z2) ∈ C2 : |z1|2 = |z2|2 = 1
2}.

Observe that each of these sets is preserved by an action of Zq given by [1] · (z1, z2) =
(e2π/q · z1, e2πp/q · z2), and the orbits U0/Zq, U1/Zq are again solid tori. Finally, the quotient
/Zq is a torus. Upon closer examination of the way these two quotient tori are glued under
this action, one may notice that the meridian m1 of U1/Zq is mapped exactly to the curve
pm0 + q 0 on U0/Zq; see e.g. [101] for the details.

Theorem 2.12. Each three–manifold M admits a Heegaard decomposition.

Sketch of proof. Let F : M→ [0,3] be a self–indexing Morse function, that is, a Morse function
such that the critical levels of index k are all at the level set F−1(k). (Such a function exists
by [60].) Using an argument of [60], we might and actually will assume that F has only
one minimum and only one maximum. Define U0 = F−1[0,3/2], U1 = F−1[3/2,3] and  =
F−1(3/2). As F has only one minimum and one maximum, all of the three spaces U0, U1 and 
are connected. In particular,  is a closed connected surface. The genus g() is equal to the
number of critical points F of index 1. By construction, U0 and U1 are genus g handlebodies.
This shows the existence of a Heegaard decomposition. �
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A Heegaard decomposition is definitely not unique. One of the methods of obtaining a new
Heegaard decomposition from another one is the following.

Given a Heegaard decomposition M = U0 ∪ U1 of genus g, choose two points in  and
connect them by an unknotted arc γ in U1. Let U′0 be the union of U0 and a small tubular
neighborhood N of γ. Similarly, let U′1 = U1 \N. The new decomposition M = U′0∪′ U

′
1 is called

the stabilization of M = U0 ∪ U1. Clearly g(′) = g() + 1. Stabilizations and destabilizations
will be discussed in a greater detail below (see Theorem 2.17).

In fact any two Heegaard decompositions are related by stabilizations and destabilizations
(a precise statement is given in Theorem 2.17 below). This can be seen using Cerf theory
[12]. Any two Morse functions F0 and F1 on M can be connected by a path Ft, t ∈ [0,1] in the
space of all smooth functions from M to R in such a way that for all but finitely many values
t ∈ [0,1], Ft is a Morse function and there is a finite number of special values t1, . . . , tn at
which a cancellation or a creation of a pair of critical points occurs. A more detailed analy-
sis reveals that stabilizations and destabilizations of Heegaard diagrams correspond to cre-
ations, respectively, cancellations, of pairs of critical points of index 1 and 2. We omit the
details, referring to [12]. An interested reader might find helpful a detailed exposition of the
subject in [35].

Problem 5. Construct explicitly a Heegaard decomposition of S3 of an arbitrary genus g.

Theorem 2.12 allows us to think of a three–manifold Y as a pair of two handlebodies
U0 and U1 glued along their boundaries via a homeomorphism ϕ : ∂U0 → ∂U1. As isotopic
homeomorphisms ϕ give rise to homeomorphic manifolds, in general, ϕ is an element of
the mapping class group of ∂U0, and elements in mapping class groups are rather hard to
deal with. Luckily, there is a more geometric point of view of a Heegaard decomposition.
Suppose that F is a Morse function on Y such that F−1[0,3/2] = U0 and F−1[3/2,3] = U1.
Let  = F−1(3/2) = ∂U0 = ∂U1. Choose a Riemannian metric on M and consider the gradient
∇F. Critical points of F correspond to stationary points of the vector field ∇F and the Morse
condition means that the stationary points are hyperbolic, hence the stable and unstable
manifolds are well defined. (We refer to [23] for more details on stable and unstable mani-
folds.) Moreover, the Morse index of F gives precise information about the dimensions of the
stable and unstable manifolds given by the stationary points of ∇F. Each index 1 critical point
of F has a 2-dimensional unstable manifold of ∇F. Likewise, each index 2 critical point of F
has a 2-dimensional stable manifold of ∇F. The unstable manifold of a critical point of index
1 intersects  along a simple closed curve and the stable manifold of a critical point of index
2 intersects  along a simple closed curve.

If the genus of the Heegaard decomposition is g, the above procedure yields precisely g
simple closed curves on  obtained as intersections of unstable manifolds of critical points
of index 1 with , and g simple closed curves obtained as intersections of stable manifolds
of critical points of index 2 with . Call the first set of curves α1, . . . , αg and the second set
β1, . . . , βg. We will often call these curves α–curves and β–curves. By construction both the
α–curves and the β–curves are pairwise disjoint. If ∇F satisfies the Morse–Smale condition,
then the α–curves intersect the β–curves transversally.

Problem 6. Prove that each of the α curves constructed above is homologically trivial in U0
and each of the β–curves is homologically trivial in U1.

Show even more, namely, that the curves α1, . . . , αg span kerH1(;Z) → H1(U0;Z) and
that a similar statement holds for the β–curves.

The last problem leads to the following definition:

Definition 2.13 (Heegaard diagram). Let Y = U0 ∪ U1 be a Heegaard decomposition of a
three–manifold Y, and let g be the genus of . A Heegaard diagram is a triple (,α,β), where
α and β are unordered collections of g simple closed curves α1, . . . , αg and β1, . . . , βg, such
that:
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• α ∩ αj = β ∩ βj = ∅ if  6= j.

• The curves {α1, . . . , αg} form a basis of ker
�

H1(;Z) → H1(U0;Z)
�

and {β1, . . . , βg}
form a basis of ker

�

H1(;Z)→ H1(U1;Z)
�

.

Problem 7. Consider ×[0,1]. Thicken all the α–curves on ×{1} to obtain pairwise disjoint
annuli A1, . . . , Ag ⊂  × {1}. Set A = A1 ∪ . . . ∪ Ag. Define

H =  × [0,1] ∪A
g
⋃

j=1
Dj,

where Dj = D ×  is a disk D cross the interval , glued to  × {1} along Aj. Prove that ∂H is a
disjoint union of  × {0} and a two–sphere.

Use this problem to explicitly reconstruct a three–manifold from  and the collection of α–
and β–curves.

The approach to three–manifolds via Heegaard diagrams allows us to obtain a combinato-
rial approach to studying three–manifolds. Heegaard Floer theory can be regarded as a way
of extracting information about the three–manifold from the combinatorics of a Heegaard
diagram.

Before we go further, we need to understand how a Heegaard diagram depends on the
choice of the Morse function F.

Remark 2.14. If the Heegaard diagram is built from the vector field ∇F, that is, the α–curves
and the β–curves are the intersections of the unstable and stable manifolds with , then the
Heegaard diagram depends also on the Riemannian metric used to define the vector field
∇F.

Definition 2.15. Two Heegaard diagrams (,α,β), (′,α′,β′) are diffeomorphic if there is
an orientation–preserving diffeomorphism of  to ′ that carries α to α′ and β to β′.

Definition 2.16 (Handlesliding). Let U be a handlebody and denote by γ = {γ1, . . . , γg}
a set of attaching circles for U. Let γ, γj ∈ γ with  6= j. We say that γ′ is obtained from
handlesliding γ over γj if γ′ is any simple closed curve which is disjoint from the γ1, . . . , γg,
and the curves γ′ , γ, γj bound a pair of pants in  (see Figure 2.1). In that case, the set
γ′ = {γ1, . . . , γ−1, γ′ , γ+1, . . . , γg} (with γ replaced by γ′ ) is also a set of attaching circles
for U.

γ

γ′

γj

Figure 2.1: Handlesliding γ over γj.

The following result is classical, we refer to [82, Proposition 2.2] for a proof. One can find
a detailed discussion in [35] as well.

Theorem 2.17. Two Heegaard diagrams (,α,β) and (′,α′,β′) represent the same three–
manifold if and only if they are diffeomorphic after a finite sequence of the following moves:
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1. Isotopy. Two Heegaard diagrams (,α,β) and (′,α′,β′) are isotopic if  and ′ are
of the same genus and there are two one–parameter families αt and βt of g–tuples of
curves, moving by isotopies so that, for each t, both the αt and the βt are g–tuples
of smoothly embedded, pairwise disjoint curves such that (α0,β0) = (α,β), (α1,β1) =
(α′,β′).

2. Stabilization. We say that the diagram (′,α′,β′) is obtained from (,α,β) by stabi-
lization if ′ ∼= #T2 (connected sum) and α′ = {α1, . . . , αg, αg+1}, β′ = {β1, . . . , βg,
βg+1}, where αg+1, βg+1 is a pair of curves in T2 which meet transversally in a single
point.

3. Destabilization. It is an inverse move to a stabilization.

4. Handleslide. We say that the diagram (′,α′,β′) is obtained from (,α,β) by a
handleslide if  and ′ are of the same genus and either α = α′ and β′ is obtained
from β by a handleslide, or β′ = β and α′ is obtained from α by a handleslide.

Idea of proof. One of the methods of proving, or at least understanding, the result, is to use
Cerf theory again. Namely, choose a Riemannian metric on a three-manifold Y and suppose
F0 and F1 are two different Morse functions on Y having a single minimum. We connect F0
and F1 by a generic path Ft in the space of smooth functions on Y as we did above. This time,
however, we take into account not only situations, where Ft ceases to be a Morse function
(which correspond to births/deaths of critical points), but also situations, where ∇Ft ceases
to be a Morse–Smale flow. These situations correspond precisely to the handle slides. A very
detailed discussion is included in [35]; the proof of Theorem 2.17 in [82] does not appeal to
Cerf theory. �

In Heegaard Floer theory, we will need to add an extra structure on Heegaard diagrams.

Definition 2.18 (Pointed Heegaard diagram). A pointed Heegaard diagram is a quadruple
(,α,β, z), where z ∈  \ (α ∪ β).

2.3. Symmetric products

Let (,α,β, z) be a pointed Heegaard diagram. Let us consider the symmetric product

Symg() =

g
︷ ︸︸ ︷

 × . . . ×  /Sg,

where Sg is the symmetric group on g letters. In other words, Symg() consists of unordered
g-tuples of points in  where we also allow repeated points. Observe that Symg() is a
manifold.

Problem 8. Prove that π1(Symg()) is abelian.

Problem 9. Let  : H1(;Z)→ H1(Symg();Z) be a map induced by the inclusion  × {∗} ×
· · · × {∗} to Symg(). On the other hand, observe that a curve in Symg() in a general
position corresponds to a map from a g–fold cover of S1 to  and in this way we might define
a map j : H1(Symg();Z) → H1(;Z). Show that the two maps  and j are inverse to each
other.

Proposition 2.19 (see [82, Proposition 2.7]). Let g > 2, then π2(Symg()) = Z and the
action of π1(Symg()) on π2(Symg()) is trivial.

Remark 2.20. For g = 2 we still have π2(Symg()) = Z, but the action of π1(Symg()) is no
longer trivial, this poses minor problems, one avoids them by requiring g > 2.
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The manifold Symg() inherits a complex structure and a symplectic structure from . Let
J denote this complex structure on Symg(). Consider the products

Tα = α1 × . . . × αg/Sg

and
Tβ = β1 × . . . × βg/Sg.

Problem 10. Show that Tα and Tβ are totally real, that is, at each point  ∈ Tα we have
TTα ∩ JTTα = {0}.

Remark 2.21. The fact that Tα and Tβ are totally real might make one think that Heegaard
Floer theory is a Lagrangian Floer theory of the intersections of Tα and Tβ. While this was
generally believed since the dawn of Heegaard Floer theory, the details were worked out only
a few years later by Perutz [96].

Problem 11. Show that there is a 1 − 1 correspondence between points x ∈ Tα ∩ Tβ and
g-tuples of points (1, . . . , g) ∈  × . . . ×  such that there exists a permutation σ ∈ Sg and
 ∈ α ∩ βσ().

Problem 12. Show that if each of the α–curves is transverse to each of the β–curves, then
also Tα intersects Tβ transversally.

Problem 13. Let Tα be the image of H1(Tα;Z) in H1(Symg();Z), let also Tβ be the image
of H1(Tβ;Z) in H1(Symg();Z). Prove that

H1(Symg();Z)/(Tα + Tβ) ∼= H1(;Z)/([α1], . . . , [βg]) ∼= H1(Y;Z).

Chose two paths  and b, one belonging to Tα, the other belonging to Tβ. Assume that
they have the same endpoints , y ∈ Tα ∩Tβ. These two paths form a loop γ ∈ π1(Symg()).

Problem 14. Prove that γ depends only on  and y and not on  and b.

Taking the solution of Problem 14 for granted, with each pair of points , y ∈ Tα ∩ Tβ we
associate an element ε(, y) ∈ H1(Y;Z).

Problem 15. Prove that ε is additive in the sense that ε(, y) + ε(y, z) = ε(, z) ∈ H1(Y;Z).

There exists another description of the class ε(, y) (the reader might want to look back
to Section 2.1 before reading this paragraph). To begin with, choose a point  ∈ Tα ∩Tβ. Each
such point, by Problem 11, corresponds to a set of g–points 1, . . . , g, such that  ∈ α∩βσ(),
where σ is some permutation of the set {1, . . . , g}. Each of the  corresponds to a trajectory
γ of the vector field ∇F, which connects a critical point of index 1 to a critical point of index 2.
There is also a unique trajectory γz passing through the point z. It connects the critical point
of index 0 with the critical point of index 3. Take now small neighborhoods U1, . . . , Ug, Uz of
the trajectories γ1, . . . , γg, γz. Let Yo be the complement Y\(U1∪. . .∪Ug∪Uz). The vector field
∇F does not vanish on Yo. The pair (Yo,∇F) defines then a so–called smooth Euler structure
on Y; see [109]. By the result of Turaev, a smooth Euler structure corresponds to a Spinc

structure on Y [109, Proposition 2.7]. Call this structure s. Each Spinc structure has its Chern
class c1 ∈ H2(Y;Z), as was discussed in Section 2.1.

Proposition 2.22 (see [82, Lemma 2.19]). Given any two points , y ∈ Tα∩Tβ, the difference
c1(s) − c1(sy) is the Poincaré dual to ε(, y).

2.4. The chain complex ÓCF

We will work mostly over Z2. For simplicity, unless specified otherwise, we will assume that
b1(Y) = 0.

Let (,α,β, z) be a pointed Heegaard diagram for Y. Assume that the α and β curves
intersect transversally. Then, the chain complex ÓCF is defined (over Z2) to be generated by
the intersection points Tα ∩Tβ.
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Remark 2.23. There are a few technical assumptions on the Heegaard diagram used in the
construction of the chain complex. First of all, we usually assume that g > 2 (case g = 1 is
very special and also possible, see [82, Remark 2.16]); see Remark 2.20 for the case g = 2.

If b1(Y) > 0, one adds an extra assumption on the Heegard diagram, namely admissibility,
see [82, Section 5]. For example, this condition rules out a diagram for S2 × S1, where  is
a torus and the α–curve and the β–curve are parallel, so Tα ∩ Tβ is empty. An admissible
Heegaard diagram for S2 × S1 can be obtained by moving the β–curve by an isotopy in such
a way that two intersection points with the α–curve are created.

We now define the differential ∂. Let x,y ∈ Tα ∩ Tβ be two intersection points. Denote
by π2(x,y) the set of relative homotopy classes of disks ϕ : D2 → Symg() with ϕ(−1) = x,
ϕ(1) = y, ϕ(∂+D2) ⊂ Tα and ϕ(∂−D2) ⊂ Tβ. Here D2 is the unit disk in the complex plane,
∂±D2 is the part of the boundary having positive (respectively: negative) imaginary part.

Problem 16. Show that π2(x,y) can be non-empty only if ε(x,y) = 0.

Problem 17. Show that π2(x,y) admits a multiplication defined as

π2(x,y) ? π2(y,z)→ π2(x,z)

Show that ? is associative. Prove also that π2(x,x) is a group.

Problem 18. Show that there is an action of π2(Symg()) = Z on each of the sets π2(x,y).

Problem 19. Draw a standard g = 1 Heegaard diagram for a lens space L(p, q). Show that
there are precisely p intersection points of the α–curves with β–curves and ε(x,y) 6= 0 as
long as x 6= y.

Problem 20. Write explicitly all holomorphic maps from D2 to D2 that fix −1 and 1 and take
∂+D2 to ∂+D2. Show that the space of these maps can be parametrized by R.

Given ϕ ∈ π2(x,y), a holomorphic representative for ϕ is a map  : D2 → Symg() in the
homotopy class ϕ that is holomorphic. Recall that Symg() has a complex structure induced
from  and D2 has a standard complex structure.

Remark 2.24. For various genericity results, the complex structure on Symg() induced from
a complex structure on  might be too rigid and one often needs to consider almost complex
structures (that is, endomorphisms of the tangent bundle whose square is minus the identity)
and pseudo-holomorphic maps instead of holomorphic. We refer to [82, Section 3.1] for more
details.

We denote by M(ϕ) the space of holomorphic representatives of ϕ. For any class ϕ ∈
π2(x,y), there is an integer μ(ϕ) ∈ Z called the Maslov index. A detailed definition of the
Maslov index in Heegaard Floer theory can be found in [46, Section 4]. The Maslov index is the
dimension of the moduli space of holomorphic representatives (provided the almost complex
structure is sufficiently generic). By Problem 20, there is an action of R on M(ϕ) given by the
automorphisms of the domain D2 that fix 1 and −1. If ϕ is not the class of a constant map,
and the complex structure on  was generic, then the quotient ÓM(ϕ) =M(ϕ)/R is a smooth
manifold of dimension μ(ϕ) − 1; see [102]. If additionally μ(ϕ) = 1, we define

#ÓM(ϕ) ∈ Z

to be the number of the elements in the quotient.

Remark 2.25. In [82, Section 3.6] there is described a way to associate a sign to each element
ÓM(ϕ) as long as μ(ϕ) = 1. This allows us to define the differential in the Heegaard Floer theory
over Z. As we already mentioned above, we will mostly focus on the theory over Z2.

The basepoint z can be used to construct a codimension two submanifold (in the language
of algebraic geometry: a divisor), Rz :=  × . . . ×  × {z} ⊂ Symg() (the product is formally
defined in ×g, we project it to Symg()).
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Problem 21. Observe that, by construction, Tα and Tβ are disjoint from Rz.

Given intersection points x,y ∈ Tα ∩Tβ and a class ϕ ∈ π2(x,y), we define nz(ϕ) to be the
intersection number between ϕ and Rz.

The differential for ÓCF is then given by

(2.2) ∂x =
∑

y∈Tα∩Tβ

∑

ϕ∈π2(x,y)
nz(ϕ)=0, μ(ϕ)=1

#ÓM(ϕ) y.

In a few words, the differential counts holomorphic disks between x and y which do not
intersect the divisor Rz.

Problem 22. Show that for a lens space with a standard Heegaard diagram and g = 1,
∂x = 0 for all x ∈ Tα ∩Tβ.

Problem 23. Take the standard diagram for S2 × S1 with g = 1. Move the α–curve so that
it intersects the β–curve at precisely two points x and y. Calculate the differential and the
homology groups (compare Remark 2.23).

The following fact holds.

Theorem 2.26 (see [82, Theorem 4.1]). We have ∂2 = 0. The homologies ÓHF(Y) are inde-
pendent of the choice of the Heegaard diagram, and, therefore, are invariants of the three–
manifold Y.

Remark 2.27. The words ‘independent of the choice’ might have different meanings. Origi-
nally, in [82], it was proved that a change of the Heegaard diagrams as in Section 2.2 above
changes ÓHF(Y) by an isomorphism. Therefore, ÓHF(Y) was well defined up to isomorphism. In
[35] Juhász and Thurston showed more, namely the naturality of the Heegaard Floer theory.
Naturality means that the Heegaard Floer theory assigns a concrete group to each based1

three–dimensional manifold and each diffeomorphism of a based manifold induces an iso-
morphism of corresponding Heegaard Floer groups. This naturality property is proved for all
flavors of the Heegaard Floer homology. It lies at the heart of the involutive Floer theory as
defined in [27] via the maps studied in detail in [104, 115]; see also [28].

Problem 24. Prove that ÓHF(Y) splits as a direct sum ÓHF(Y, s) over all the Spinc structures of
Y.

Problem 25. Prove that if Y is a rational homology sphere, then ÓHF(Y, s) is non-trivial for any
Spinc structure. In particular, rnkÓHF(Y) ≥ |H1(Y;Z)|, where | · | denotes the cardinality of a
set.

Definition 2.28 (L–space). A rational homology sphere is called an L–space if

rnkÓHF(Y) = |H1(Y;Z)|.

Problem 26. Prove that all the lens spaces are L–spaces.

2.5. Complexes CF−, CF+ and CF∞

The complex structure on Symg() and the holomorphicity of the maps used in the definition
of M were used to give rigidity to the space M (to make sure it has a finite dimension).

The existence of this structure has one more consequence. Namely that the nz(ϕ) defined
above is always non–negative. We will define a new chain complex, where we count all the
holomorphic disks with μ(ϕ) = 1, regardless of the value of nz(ϕ). The chain complex CF−

is generated by the intersection points Tα ∩ Tβ, but this time not over Z2, but over the ring
Z2[U], where U is a formal variable. The differential for CF− is defined by

1A based manifold is a manifold with a choice of a base point.
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(2.3) ∂x :=
∑

y∈Tα∩Tβ

∑

ϕ∈π2(x,y)
μ(ϕ)=1

#ÓM(ϕ)Unz(ϕ) y.

Theorem 2.29. We have ∂2 = 0. The homology groups HF−(Y) do not depend on the choice
of the Heegaard diagram.

Remark 2.27, explaining the meaning of ‘do not depend’, still applies in the case of HF− .
As before, the group HF−(Y) splits as a sum over the Spinc structures of Y. We also have the
following fact, which is not very hard to prove.

Proposition 2.30. A three–manifold Y is an L–space if and only if, for every s, HF−(Y, s) ∼=
Z2[U].

In algebra there is a procedure called localization, which roughly means inverting formally
some variables in a ring. For example, the localization of Z2[U] with respect to the multi-
plicative system generated by U is the ring Z2[U,U−1]. We can perform this operation on the
module CF− : define a chain complex as generated by Tα ∩Tβ, but this time over Z2[U,U−1].
The chain complex will be denoted by CF∞. The differential is defined as in (2.3). The homol-
ogy of the complex is well-defined and will be denoted by HF∞(Y, s). As it might be expected,
by passing to a localization, we lose some information. Actually we lose a lot: namely, the
following holds.

Theorem 2.31 (see [83, Theorem 10.1]). Suppose Y is a rational homology sphere. We have
an isomorphism of Z2[U,U−1]–modules

HF∞(Y, s) ∼= Z2[U,U−1].

Remark 2.32. Theorem 2.31 allows generalizations for non rational homology spheres; again,
see [83, Theorem 10.1].

The chain complex CF− can be regarded as a subcomplex of CF∞. For this, we need to
regard CF∞ as a complex over Z2[U]. The quotient complex CF+(Y) is well defined. This is a
chain complex over Z2[U]. The homologies are called HF+(Y).

Problem 27. Prove that for every element  ∈ CF+ there exists k ≥ 0 such that Uk = 0.

The short exact sequence

0→ CF− → CF∞ → CF+ → 0

gives rise to an exact triangle in homology.

Proposition 2.33. There exists yet another short exact sequence

0→ÓCF→ CF+
·U→ CF+ → 0

giving rise to a long exact sequence in homology.

Problem 28. Write precisely the two long exact sequences mentioned above. Watch out for
grading shifts; these will be introduced below.

Problem 29. Prove that HF+(Y, s) splits non-canonically as a sum of a part isomorphic to
Z2[U,U−1]/(U) and a part finitely generated over Z2. Show that Y is an L–space if and only if
for every s we have HF+(Y, s) = Z2[U,U−1]/(U) as Z2[U] modules.

So far we have defined various chain complexes, but we have not defined a grading yet.
We have the following useful Lemma.

Lemma 2.34 (see [82, Lemma 3.3], [90]). If g > 2, then for any ϕ ∈ π2(x,y) the difference
μ(ϕ) − 2nz(ϕ) does not depend on the specific choice of ϕ, only on x and y.
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Lemma 2.34 allows us to define the relative grading of chain complexes. Namely, we
define the Maslov grading M(x)−M(y) = μ(ϕ)− 2nz(ϕ). The differential decreases the Maslov
grading by 1, provided we require that the multiplication by U shifts the Maslov grading by
−2. Later on we will show that the Maslov grading gives rise to an absolute grading.

Problem 30. Suppose that (M1, s1) and (M2, s2) are two three–manifolds. Prove the following
Künneth formula for ÓCF:

ÓCF(M1#M2, s1#s2) ∼=ÓCF(M1, s1) ⊗ÓCF(M2, s2)

3. Why do things work?

It is not that hard to define invariants of three–manifolds. It is hard, though, to construct
meaningful invariants. This means, invariants over which we have some control, and for
which we can calculate some non-trivial estimates. In this section we are going to give two
highly non-trivial results, which lie at the heart of the Heegaard Floer theory. These are the
adjunction inequality and the surgery exact sequence. Many crucial results in Heegaard Floer
theory rely on these two results.

3.1. Adjunction inequality

In algebraic geometry one has the so-called adjunction formula. In short if D is a smooth
divisor in a projective variety X and KD, KX denote canonical divisors, then KD = (KX + D)|D.
For readers not aquainted with the language of algebraic geometry, one can think of KD and
KX as (first Chern classes of) complex line bundles KD = ΛdimDT∗D, KX = ΛdimXT∗X and the
divisor D defines a complex line bundle, whose first Chern class is Poincaré dual to the class of
D. The sum of divisors corresponds to a tensor product of line bundles and restriction means
the restriction of line bundles in the ordinary sense. We refer to any textbook in algebraic
geometry, like [24], for more details. With this setting, the adjunction formula is almost a
tautology.

As a special case, suppose that C is a smooth complex curve in a projective surface X and
K is the canonical divisor. We have that KC = (KX + C)|C and applying the classical Riemann–
Roch theorem yields

(3.1) χ(C) = −C(C + KX).

For example, if X = CP2 and C is a smooth complex curve of degree d, then in H2(X;Z) we
have C = dH, K = −3H, where H is the class of a line and so χ(C) = −d(d − 3). Equation (3.1)
is sometimes referred to as the adjunction equality.

It is trivial to see that the adjunction equality (3.1) has no chances to hold in a smooth
category. For example, draw a genus g surface in C2, it is a homologically trivial surface in
the compactification CP2, so (3.1) would imply that 2 − 2g = 0.

A wonderful tool in Seiberg–Witten theory is the adjunction inequality. Recall that Seiberg–
Witten theory assigns to every Spinc structure s on a smooth four–manifold X with b+2 (X) > 1
an integer number SWX(s). We have the following remarkable theorem, which we state in a
simple form, see e.g. [105, Section 10] for a more detailed version. Other sources are [42,
Section 40] and [75, Section 4.6].

Theorem 3.1 (Adjunction inequality in Seiberg–Witten theory). Suppose X is a smooth four–
manifold with b+2 (X) > 1. Let C ⊂ X be a smooth closed connected embedded surface such
that C2 ≥ 0 and C is homologically non–trivial. If s is a Spinc structure on X such that SWX(s) 6=
0, then χ(C) + C2 ≤ −|〈c1(s), C〉|.

The assumption that C is smooth is essential. For example, in [44] there are constructed
locally flat embedded surfaces C in CP2 such that χ(C) > −d(d− 3), where d is the degree of
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C. This problem is related to showing that the topological four–genus of some algebraic knots
is strictly less than the smooth four–genus; see [103, 1].2

In Heegaard Floer theory, the adjunction inequality is a key tool in proving many important
theorems. The formulation below involves manifolds with b1 > 0. In that case, the homology
HF+(Y, s) can be zero for some Spinc structures, unlike in the case b1 = 0 (cf. Problem 25).

Theorem 3.2 (Adjunction Inequality). Suppose Y is a three–manifold with b1(Y) > 0. Let s be
a Spinc structure for which HF+(Y, s) is non–zero. Suppose Z ⊂ Y is a smooth closed oriented
surface and g(Z) > 0. Then |〈c1(s), [Z]〉| ≤ 2g(Z) − 2.

The adjunction inequality is proved in [83, Section 7].

3.2. The surgery exact sequence

One of the most important basic tools for calculating the Heegaard Floer invariants is the
surgery exact sequence. The most basic form of it is often used as a template for proving
more general statements. A surgery exact sequence exists in the Seiberg–Witten Floer theory
(see for example [42, Section 42] and references therein). In Heegaard Floer theory, we have
a way of calculating any surgery on a null–homologous knot in an integer homology three–
sphere, provided we know its knot Floer chain complex; see [91] for details. This general
surgery formula relies on the following fundamental result, see [83, Theorem 1.7].

Theorem 3.3 (Surgery Exact Sequence). Let Y be an integral homology three–sphere and
K ⊂ Y be a knot. Then there exists a U–equivariant exact sequence:

. . .→ HF+(Y)→ HF+(Y0)→ HF+(Y1)→ HF+(Y)→ . . .

where Y1 is the +1 surgery and Y0 is the 0 surgery on K.

The surgery exact sequence is proved in [83, Section 9]. The key idea is to find a triple
Heegaard diagram, that is a quintuple (,α,β,γ, z), such that (,α,β, z) is a Heegaard dia-
gram for Y, (,α,γ, z) is a Heegaard diagram for Y0 and (,β,γ, z) is a Heegaard diagram
for Y1. The details and the proof of the existence of such a triple Heegaard diagram are
given in [83, Lemma 9.2]. Speaking very roughly, given the Heegaard diagram, the maps
in the surgery long exact sequence are built by counting holomorphic triangles, instead of
holomorphic disks.

4. Cobordisms and d–invariants.

4.1. Absolute grading

This section is based on [79].

Definition 4.1. Let (Y1, s1), (Y2, s2) be two Spinc three–manifolds. We say that (W, t) is a
Spinc cobordism between Y1 and Y2 if W is a smooth four–manifold with boundary Y2 t −Y1
and t is a Spinc structure on W whose restriction to Y is s,  = 1,2.

Theorem 4.2 (see e.g. [79, Section 2]). If (W, t) is a smooth Spinc cobordism between
(Y1, s1) and (Y2, s2), then there exist maps F•W,t : HF

•(Y1, s1)→ HF•(Y2, s2) with • ∈ {+,−,∞},
making the following diagram commute

(4.1) . . . // HF−(Y1, s1)

F−W,t
��

// HF∞(Y1, s1)

F∞W,t
��

// HF+(Y1, s1)

F+W,t
��

// . . .

. . . // HF−(Y2, s2) // HF∞(Y2, s2) // HF+(Y2, s2) // . . .

2Of course, one can complain that b+2 (CP
2) = 1, so technically speaking locally flat curves in CP2 are not coun-

terexamples to the statement of Theorem 3.1, but they give an idea of the reason why Theorem 3.1 does not hold
in the topological locally flat category.
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The idea of the proof is to split the cobordism into handle attachments. The non-trivial part
comes from two–handle attachments, which are basically dealt with using a refined version
of the surgery exact sequence. We define a relative grading of the map induced by F.

Theorem 4.3 (see [88, Theorem 7.1]). The map F•W,t has relative Maslov grading equal to

degF•W,t :=
c1(t)2 − 2χ(W) − 3σ(W)

4
.

We can now make the gradings in Heegaard Floer homology groups absolute by requiring
that the generator of HF−(S3) be at Maslov grading −2, or, equivalently, that the lowest
grading of HF+(S3) be at Maslov grading 0.

4.2. The d–invariants

The fact that FW,t preserves the grading is very interesting, but on its own does not give
much of insight in the behavior of Heegaard Floer homology under cobordisms. A reader with
some experience in Khovanov homology surely knows that the map in Khovanov homology
induced by a knot cobordism has a fixed grading, but we do not know much more about this
map; even the question whether it is non-trivial is not well understood.

Luckily, in the Heegaard Floer case, we have the following crucial fact.

Theorem 4.4 (see [79, Proof of Theorem 9.1]). If W has negative definite intersection form,
and Y1, Y2 are rational homology spheres, then F∞W,t is an isomorphism. On the contrary, if

b+2 (W) > 0, then F∞W,t is the zero map.

Definition 4.5. Let (Y, s) be a rational homology three–sphere. The d–invariant or the cor-
rection term d(Y, s) is defined as the minimal absolute grading of a non-trivial element
 ∈ HF+(Y, s) which is in the image of HF∞(Y, s).

Let (W, t) be a Spinc cobordism between (Y1, s1) and (Y2, s2). The main result related to
the d–invariants is the following.

Theorem 4.6 (see [79, proof of Theorem 9.9]). Suppose (W, t) is a Spinc cobordism between
rational homology spheres (Y1, s1) and (Y2, s2). If b+2 (W) = 0, then

(4.2) d(Y2, s2) − d(Y1, s1) ≥
1

4
(c1(t)2 − 2χ(W) − 3σ(W)).

Problem 31. Using (4.1) and Theorem 4.4, prove Theorem 4.6.

The d–invariants are strong enough to prove Donaldson’s diagonalization theorem via
Elkies’ theorem; see [79, Section 9]. A version of d–invariants for manifolds with b1 > 0,
whose rudiments were established in [79], and which was developed in full details in [45],
can be used to reprove the Kronheimer-Mrowka result on the smooth four–genus of torus
knots. We refer again to [79, Section 9].

We gather now a few facts about the d–invariant, the first one is proved in [79, Theorem
4.3], while the second is proved in [79, Proposition 4.2].

Proposition 4.7.

• The d–invariant is additive. That is, if (Y1, s1) and (Y2, s2) are two rational homology
three–spheres, then d(Y1#Y2, s1#s2) = d(Y1, s1) + d(Y2, s2).

• Let (Y, s) be a rational homology three–sphere. Then d(−Y, s) = −d(Y, s).

The first part of the proposition follows essentially from the Künneth principle (with some
technical problems in homological algebra). However, the second part is more difficult than
one could expect.

Using second part of Proposition 4.7 together with Theorem 4.6 we obtain the following
result.
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Corollary 4.8. If (Y, s) bounds a rational homology ball W (that is, if Hk(W ; Q) = 0 for k ≥ 1)
and the Spinc structure s extends over W, then d(Y, s) = 0.

Problem 32. Prove Corollary 4.8.

We will be able to calculate the d–invariants for a large class of three–manifolds using
Heegaard Floer homology for knots. This theory, usually called knot Floer theory, will be
discussed in the next section.

Problem 33. Drill two balls from CP2 so as to obtain a cobordism between two copies of
S3. Find all Spinc structures on the cobordism that extend the Spinc structure on S3 (use
Corollary 2.9). Use this example to show that Theorem 4.6 dramatically fails if b+2 (W) > 0.

5. Heegaard Floer homology for knots

There is a variant of Heegaard Floer homology for knots and links. We will focus on knots
in S3, although a significant part of the results carries through to null-homologous knots in
rational homology spheres. The case of links, though, does not seem to be more complicated
at the beginning, but there are surprisingly many highly non-trivial technical problems, e.g.
if one tries to establish a surgery formula. The reader with some experience in link theory
might think that Heegaard Floer homology for links is more complicated than for knots in a
similar manner as Blanchfield forms for links are way more complicated than for knots.

5.1. Heegaard diagrams and knots

Suppose Y is a three–manifold and (,α,β) is a Heegaard diagram for Y. Choose two base
points z and  in \(α∪β). Such quintuple (,α,β, z,) is called a doubly pointed Heegaard
diagram.

Given a doubly pointed Heegaard diagram (,α,β, z,) we not only recover the man-
ifold Y, but we obtain a way to encode a knot in Y. To this end, suppose the Heegaard
decomposition is Y = U0 ∪ U1. Connect points  and z by two curves  ⊂  \ {α1, . . . , αg},
b ⊂  \{β1, . . . , βg}, and then push  into U0 and b into U1. These two curves together result
in a knot K ⊂ Y.

Problem 34. Prove that the isotopy type of K does not depend on the actual choice of the
curves  and b.

Conversely, a knot K ⊂ Y determines a doubly pointed Heegaard diagram (,α,β,, z).
We focus on the case Y = S3. Take a bridge presentation of K, i.e., its projection with a division
of K into 2g + 2 segments (for some g ≥ 0) 1, . . . , g+1, b1, . . . , bg+1 ⊂ K, such that all the
crossings are only between segments  and bj and in such a way that, for every intersection,
 always goes transversely over bj (see Figure 5.1).

Consider the plane with this projection as {z = 0} ⊂ R3 and add to it a point at infinity,
so that we may consider it as a subset of a 2-sphere S2 ⊂ S3. Let us define β1, . . . , βg as
boundaries of some small pairwise non-intersecting tubular neighborhoods of b1, . . . , bg in
this sphere. Now attach to the resulting sphere g + 1 handles at the endpoints of segments
1, . . . , g+1 in such a way that β1, . . . , βg encircle attaching discs of handles 1, . . . , g re-
spectively. We imagine these handles as sitting above the plane, i.e., as subsets of {z ≥ 0} ⊂
R3. By this construction we clearly obtain a genus g + 1 surface . We define the remaining
βg+1 curve as a meridian of the handle corresponding to the curve g+1. Finally, define the
loops α1, . . . , αg+1 as curves going along these attached handles and connected at the ends
via the remaining parts of 1, . . . , g+1, respectively. We arrange all the intersections to be
transversal. This is the stabilized Heegaard diagram (,α,β) associated to the knot K; see
Figure 5.2.
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1

2

b1

b2

Figure 5.1: A bridge presentation of a figure-eight knot.

α2

β2

β1
α1

Figure 5.2: A stabilized diagram (,α,β) associated to a figure-eight knot
bridge presentation from Figure 5.1. Empty circles at the endpoints of α de-
note the disks where the handles are attached.

Problem 35. Show that the stabilized Heegaard diagram (,α,β) constructed above repre-
sents S3.

For the construction of a chain complex associated to a knot K we need to introduce base-
points. They are obtained by destabilizing the diagram (,α,β) (cf. Theorem 2.17). Namely,
we forget about the curves αg+1, βg+1, and remove the handle associated to the curve g+1,
defining points , z as the endpoints of g+1. This results is a destabilized Heegaard diagram
(,α,β,, z), where  is now a surface of a genus g, and α = {α1, . . . , αg}, β = {β1, . . . , βg};
see Figure 5.3.

Problem 36. At the beginning of Section 5.1 we described a recipe for obtaining a knot from
a doubly pointed Heegaard diagram and later we sketched a way to obtain a doubly pointed
Heegaard diagram from a knot. Show that if one starts with an arbitrary knot K ⊂ S3, passes
to a Heegaard diagram and then recovers a knot K ′ from the Heegaard diagram, then K ′ is
isotopic to K.

Remark 5.1. For simplicity we described a construction of a doubly pointed Heegaard dia-
gram from a knot in S3. We refer to [84, Section 2.2] for a construction of Heegaard diagrams
for a knot in an arbitrary three–manifold.
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

z

β1
α1 1

2

3

4

5

Figure 5.3: A destabilized version of the Heegaard diagram 5.2, with the in-
tersection points Tα ∩Tβ depicted.

5.2. The hat chain complex associated to a doubly pointed Heegaard dia-
gram

Consider a doubly pointed Heegaard diagram (,α,β, z,) representing (Y, K). Let g = g().
We define real g–dimensional tori Tα,Tβ ⊂ Symg() as in Section 2.3 above. Moreover, let
Rz, R ⊂ Symg() be given by ({z} ×  × . . . × )/Sg and ({} ×  × . . . × )/Sg.

The chain complex ÖCFK(Y, K) is generated by the intersection points Tα ∩Tβ. For any pair
x,y ∈ Tα ∩Tβ and ϕ ∈ π2(x,y) we define the relative Maslov grading

M(x) − M(y) = μ(ϕ) − 2n(ϕ),

where n(ϕ) is the intersection index of ϕ and R. Likewise, we define the relative Alexander
grading

(5.1) A(x) − A(y) = nz(ϕ) − n(ϕ).

Various aspects on the Alexander grading are elaborated in [100, Section 4]. If Y = S3, there
is a way of fixing the Maslov grading, so that it becomes an absolute grading (over Z). We
refer to [55, Section 3.4] for more details.

Proposition 5.2 (see [84, Section 1.1]). If Y = S3, then there exists a way of assigning the
absolute Alexander grading A(x) in such a way that (5.1) holds and moreover

∑

x∈Tα∩Tβ

(−1)M(x)tA(x) = ΔK (t),

where ΔK (t) is the symmetrized Alexander polynomial of the knot K.

Now we come to a potential source of confusion, because there are two choices of a
differential in ÖCFK(Y, K). We can either set:

∂grdx =
∑

y∈Tα∩Tβ

∑

ϕ∈π2(x,y)
nz(ϕ)=n(ϕ)=0

μ(ϕ)=1

#ÓM(ϕ) y,

or

∂ƒ x =
∑

y∈Tα∩Tβ

∑

ϕ∈π2(x,y)
n(ϕ)=0
μ(ϕ)=1

#ÓM(ϕ) y.

Problem 37. Prove that ∂grd preserves the Alexander grading, while ∂ƒ  is a filtered map
with respect to the Alexander grading.
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The map ∂ƒ  is the differential in the complex ÓCF(Y), hence ∂2ƒ  = 0 (by Theorem 2.26), and

∂grd is a part of ∂ƒ  that preserves the Alexander grading, we have that ∂2grd = 0; compare
[100, Section 4.4].

Problem 38. Show also that the homology of (ÖCFK(Y, K), ∂ƒ ) is isomorphic to ÓHF(Y).

Definition 5.3. The homology of the complex (ÖCFK(Y, K), ∂grd) is called the hat knot Floer
homology and denoted ÖHFK(Y, K).

From the point of view of homological algebra, if we have a filtered complex, like in our
case (ÖCFK(Y, K), ∂ƒ ), we can associate with it a graded complex, whose underlying space is
isomorphic (at least if the complex is defined over a field), and with the differential consisting
only of the graded part. In our case this is (ÖCFK(Y, K), ∂grd). There is a spectral sequence
whose first page is the homology of the graded part, which abuts (under some finiteness
assumptions on the complex, which are satisfied in Heegaard Floer theory) to the homology
of the filtered complex. This spectral sequence is used in [84] to define an important knot
invariant, called the τ-invariant. We will not discuss it here.

Theorem 5.4 (see [84, Corollary 3.2], [100, Theorem 1]). The homology ÖHFK(Y, K) is a knot
invariant. Moreover,

∑


(−1)M()tA() = ΔK (t),

where the sum is taken over a graded basis of ÖHFK(Y, K).

One of the consequences of the adjunction inequality is the following result; see [84, The-
orem 5.1].

Theorem 5.5 (Adjunction inequality in ÖHFK(Y, K)). Suppose that K ⊂ Y is a null-homologous
knot. Suppose s is such that ÖHFK(Y, K, s) 6= 0. Then for every Seifert surface F for K of genus
g > 0 we have

|〈c1(s), F〉| ≤ 2g(F).

The knot Floer homologies have two wonderful properties. The first one was proved in [85],
the second one is proved in [20, 72].

Theorem 5.6. The following two properties hold:

• If K is a knot in S3, then ÖHFK detects the three-genus. More precisely, for a knot K ⊂ S3,

g3(K) =mx :ÖHFK∗(K, ) 6= 0.

• ÖHFK detects fibredness. That is, for a null-homologous knot K in a closed, oriented,
connected 3–manifold, K is fibered if and only if

rnkÖHFK∗(K, g3(K)) = 1.

Here ÖHFK∗(K, ) denotes the part of ÖHFK with the Alexander grading .

Remark 5.7. The fact that ÖHFK detects the three-genus of a knot, can be generalized for null-
homologous knots in rational homology three-spheres, where the notion of the three-genus
is replaced by the Thurston norm; see [85, Section 1] and [73]. The fibreness part works for
arbitrary null-homologous knots in arbitrary closed three-manifold; see [72].
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5.3. The complexes CFK− and CFK∞

The chain complex CFK− is built in an analogous way, although some subtleties arise. The
generators are again intersection points Tα ∩Tβ, the complex is defined over Z2[U] and the
Maslov and Alexander gradings are as above. The multiplication by U by definition decreases
the Alexander grading by 1. The differential is the following

(5.2) ∂x :=
∑

y∈Tα∩Tβ

∑

ϕ∈π2(x,y)
μ(ϕ)=1

#ÓM(ϕ)Un(ϕ) y.

The only difference with respect to (2.3) is that in the exponent of U we have n and not
nz. In the sense of Section 5.2, the differential should be called ∂ƒ . If we take the graded
differential, that is, the one that does not count discs crossing the first base point (that is,
one adds the condition nz(ϕ) = 0 in the sum in (5.2)), we will get a graded chain complex. In
[55, Section 3.4] this complex is denoted gCFK− and the homology is HFK− .

Unlike in the hat version, we are not as much interested in the graded complex as in the
filtered one, that is, the one with the differential given by (5.2). Even though the homologies
of complexes CFK−(Y, K) and CF−(Y) are the same, there is a substantial difference between
CFK−(Y, K) and CF−(Y). Namely, in CFK−(Y, K) we have the Alexander grading. The differen-
tial does not necessarily preserve the grading, but as multiplication by U drops the Alexander
grading by 1, we will obtain that the differential never increases the grading.

Problem 39. Check that the last statement is true.

This means that CFK−(Y, K) is a filtered chain complex over Z2[U], or a bifiltered chain
complex over Z2 (with the other filtration given by powers of U, we will explain this in a
while). This filtration is independent of the choice of the Heegaard diagram, in fact we have
the following fact; see [84, 100].

Theorem 5.8. The filtered chain homotopy type of CFK−(Y, K) is an invariant of the isotopy
type of the knot.

As it might be expected, the filtered chain homotopy type of CFK−(Y, K) contains much
more information than just the homology of the chain complex. The famous saying of Andrew
Ranicki, one of the inventors of algebraic surgery theory:

Motto (Ranicki). “Chain complexes are good, homologies are bad”

is very true also in Heegaard Floer theory.
As in Section 2.5 above, we can invert formally the variable U to obtain another chain

complex, called CFK∞. Here we give a slightly different point of view of this object.
Consider a chain complex whose generators are triples [x, , j] such that , j ∈ Z and A(x) =

j − . The triple [x, , j] will correspond to the generator U−x. The differential is as in (5.2).

Problem 40. Show that with this notation the definition in (5.2) boils down to

(5.3) ∂[x, , j] =
∑

y∈Tα∩Tβ

∑

ϕ∈π2(x,y)
μ(ϕ)=1

#ÓM(ϕ)[y,  − n(ϕ), j − nz(ϕ)].

The chain complex with such a differential is denoted by CFK∞(Y, K). The homology is
clearly HFK∞(Y, K) ∼= HFK∞(Y). The chain complex admits an action of U, namely U[x, , j] =
[x,  − 1, j − 1]. One of the advantages of (5.3) over (5.2) is that the symmetry between the
first and the second filtration levels is clearly seen in (5.3). This symmetry is a generalization
of the symmetry of the Alexander polynomial of a knot.

Problem 41. Prove that the subcomplex CFK∞(Y, K){ ≤ 0} is the chain complex CFK−(Y, K).

Remark 5.9. Sometimes one considers CFK− = CFK∞(Y, K){ < 0}, instead of CFK∞(Y, K){ ≤
0}. This does not affect the isomorphism type of the relatively graded complex.
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

z

β1
α1 1

2

3

4

5

Figure 5.4: Holomorphic disks in a Heegaard diagram 5.3. Two disks at infinity
that connect pairs (2, 1) and (4, 1), and pass through points z and 
respectively, are not shown.

The definition of CFK∞ via [x, , j] allows us to present it graphically. Namely, for any
element [x, , j] we can put a dot in a plane with coordinates (, j). The arrows denote differ-
entials, often one draws only an edge, the direction of an arrow can be determined by the
fact that the differential does not increase any of the two filtration levels. The Maslov grading
is usually not presented, or denoted near the dots, if necessary.

One of the features of the chain complex CFK∞ is its behavior under connected sums,
which is an analogue of Problem 30.

Proposition 5.10. Suppose K1, K2 are two knots in S3. Then

CFK∞(K1#K2) ∼= CFK∞(K1) ⊗ CFK∞(K2)

where “∼=” denotes a bifiltered chain homotopy equivalence. The tensor product is taken
over the ring Z2[U,U−1].

Problem 42. Take two knots K1 and K2. Draw a knot diagram for K1 and K2 and connect
them by a band to obtain a knot diagram for K1#K2; try to control the bridge presentation.
Using Section 5.1 calculate CFK∞(K1#K2) and prove as much as you can of Proposition 5.10
(existence of maps, gradings, filtrations, etc).

Example 5.11. Let us revisit the example of a figure-eight knot. The underlying surface of
the Heegaard diagram (,α,β,, z) (see Figure 5.3) is of genus 1, thus its universal cover is
C. Therefore, by combining this fact with the Riemann mapping theorem, we get that if there
exists a topological disk ϕ ∈ π2(x,y), then it is uniquely represented by a holomorphic disk.
Using this fact it is straightforward to find all holomorphic disks as in a Figure 5.4.

From the same diagram we may find some of the relative Alexander gradings according to
(5.1). This, together with Proposition 5.2, gives us a way to determine the absolute Alexander
gradings A(1), A(3), A(5) = 0, A(2) = 1, A(4) = −1. We can also read off the differentials
from Figure 5.4, according to Problem 40; the nontrivial ones are ∂2 = 1 + 5, ∂4 = U1 +
U5, ∂3 = U2 + 4. In the chain complex CFK∞ this means that ∂[2, ,  + 1] = [1, , ] +
[5, , ], ∂[4, , − 1] = [1, − 1, − 1] + [5, − 1, − 1], ∂[3, , ] = [2, − 1, ] + [4, , − 1]
for  ∈ Z. For convenience let us change variables, setting ′1 := 1 + 5.

The complex CFK∞(S3,41), spanned by the elements [′1, , ] and [k , ,  + A(k)], where
k = 2, . . . ,5, is depicted in Figure 5.5.

Example 5.12. Similarly, one can compute a complex CFK∞(S3,31) and then use the Künneth
formula (see Proposition 5.10) to obtain a full complex CFK∞(S3,31#31) of the connected
sum of two copies of trefoils. Figure 5.6, after tensoring with Z2[U,U−1], presents the result
after a change of basis.
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j

3

U3

U−13

5

U5

U−15

′1

U′1

U−1′1
2

U2 U−14

4

Figure 5.5: A complex representing CFK∞(S3,41). Note that the elements
U−1′1, U

−13, U−15 are in the same bifiltration level (, j) = (1,1), likewise
their images under the endomorphism U.

j



Figure 5.6: Tensoring this complex with Z2[U,U−1] results in the complex CFK∞(S3,31#31).

Problem 43. Calculate Example 5.12 by yourself.

Even though the homology of CFK∞(Y, K) is not very interesting, the bifiltered chain homo-
topy type of the complex contains a lot of information about the knot. An important example
of a piece of information contained in the chain complex CFK∞(Y, K) that is lost when passing
to homology is given below.

5.4. The Vm invariants

Let K ⊂ S3 be a knot. For any m ∈ Z let CFK∞( < 0, j < m) be the subcomplex of CFK∞

generated by elements at bifiltration level (, j), where  < 0 and j < m. Let A+m be the quotient
complex CFK∞/CFK∞( < 0, j < m).

Remark 5.13. Sometimes one writes that A+m is a complex generated by elements at filtration
level (, j), where  ≥ 0 or j ≥m, and if a differential of an element leads out of A+m we set it to
be zero. This might be sometimes convenient but is not very rigorous, because it suggests
that A+m is a subcomplex of CFK∞, while it is not. If an element  ∈ CFK∞ is at filtration level
 ≥ 0 or j ≥m, and ∂ = y with y ∈ CFK∞( < 0, j < m), then ∂ = 0 in A+m by defintion.

Definition 5.14. The Vm invariant of a knot K is minus one half of the minimal grading of
a cycle  ∈ A+m, which is non-trivial in homology and such that for any k ≥ 0 there exists
yk ∈ A+m such that Ukyk = .
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Remark 5.15. The notation Vm for these invariants is taken from [74]. In the original source,
that is, Rasmussen’s thesis [100], a related invariant hk was studied.

Problem 44. Find a relation between Vm and the invariant hk defined in Section 7.2 of the
Rasmussen’s thesis.

Problem 45. Notice that Vm ≤ Vm−1. Prove that Vm−1 ≤ Vm + 1.

Problem 46. Calculate Vm for the sum of two trefoils and for the figure-eight knot. Observe
that the ‘squares’ in both chain complexes do not contribute to Vm.

Proposition 5.16. The number Vm is a concordance invariant.

A proof using the large surgery formula is given as Problem 49. The original proof of [100]
uses a different approach.

5.5. Large integer surgeries

There is a general way for calculating HF+ (and so the d–invariants) of surgeries on a knot
in S3, see for instance [91], once the chain complex CFK∞(K) is known. Notice that knowing
only HFK− or ÖHFK is usually not enough; recall Ranicki’s motto. The general formula simplifies
a lot, when the surgery coefficient is a large positive integer. Before we begin, we need to
show a useful way of enumerating Spinc structures on surgeries on a knot in S3. The following
result can be found in [79, Lemma 7.10].

Proposition 5.17. Let q > 0 be an integer and consider a knot K ⊂ S3. Let Y = S3q(K) and let

W be a four–dimensional handlebody obtained by gluing a two–handle to the ball B4 along
a product neighborhood of K with framing q, so that ∂W = Y. Let F ⊂ W be a closed surface
obtained by capping a Seifert surface for K by the core of the two–handle.

For any integer m ∈ [−q/2, q/2) there exists a unique Spinc structure sm on Y characterized
by the fact that it extends to a Spinc structure tm on W with the property that 〈c1(tm), F〉+q =
2m.

Problem 47.

• Prove that the definition of sm does not depend on the choice of the Seifert surface
used to construct F.

• Explain the action of H2(Y;Z) on the set of the Spinc structures under the identification
in Proposition 5.17.

Now we are ready to state the Large Surgery Theorem.

Theorem 5.18 (see [84, Theorem 4.4]). Suppose that K ⊂ S3 and q ≥ 2g3(K) − 1. Then for
any Spinc structure sm (with m ∈ [−q/2, q/2) ∩Z), we have an isomorphism between A+m and

HF+(S3q(K), sm). The isomorphism changes the Maslov grading by (q−2m)2−q
4q . In particular, we

have d(S3q(K), sm) =
(q−2m)2−q

4q − 2Vm(K).

As a corollary we give a proof of the concordance invariance of Vm. Suppose K is concor-
dant to K ′. Let m ∈ Z and choose a sufficiently large integer q, in particular we require that
q ≥ mx{2g3(K) − 1,2g3(K ′) − 1,2|m| + 1}. The d–invariants of q–surgery on K and K ′ are
given by Theorem 5.18, therefore the invariance of Vm under a concordance follows from the
following fact.

Lemma 5.19. Suppose K is concordant to K ′ and q > 0. Then there exists a four–manifold
W whose boundary is S3q(K

′) t −S3q(K) and such that the inclusions S3q(K) ,→ W, S3q(K
′) ,→ W

induce isomorphisms on Z homology. Moreover, for any integer m ∈ [−q/2, q/2) there exists
a Spinc structure tm on W extending the Spinc structures sm on both sides of the boundary.
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Problem 48. Consider the following construction. Let A ⊂ S3 × [0,1] be a concordance
between K and K ′. Glue a two–handle to S3 × [0,1] along a product neighborhood of K ′ ⊂
S3 × {1} with framing q. Denote by W′ the resulting four–manifold. Let P ⊂ W′ be the union
of A and the core of the two handle and let N be a product neighborhood of P in W′. Show
that W = W′ \N has all the properties stated in Lemma 5.19. See [4] for a generalization of
this construction.

Problem 49. Conclude the proof of concordance invariance of Vm.

Problem 50. Let 1, . . . , n be all the chains of CFK∞(K), which are cycles and which are at
grading 0. Prove that

Vm(K) = min
k=1,...,n

mx((k), j(k) −m),

where (), j() denote the –th and the j–th bifiltration levels as described in Section 5.3
above.

Problem 51. Show by means of an example, that Vm are in general not additive, that is,
Vm(K#K ′) is not always equal to Vm(K) + Vm(K ′).

Problem 52. Show that for all k,m ∈ Z Vm(K#K ′) ≤ Vk(K) + Vm−k(K ′).

5.6. L–space knots

We will now introduce a class of knots for which the chain complex CFK∞ is especially easy
to describe.

Definition 5.20. A knot K ⊂ S3 is called an L–space knot (sometimes called a positive L–
space knot), if there exists a coefficient q > 0 such that S3q(K) is an L–space.

The notion of an L–space knot was introduced in [86] in the context of the Berge conjecture,
which predicts the list of all possible knots in S3 such that a surgery on these knots with some
coefficient gives a lens space. The notion of an L–space knot turns out to be very useful also
for studying singularities of plane curves.

Example 5.21. By the result of Moser [65, Proposition 3.2], if |pqr − s| = 1, then the s/r–
surgery on a positive torus knot T(p, q) is the lens space L(|s|, rq2). Therefore, every positive
torus knot is an L–space knot.

We have the following properties of L–space knots.

Lemma 5.22.

(a) L–space knots are prime. A connected sum of two non-trivial knots is never an L–space
knot (see [40]).

(b) If K is an L–space knot, then S3q(K) is an L–space if and only if q ≥ 2g3(K)− 1 (see [92,
Proposition 9.6] and [29]).

(c) L–space knots are quasipositive (see [25]).

(d) L–space knots are fibered.

(e) For an L–space knot K we have g3(K) = g4(K) (see [86] and [25]).

(f) For any  ∈ Z we have rnkÖHFK(K, ) ≤ 1 (see [86]).

Remark 5.23. Fiberedness of a knot admitting a lens space surgery was known to experts
before the Heegaard Floer times, [86] contains an explicit proof. The proof for general L-space
knots follows from the explicit description of the fact that rnkÖHFK(K, ) ≤ 1 together with
the result of [20, 72] (Theorem 5.6 of the present article).
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1 y0

0

Figure 5.7: A staircase complex of a torus knot T(3,4).

Problem 53. Prove that the τ invariant (see [81]) of an L–space knot is equal to its three–
genus. Notice that this proves (e). Refer to a result of Hedden [25] to prove (c).

Remark 5.24. It is easy to find a positive knot which is not an L–space knot: take the con-
nected sum of two trefoils. There are positive knots (even fibred positive knots) which are
not even concordant to a connected sum of any number of L–space knots; see [5, 15].

We will now present an algorithm for describing the CFK∞ complex of an L–space knot
based on the Alexander polynomial. The algorithm was first described by Peters [97], nowa-
days it is widely used.

Suppose K is an L–space knot of genus g. Let Δ be the Alexander polynomial for K, which
we normalize in such a way that Δ(t−1) = Δ(t). It was showed in [86] that Δ has the following
form.

Δ(t) = tn0 − tn1 + . . . − tn2k−1 + tn2k ,

where n0 > n1 > . . . > n2k and n0 = −n2k = g. Set










m0 = 0

m2−1 =m2 1 ≤  ≤ k

m2+1 =m2 + (n2 − n2+1) 0 ≤  ≤ k − 1

Problem 54. Show that m2k = g.

We will construct now an abstract chain complex over Z2 from the numbers n and m. The
chain complex will be graded and doubly filtered. The construction is as follows.

For any  = 0, . . . , k we place a generator  with (Maslov) grading 0 at bifiltration level
(m2k−2,m2) (in the notation of Section 5.3 it is [,m2k−2,m2]). We set ∂ = 0. For
any  = 0, . . . , k − 1 we place a generator y with (Maslov) grading 1 at bifiltration level
(m2k−2−1,m2+1) (that is, [y,m2k−2−1,m2+1]). We set ∂y =  + +1.

Example 5.25. For a torus knot T(3,4) we have Δ = t3 − t2 + 1− t−2 + t−3 so m0 = 0, m1 = 1,
m2 = 1, m3 = 3, m4 = 3. The –generators are at bifiltration levels (0,3), (1,1) and (3,0),
while the y–generators are at bifiltration level (1,3) and (3,1); see Figure 5.7.

Definition 5.26. The chain complex obtained in this way is called the staircase complex
associated with an L–space knot K and it is denoted St(K).

The staircase complex will now be tensored by Z2[U,U−1], where U is a formal variable.
We write St(K) ⊗Z2 Z2[U,U−1] for the product. It is generated by elements Uj and Ujy,
j ∈ Z. The grading and the filtration levels are defined by requiring that multiplication by U
changes the (Maslov) grading by −2 and each of the filtration levels by −1, exactly as the
action of U on the knot Floer chain complexes. The following result was described in a paper
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by Peters [97] (see also [74]), but the idea that the Alexander polynomial determines the
complex CFK∞ can be traced back to [86].

Proposition 5.27. Let K be an L–space knot. The chain complex St(K) ⊗Z2 Z2[U,U−1] is
bifiltered chain homotopy equivalent to CFK∞(K).

Problem 55. Prove that if K and K ′ are L–space knots, then we have Vm(K#K ′) =mink∈Z(Vk(K)+
Vm−k(K ′)). Show that the same holds if K and K ′ are connected sums of L–space knots.

6. Cuspidal singularities

The scenery changes for a while. We need to recall a few facts from singularity theory.

6.1. Links of singular points

Consider a complex curve C in some connected, open set Ω ⊂ C2. Suppose C is defined as a
zero set F−1(0), where F : Ω→ C is a holomorphic function. We will assume that F is reduced,
which might be interpreted as requiring that the gradient of F does not vanish identically on
any open subset of C.

Problem 56. The rigorous definition of ‘reduced’ reads that F is not divisible (in the ring of
holomorphic functions O(Ω)) by any square of a non-invertible element. Prove that the two
definitions are equivalent.

Definition 6.1. A point z ∈ C is called singular if ∇F(z) = 0.

Problem 57. Prove that if z ∈ C is a singular point and F is reduced, then z is isolated, that
is, there is no sequence zn ∈ C \ {z} of singular points converging to z.

By Tougeron’s theorem, see [117, Section 2.1], any isolated singular point is finitely pre-
sented. That is, for each singular point z there is a local analytic change of coordinates, which
transforms C to a F−1ƒ n(0), where Fƒ n is a Taylor expansion of F at z of sufficiently high order
(the original Tougeron theorem says that the order equal to the Milnor number plus one will
do, but for some specific singularities a lower order expansion may be sufficient).

Let z ∈ C be a singular point. Take a ball B ⊂ Ω with center z of sufficiently small radius.

Definition 6.2. The intersection ∂B ∩ C ⊂ ∂B is called the link of singularity.

Problem 58. Prove that the isotopy type of the link of singularity is independent of the
radius of the curve, once the starting curve is sufficiently small.

Hint. The distance function to the singular point is a Morse function when restricted to C.
Try showing that the restriction has no critical points on C near z, except for z itself. See also
[60].

Problem 59. Prove that C ∩ B is homeomorphic to the cone over the link C ∩ ∂B.

Definition 6.3. The number of branches of C at the singular point is the number of con-
nected components of B ∩ C \ {z}. A singular point is called cuspidal if C has precisely one
branch.

Two singular points (C, z) and (C′, z′) are analytically equivalent if there exists a biholo-
morphic map of neighborhoods of z and z′ in C2, which takes locally C to C′. In general,
analytic equivalence is a surprisingly complicated notion. There is a coarser equivalence,
which proves very useful.

Definition 6.4. Two singular points (C, z) and (C′, z′) are called topologically equivalent if
there exist small balls B,B′ ⊂ C2 with centers z and z′ and a homeomorphism h : B→ B′ that
takes C ∩ B to C′ ∩ B′.
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Problem 60. Show that two singular points are topologically equivalent if and only if their
links are isotopic.

The two notions of equivalence give rise to notions of analytic and topological invariants
of singular points. These are quantities associated with a singular points which are preserved
under an analytic (respectively: topological) equivalence. The distinction can be quite subtle.
For example, the Milnor number μ = dimCOz/(

∂F
∂ ,

∂F
∂y ) (here Oz is the local ring and we con-

sider its quotient over by an ideal generated by ∂F
∂ and ∂F

∂y ) is a topological invariant. For a
cuspidal singularity μ is equal to twice the genus of the link and a slightly more complicated
formula calculates the Milnor number from the genera of the components of the link and the
linking numbers of the components; see [61, Section 10].

On the other hand, the Tjurina number, τ = dimCOz/(F,
∂F
∂ ,

∂F
∂y ), whose definition looks very

similar to μ, is not a topological invariant; see [22, Section I.1.2].

Problem 61. Show that if F is quasihomogeneous, then τ = μ.

Problem 62. Play around with some examples of F using your favorite computer algebra
system (sage, macaulay, singular) and find examples of singularities which have the same
topological type but different Tjurina numbers.

Hint. Take F = p − yq with p, q coprime and try adding to it terms of weighted degree
greater than pq, where  has degree q and y has degree p.

To conclude the section we list a few different objects related to a singular point that have
(almost) the same meaning.

• The Milnor number μ defined as above. By the celebrated Milnor’s theorem, the map
z 7→ F(z)/ |F(z)| from ∂B \ (C ∩ ∂B) to S1 is a locally trivial fibration, whose fiber has
homotopy type of a wedge of μ copies of S1.

• The δ–invariant, whose original definition is algebraic; see [22, Section I.3.4]. For a
singular point with r branches we have that 2δ = μ+ r − 1, a formula proved by Milnor
in [61, Section 10].

• The genus of the link g3(C ∩ ∂B) is equal to half the Milnor number if the link has one
branch. By Kronheimer–Mrowka’s result, the three–genus is also equal to the smooth
four–genus of the link.

Problem 63. Establish an explicit relation between g3(C ∩ ∂B) and the δ–invariant for a
singular point with arbitrarily many branches. The algebraic definition of the δ–invariant is
given in [22, Section I.3.4] or in [61, Section 10].

6.2. Topological classification of cuspidal singular points

For completeness we recall a topological classification of cuspidal singular points. For us it
is convenient to write the classification in terms of a so-called characteristic sequence. A
characteristic sequence is a finite sequence of numbers (p;q1, q2, . . . , qm) with p > 1, p <
q1 < . . . < qm. These numbers satisfy the following relation. Set r0 = p, r+1 = gcd(r, q+1).
We require that the sequence r be strictly decreasing and rm = 1. To each characteristic
sequence we can associate a model singular point on a curve, which is locally parametrized
as

(t) = tp

y(t) = tq1 + tq2 + . . . + tqm .

Theorem 6.5. The characteristic sequence is a complete invariant of the topological type
of cuspidal singular points. That is, any cuspidal singular point is topologically equivalent to
precisely one model singularity.
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The number m is called the length of the characteristic sequence. There are several alter-
native ways of encoding a characteristic sequence. For example, there are so–called Newton
pairs, and Puiseux or characteristic pairs (both Newton pairs and Puiseux pairs might have
slightly different meaning), which are sequences of pairs of integers. The quantity m is also
the length of such a sequence and so we will often refer to m as the number of Puiseux
pairs. Note however, that the multiplicity sequence, see [9], might be much longer than the
characteristic sequence.

The isotopy class of the link of singularity is also an invariant of topological type, and in
fact, it is also a complete invariant. There is an explicit algorithm for determining the link from
the characteristic sequence; see [14]. We record one basic example for future reference.

Example 6.6. If m = 1, the characteristic sequence is (p;q) for some coprime integers with
0 < p < q. The link of singularity is the torus knot T(p, q).

6.3. Semigroup of a singular point

Let (C, z) be a singular point of a plane curve. For any complex polynomial G, which does not
vanish on any of the components of C containing z (component in the analytic sense), we
can define the local intersection index C ·z G−1(0).

Example 6.7. Suppose z is cuspidal. By the Puiseux theorem there exists a local parametriza-
tion t 7→ ((t), y(t)) of C near z, such that z = ((0), y(0)). Then the local intersection index
is the order at t = 0 of the map t 7→ G((t), y(t)).

Problem 64. Suppose z = (0,0) and C = {F ≡ 0} with F = p − yq. Show that a number  ≥ 0
can be obtained as C ·z G−1(0) if and only if  can be presented as p + jq, where , j ≥ 0 are
integers. For  = p + jq write explicitly a polynomial G such that C ·z G−1(0) = .

We have the following notion.

Definition 6.8. The semigroup of a singular point S(z) is a semigroup of Z≥0 whose elements
are local intersection indices C ·z G−1(0) as G ranges through all the polynomials C[, y] that
do not vanish on any of the components of C containing z. By convention, zero is always
considered as an element of S(z): it corresponds to a polynomial G that does not vanish at z.

Problem 65. Show that S is in fact a semigroup.

Problem 66. Show that the smallest non–zero element of the semigroup is the multiplicity
of a singular point.

The notion of the semigroup as defined here is useful mostly for cuspidal singular points. If
z has r > 1 branches, it might be more natural to consider a semigroup of Zr , whose elements
are vectors formed by local intersection indices with the branches. There is a significant
difference between the cuspidal and non-cuspidal case. In the present notes we focus mostly
on the cuspidal case.

Theorem 6.9 (see e.g. [112, Chapter 4]). The semigroup of a cuspidal singular point z has
the following properties.

• The gap set G := Z≥0 \ S has cardinality μ/2. Here μ is the Milnor number.

• The maximal element of G is equal to μ − 1.

• The semigroup has the following symmetry property: for any  ∈ Z, either  ∈ S, or
2g − 1 −  ∈ S, but never both.

Problem 67. Deduce the first two properties in the statement of Theorem 6.9 from the third
one.
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Problem 68. Prove elementarily that if S is a semigroup generated by p and q, then the
maximal element that does not belong to the semigroup is (p − 1)(q − 1) − 1.

Problem 69. Suppose S is a semigroup of Z≥0 such that G = Z≥0 \ S is finite. Assume that S
has three generators (p, q, r). Try finding an explicit formula for the maximal element of G if
p = 2 or p = 3 and see how hard it is. This shows that the second property of Theorem 6.9 is
very special. See [99] for a detailed discussion on numerical semigroups.

We have the following fact first established in [11]. We refer also to [112, Chapters 4,5].

Theorem 6.10. Let z be a cuspidal singular point with a semigroup S. Let G = Z≥0 \S be the
gap set. Then

1 + (t − 1)
∑

r∈G
tr

is the Alexander polynomial of the link of the singular point z.

The result is unexpected and shows very deep relations between singularity theory and
knot theory, see [11] for more details. Nevertheless, the theorem is not hard to prove, since
we exactly know which links can arise from cuspidal singularities. They are, see [10, 113],
iterated cables on torus knots. Both the link of the singularity and the semigroup can be
determined from the Puiseux pairs of singular points. The proof of Theorem 6.10 consists of
calculating both sides in terms of Puiseux pairs and in fact, the only non-trivial result that is
used is the formula for the Alexander polynomial of a cable. On the other hand we have just
shown that the semigroup is a topological invariant of a singular point.

6.4. Links of singularities as L–space knots

In [26] Hedden proved the following result.

Theorem 6.11. The link of a cuspidal singularity is an L–space knot.

Suppose z is a cuspidal singular point with semigroup S and link K. The semigroup deter-
mines the Alexander polynomial by Theorem 6.10. As K is an L–space knot, the Alexander
polynomial of K determines the chain complex CFK∞. This chain complex determines the
concordance invariants Vm. Therefore, the numbers Vm can be calculated directly from the
semigroup S. An explicit computation is not hard.

Theorem 6.12 (compare [7, Proposition 4.6]). We have Vg+m = #{j ≥m : j /∈ S}, where g is
the genus of the knot K.

Problem 70. Use Theorem 6.10 and the explicit algorithm for calculating CFK∞ of an L–
space knot (see Proposition 5.27 and the algorithm above it) to prove Theorem 6.12.

In conjunction with Large Surgery Theorem 5.18 this result will allow us to calculate d–
invariants of large surgeries on links of cuspidal singularities from the semigroup only.

Remark 6.13. Even if Theorem 6.12 is easy to believe and rather straightforward to prove, it
sets a right perspective. The semigroup is a natural object to study when one is interested in
applications of Heegaard Floer techniques in singularity theory.

7. Rational cuspidal curves and beyond

7.1. What is a rational cuspidal curve?

We now pass to considering complex curves in CP2. Let C ⊂ CP2 be an irreducible curve, that
is, a curve which cannot be presented as a union of two curves C1 ∪ C2. Put differently, an
irreducible curve is a curve that can be realized as a zero set of a homogeneous polynomial
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F which is irreducible in C[, y, z]. The degree of the curve C is the degree of a reduced
homogenoeous polynomial whose zero set is C.

If C is a smooth curve of degree d, its genus is determined by d, namely g(C) = (d−1)(d−2)
2 .

For singular curves the notion of genus can be generalized in many non-equivalent ways. The
most useful to us is the notion of a geometric genus. To introduce it, recall that any complex
curve in CP2 admits a so called normalization. This is a smooth complex curve  together
with a complex map π :  → C, such that the inverse image of each of the singular points is
finite and the preimage of each smooth point consists of a single point. It is not hard to show
that a normalization exists and is well defined up to a biholomorphism.

Definition 7.1. The geometric genus pg(C) is the genus of the normalization . A curve C is
called rational if its geometric genus is zero. A curve is called rational cuspidal if it is rational
and all its singular points (if any) are cuspidal.

Problem 71. Prove that C is rational cuspidal if and only if it is homeomorphic to the sphere
S2.

For completeness, we recall a classical numerical formula for the geometric genus.

Theorem 7.2. Suppose C has degree d and singular points z1, . . . , zn. Let δ1, . . . , δn be the
δ–invariants of z1, . . . , zn (for a cuspidal singularity the δ–invariant is equal to the genus of
the link; if z has r > 1 branches, then 2δ = μ + r − 1). Then

pg(C) =
1

2
(d − 1)(d − 2) −

n
∑

=1

δ.

Milnor in [61, Section 10] attributes Theorem 7.2 to Serre, however at least some variant
of it was known already in the XIXth century.

7.2. A quick tour of rational cuspidal curves

Rational cuspidal curves have been an object of interest at least since the end of the XIXth
century. Before we state one of the most important conjectures on rational cuspidal curves,
we give a definition; see [24, Section I.4].

Definition 7.3.

• A rational map between two algebraic irreducible varieties ƒ : X→ Y is an equivalence
class of pairs (U, ƒU), where U is a Zariski open subset of X and ƒU : U → Y. Two pairs
(U, ƒU) and (U′, ƒU′ ) are said to be equivalent if they agree on U ∩ U′.

• A birational map ƒ : X → Y is a rational map that admits a rational inverse, that is, a
rational map g : Y → X such that ƒ ◦ g = dY and g ◦ ƒ = dX, where the equalities are
understood as equivalences of rational maps.

A reader not familiar with algebraic geometry might be worried that a rational map is
defined only on an open subset of X. The key word here is ‘Zariski open’. The Zariski topology
is completely different from the metric topology. Open sets are basically complements of
hypersurfaces, so an open set in Zariski topology means an open-dense subset of X in the
metric topology, whose complement is of complex codimension at least 1.

Example 7.4. A blow-up and blow-down are birational maps.

Example 7.5. It was proved already by Zariski, see [114], that any birational map between
two algebraic surfaces is a sequence of blow-ups and blow-downs.

Now we pass to an important definition.

Definition 7.6. A curve C ⊂ CP2 is called rectifiable if there exists a birational map ƒ : CP2 →
CP2 such that the (closure of) the image ƒ (C) is a straight line.
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Problem 72. Show that a curve C given by 3 = y2z in homogeneous coordinates [ : y : z]
in CP2 is rectifiable.

In 1928 Coolidge [13] stated a conjecture, which was given its final shape by Nagata [66].

Conjecture 7.7 (The Coolidge–Nagata conjecture). Any rational cuspidal curve is rectifiable.

The conjecture eluded all approach until 2015, when two mathematicians, Koras and Palka,
found a brilliant proof relying on the minimal model program.

Theorem 7.8 (see [39, 94]). The Coolidge–Nagata conjecture is true. That is, every rational
cuspidal curve in CP2 can be transformed into a line by means of birational transformations
of CP2.

The meaning of the conjecture is that every rational cuspidal curve can be constructed by
taking a line and applying a sequence of blow–ups and blow–downs. This does not solve the
problem of classifying all the rational cuspidal curves, because the configurations of blow–ups
and blow–downs might be rather complicated.

Problem 73 (Open). Use methods of Koras and Palka to prove that every rational cuspidal
curve in a Hirzebruch surface is rectifiable. See [63, 64, 8] for more on rational cuspidal
curves in Hirzebruch surfaces.

Another problem concerning rational cuspidal curves is to establish bounds for the number
of possible singular points. The following conjecture is due to Orevkov. It circulated among
the experts for a long time and was stated explicitly in a paper by Piontkowski [98].

Conjecture 7.9. Any rational cuspidal curve C ⊂ CP2 has at most four singular points. More-
over, there is only one curve (of degree 5) that has precisely four singular points.

For a long time the best upper bound was 8 [107]. Recently Palka improved this bound to
6, see [93].

There is another conjecture due to Flenner and Zajdenberg [18], called the Rigidity Con-
jecture. Introducing all the terminology needed to state it is beyond the scope of the present
article, so we will be rather informal. Suppose C ⊂ CP2 is a rational cuspidal curve. We resolve
the singularities of C to obtain a surface V together with a rational map π : V → CP2. The in-
verse image D = π−1(C) (for algebraic geometers: we take a reduced scheme structure on D)
is a simple normal crossing divisor, that is, it is a union of holomorphic spheres intersecting
transversally such that no self–intersections are allowed and triple intersection points are ex-
cluded. Such a resolution (V,D) always exists, see [9, 22, 14] or almost any book on complex
plane curves.

One studies the infinitesimal deformations of the pair (V,D) in the spirit of Kodaira and
Spencer [38]. There is a sheaf, ΘV 〈D〉 of complex vector fields on V that are tangent to D.
It turns out, see [18], that this sheaf controls the deformations of the pair (V,D), that is, h1

of this sheaf is the space of infinitesimal deformations of the pair (V,D) and h2 is the space
of obstructions to the deformations. If h2(Θ〈D〉) = 0, the deformations are unobstructed,
because higher obstructions (h for  > 2) vanish for dimensional reasons. Now the Flenner–
Zajdenberg rigidity conjecture states that h2(Θ〈D〉) = 0, that is, infinitesimal deformations are
unobstructed. In most interesting cases h0(Θ〈D〉) = 0, so χ(Θ〈D〉) ≤ 0 (recall that χ = h0−h1+
h2). On the other hand, the Riemann–Roch theorem for surfaces tells us that χ(Θ〈D〉) = K(K+
D), so the Rigidity Conjecture implies that K(K + D) ≤ 0, but the converse implication does
not necessarily hold, which is one of the reasons why the conjecture is so difficult. It is well–
known to the experts that the Rigidity Conjecture implies the Cooligde–Nagata conjecture,
but again, the converse implication is not true; see also [93] for a more detailed discussion.

7.3. Partial results on classification

Rational cuspidal curves with logarithmic Kodaira dimension less than 2 have already been
classified, see the introduction in [17] for a concise summary of the results. The logarithmic
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Kodaira dimension, κ, defined in [32], is an invariant of a complement V \ D, where V is
a projective surface and D a divisor on it. If V is a surface, then κ(V \ D) ⊂ {−∞,0,1,2}.
It is a result of Wakabayashi [111], that if C ⊂ CP2 is a rational cuspidal curve such that
κ(CP2 \ C) ≤ 0, then C has at most one singular point, moreover if κ(CP2 \ C) = 1, then C has
at most two singular points.

The classification of rational cuspidal curves such that κ(CP2 \ C) = −∞ was achieved by
Kashiwara [36]. The case κ(CP2 \ C) = 0 was excluded by Tsunoda in [108], another refer-
ence is [76]. Classification of curves with κ(CP2 \ C) = 1 was started by Kishimoto [37] and
completed by Tono in [106].

The case κ(CP2 \C) = 2 is the hardest. There is a program of Palka and Pełka on classifying
all rational cuspidal curves that satisfy the Flenner–Zaidenberg Rigidity conjecture; see [95]
for the first important results in that direction.

On the other side, somehow setting aside the logarithmic Kodaira dimension, in [16] an
attempt was made to classify rational cuspidal curves. The result was only the first step,
namely the following result is proved in [16].

Theorem 7.10. Suppose C is a rational cuspidal curve in CP2 having precisely one singular
point. Assume additionally that this singular point has a single Puiseux pair (p, q). Then the
pair (p, q) belongs to one of the following list. Moreover, each pair below can be realized by
a rational cuspidal curve.

(a) (d − 1, d) for any d > 1,

(b) (d/2,2d − 1) for any even d > 1,

(c) (ϕ2j−2, ϕ
2
j ) for j odd and j ≥ 5, where ϕ are Fibonacci numbers normalized in such a

way that ϕ0 = 0, ϕ1 = 1,

(d) (ϕj−2, ϕj+2) for j ≥ 5 odd,

(e) (ϕ4, ϕ8 + 1) = (3,22),

(f) (2ϕ4,2ϕ8 + 1) = (6,43).

Problem 74. Determine the degree of C in each of the cases (c)–(f). Cases (a) and (b) are
trivial.

In [2], based on the thesis of Tiankai Liu [47], Bodnár gave an analogue of Theorem 7.10 for
rational cuspidal curves with one singular point such that the singular point has two Puiseux
pairs. The result is more complicated.

7.4. The tubular neighborhood of a rational cuspidal curve

We pass to applications of Heegaard Floer theory to rational cuspidal curves.
Let C ⊂ CP2 be a rational cuspidal curve of degree d. We aim to construct a ‘tubular’ neigh-

borhood of C in CP2. The word ‘tubular’ is in quotation marks, because C is not locally flat and
cannot have a product neighborhood. However, the following, rather obvious, construction
will fit well into our applications.

For any singular point z of C take a small ball B with center z. The complement C \
⋃

B
is a smooth curve so we take product neighborhood N0. We will require that N0 is thin as
compared to the radii of all the B. Set N = N0 ∪

⋃

B. Clearly N is an open set containing
C. Alternatively we could define N as a set of points at distance less than ϵ of C for ϵ > 0
sufficiently small; this leads to essentially the same space N. However, the first construction
has an advantage, namely the following Lemma is easy to notice.
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Lemma 7.11. Let Y = ∂N. Let z1, . . . , zn be the singular points of C and K1, . . . , Kn its links.
Set K = K1# . . .#Kn. Then Y = S3

d2
(K).

Problem 75. Prove Lemma 7.11 for n = 1 (hint: notice that d2 is the self–intersection of C).

For n > 1 the proof of Lemma 7.11 is given in [7, Section 3].
Let us consider W = CP2 \ N. The homology of W can be easily calculated: notice that C is

a generator of H2(CP2;Q), removing C from CP2 should yield a rational homology ball. This
indeed is so.

Problem 76. Prove that Hk(W;Q) = 0 if k > 0.

Problem 77. Calculate the Z–homologies of W.

We pass to describing Spinc structures on W, with the aim to calculate which Spinc struc-
tures on Y = ∂N extend over W. The three–manifold Y is a d2 surgery on K. Therefore, we can
enumerate Spinc structures on Y by integers m ∈ [−d2/2, d2/2) as in Proposition 5.17 above.

Problem 78. Show that the Spinc structure sm on Y extends to a Spinc structure tm on N
such that 〈c1(tm), C〉 + d2 = 2m.

Suppose now a Spinc structure sm on Y extends to a Spinc structure t′m on W. The Spinc

structures tm and t′m on N and W glue together to a Spinc structure t′′m on CP2. Now CP2 is a
closed simply connected four–manifold. By Corollary 2.9 it follows that c1(t′′m) = (2j + 1)[H]
for some j ∈ Z, where [H] is the generator of H2(CP2;Z). In particular

〈c1(tm), C〉 = 〈c1(t′′m), C〉 = (2j + 1)d.

Applying Proposition 5.17 we obtain the following statement.

Lemma 7.12. If a Spinc structure sm on Y extends over W, then m = 1
2 (d

2 − (2j + 1)d) for
some j ∈ Z.

7.5. Heegaard Floer homology applied to rational cuspidal curves

Let us now gather all pieces of a puzzle to restrict the Alexander polynomials of links of
singular points a rational cuspidal curve. We suppose first that C is a rational cuspidal curve
of degree d with one singular point z, whose link is K and whose semigroup is S.

• The boundary of the tubular neighborhood of C is S3
d2
(K).

• K is an algebraic knot, hence an L–space knot.

• The Vm invariants of K can be calculated from the semigroup S.

• The genus of K is 1
2 (d − 1)(d − 2). The surgery coefficient d2 is greater than twice the

genus.

• The Large Surgery Theorem applies. We can express the d–invariants of Y in terms of
the semigroup.

• On the other hand Y bounds a rational homology ball W. Hence d(Y, sm) = 0 for every
Spinc structure sm on Y that extends over W.

• The Spinc structures on Y that extend over W were calculated in Lemma 7.12 above.
We get restrictions for the distribution of elements in the semigroup S.

These restrictions can be stated as follows.

Theorem 7.13 (see [7]). For any j = 0, . . . , d − 2 we have #S ∩ [0, jd + 1) = 1
2 (j + 1)(j + 2).
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Problem 79. Using the itemized list, prove Theorem 7.13.

The case n > 1 is similar; the new technical difficulties are rather minor. Suppose C is a
rational cuspidal curve of degree d with singular points z1, . . . , zn, whose links are K1, . . . , Kn
respectively and the associated semigroups are S1, . . . , Sn. Set K = K1# . . .#Kn. Then Y = ∂N
is S3

d2
(K) as states Lemma 7.11 above. However, as mentioned in Lemma 5.22(a) K has no

chances to be an L–space knot if n > 1, in fact, K is not prime. Luckily K is a connected
sum of L–space knots K1, . . . , Kn, hence by the Künneth formula (Proposition 5.10) we have
CKF∞(K) = CFK∞(K1) ⊗ . . . ⊗ CFK∞(Kn). The Künneth formula allows us to express the Vm
invariants of K in terms of the Vm invariants of the summands. Acting as in Problem 55 we
obtain

Vm(K) = min
m1+...+mn=m

Vm1 (K1) + . . . + Vmn (Kn).

Now each of the Vm (K) can be expressed from the semigroup of the singular point z. Putting
things together and acting as in the case n = 1 we arrive at the following result.

Theorem 7.14 (see [7]). For any j = 0, . . . , d − 2 we have

min
k1+...+kn=jd+1

n
∑

=1

#S ∩ [0, k) =
1

2
(j + 1)(j + 2),

7.6. Strength and weakness of Theorems 7.13 and 7.14

Theorem 7.13 has proved very useful in classifying rational cuspidal curves with one singular
point. It is possible to give a full list of possible rational cuspidal curves with one singular
point having one Puiseux pair (this is equivalent to saying that the link is a torus knot),
using essentially Theorem 7.13. This classification was first done in [16], the proof using
Theorem 7.13 is considerably simpler.

Problem 80. Show that there is a value d0 > 0 such that for any d > d0 there are no rational
cuspidal curves of degree d with one Puiseux pair (p, q) such that p < q and p ∈ (d/2, d − 1).

Problem 81. Use Theorem 7.13 to prove that if a rational cuspidal curve of degree d has
one singular point, then its multiplicity is at least d/3. The original proof of Matsuoka and
Sakai [59] uses the BMY inequality.

As it was shown in [7, Section 6], for n = 1 and a general number of Puiseux pairs, the
restriction of Theorem 7.13 has approximately the same strength as the spectrum semiconti-
nuity property (see [16] for more details). There are relatively few cases when Theorem 7.13
gives an obstruction, while the spectrum semicontinuity does not. There are also very few
cases when the opposite holds.

Surprisingly, for n ≥ 2 the situation changes and Theorem 7.14 is not that strong anymore.
A potential problem was discovered by Bodnár and Némethi [3] (see also [15]). Before we
state it, we give an example.

When trying to classify all rational cuspidal curves of degree 5 with two singular points,
both having multiplicity 2, one finds that the genus formula (Theorem 7.2) implies that
we might have three cases: either the singular points are (2; 3), (2; 11), or (2; 5), (2; 9), or
(2; 7), (2; 7). Such classification was already known long before; see [62].

Problem 82. Prove that in each of the three cases, if S1 and S2 denote the corresponding
semigroups, we have

min
+j=k

#S1 ∩ [0, ) + #S2 ∩ [0, j) =

(

b(k + 1)/2c k ≤ 12
k − 6 k ≥ 12.

Therefore Theorem 7.14 is unable to distinguish between the three cases. As the curve of
degree 5 with singular points (2; 5) and (2; 9) actually exists, we cannot obstruct any of the
remaining two cases. On the other hand, these remaining two cases do not exist.
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The deeper reason was discovered in [3, Section 5]. To describe it we introduce a bit of
notation. Namely, to any cuspidal singular point z we associate its multiplicity sequence Mz.
For a set of singular points z1, . . . , zn the union M = M1 ∪ . . . ∪ Mn is an unordered tuple of
integers greater than 1 (each integer can enter several times in the union). We say that
M =M′ if for each integer  ≥ 2 the number of times  appears in M is equal to the number
of times it appears in M′. We have the following result.

Theorem 7.15 (see [3, Theorem 5.1.3]). Suppose z1, . . . , zn and z′1, . . . , z
′
n are two collec-

tions of singular points. Let S1, . . . , Sn and S′1, . . . , S
′
n′ be corresponding semigroups and

M1, . . . ,M′n′ be the multiplicity sequences. Set M = M1 ∪ . . . ∪ Mn and M′ = M′1 ∪ . . . ∪ M
′
n′ .

If M =M′, then for every k ∈ Z we have

min
1+...+n=k

n
∑

j=1

#Sj ∩ [0, j) = min
′1+...+

′
n′=k

n′
∑

j′=1

#S′j′ ∩ [0, 
′
j′ ).

The result greatly limits the applicability of Theorem 7.14 when n > 1.

Remark 7.16. There exists a Heegaard Floer proof of the fact that a rational cuspidal curve of
degree 5 cannot have two singular points (2; 3) and (2; 11), neither can it have two singular
points (2; 7) and (2; 7); see [62, Section 6.1.3]. The proof involves involutive Floer theory
as developed by Hendricks and Manolescu [27], which is beyond the scope of the present
article. See [6] for details.

7.7. Relation to the FLMN conjecture

In 2006, Fernández de Bobadilla, Luengo Velasco, Melle Hernández and Némethi suggested
the following conjecture.

Conjecture 7.17 (see [17]). Let C ⊂ CP2 be a rational cuspidal curve of degree d. Let K
be the connected sum of links of singularities of K. Write the Alexander polynomial of K as
ΔK (t) = 1 + (t − 1)δ + (t − 1)2Q(t) for some polynomial Q(t) and let cj be the coefficient of Q
at td(d−3−j). Then for j = 0, . . . , d − 3

cj ≤
1

2
(j + 1)(j + 2).

Moreover, if C has precisely one singular point, then cj =
1
2 (j+ 1)(j+ 2) for all j = 0, . . . , d− 3.

Problem 83. Show that δ in the statement of Conjecture 7.17 is always equal to 1
2 (d−1)(d−

2).

Before we discuss the relation of Conjecture 7.17 to Theorem 7.14 in greater detail, let
us first say something about the motivation of the conjecture. Namely, in a series of papers,
Némethi and Nicolaescu studied the relation of the Seiberg–Witten invariants of normal sur-
face singularities and their geometric genus pg. In [69] they stated a conjecture, called the
Seiberg–Witten invariant conjecture. The conjecture was verified for many families of surface
singularities in [69, 70, 71]. However, in [50] it was shown that superisolated surface sin-
gularities are expected to satisfy the opposite inequality to the one conjectured by Némethi
and Nicolaescu. Superisolated surface singularities were introduced by Luengo in [49] and
are tightly related to rational cuspidal curves. In fact, each rational cuspidal curve C gives
rise to a superisolated surface singularity whose link is S3−d(K), where d is the degree of the
curve C and K is the connected sum of links of singular points of C. Conjecture 7.17 arose as
a translation the Seiberg–Witten invariant conjecture for superisolated surface singularities
into the language of rational cuspidal curves.

Remark 7.18. It is no surprise that the Alexander polynomial of K appears in the context
of a conjecture related to Seiberg–Witten invariants of the link S3−d(K). In fact, the relation
of Seiberg–Witten invariants with the Reidemeister–Turaev torsion (see [110] and references
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therein) allows to calculate the Seiberg–Witten invariants of S3−d(K) from the Alexander poly-
nomial of K; see e.g. [17, Formula (3)].

Now we pass to the relations of Conjecture 7.17 to Theorem 7.14. We begin with the easy
case.

Problem 84. Prove that if C has precisely one singular point, then Conjecture 7.17 is equiv-
alent to Theorem 7.14.

The case that C has two singular points is more complicated.

Theorem 7.19 (see [3, 68]). If C has two singular points, then Conjecture 7.17 follows from
Theorem 7.14.

However, if C has three or more singular points, Conjecture 7.17 is false. The following
example is elaborated in [3].

Problem 85. Let C be a rational cuspidal curve of degree 8 with singular points (6; 7), (2; 9)
and (2; 5). Prove that C violates Conjecture 7.17.
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