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Combinatorics of the Teichmuller TQFT

RINAT KASHAEV

Abstract

Based on the lectures given by the author at the School on braids and low dimensional
topology “Winter Braids VI”, University of Lille I, 22-25 February 2016, we review the
combinatorics underlying the Teichmuller TQFT, a new type of three-dimensional TQFT
with corners where the vector spaces associated with surfaces are infinite dimensional.
The geometrical ingredients and the semi-classical behaviour suggest that this theory is
related with hyperbolic geometry in dimension three.
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Introduction

The famous theorem of Pachner [9] states that arbitrary triangulations of one and the same
piecewise linear (PL) manifold can be related by a finite sequence of elementary moves of
finitely many types known as Pachner or bi-stellar moves [5]. In analogy with the Reidemeis-
ter theorem in knot theory, this result gives a combinatorial framework for constructing in-
variants of PL-manifolds as well as PL topological quantum field theories (TQFT) with corners,
provided one realises the Pachner moves algebraically. In dimension three, a first attempt of
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using this scheme has been undertaken in the Regge-Ponzano model [11], where the Pach-
ner moves are realised algebraically in terms of the 6j-symbols within the quantum theory
of the angular momentum. Subsequent developments have resulted in the Turaev-Viro TQFT
model [13] and its generalisations based on the theory of linear tensor categories [12].

In these notes, following [1, 3, 4], we review the combinatorial data underlying the Teich-
muller TQFT which is a new type of three-dimensional TQFT with corners where the vector
spaces associated with surfaces are infinite dimensional. The underlying combinatorial struc-
ture is given by shaped ordered A-triangulations, which are closely related with hyperbolic
geometry in dimension three. Additionally, the semi-classical behaviour of the Teichmduller
TQFT also suggests connections with hyperbolic geometry, allowing one to expect that the
Teichmdller TQFT is related to quantum Chern-Simons theory with gauge group SL(2, C),
the double cover of the group of orientation preserving isometries of the three dimensional
hyperbolic space.

The notes are organised as follows. In Section 1, we give definitions of standard and combi-
natorial simplexes, ordered A-triangulations, and the Pachner moves. In Section 2, we define
the H-triangulations and explain in detail how to construct one vertex H-triangulations for
knots in S3 starting from knot diagrams. In Section 3, we define the shaped triangulations
and discuss the angle and gluing equations. In Section 4, we describe the construction of
the partition function in Teichmuller TQFT and discuss its asymptotic behaviour in the quasi-
classical limit.
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excellence grant “Center for quantum geometry of Moduli Spaces” from the Danish National
Research Foundation.

1. Triangulations and Pachner moves

1.1. Standard topological simplexes

Let us denote
(1.1) [n]:={0,1,...,n}, neZso.

Definition 1. The standard (topological) n-simplex is a topological n-dimensional ball re-
alised as the subset of Rggl given by

n
(1.2) A”={(to,t1,...,tn)e[|§;’61| Zt,-:l}.
i=0

The boundary dA”, homeomorphic to the (n— 1)-sphere 5”1, is composed of n+ 1 home-
omorphic images of the standard (n— 1)-simplex through the face maps

(1'3) fl: An_l _)Anl (tol tll"'ltn_l)H (tol"‘ltl—ll OI tll"‘ltn_l)l ie [n]l
which satisfy the relations
(1.4) fiofj=firrofi if (<)

The following picture illustrates the standard 2-simplex:
fo o f1(A%) = f o fo(A?)
f(ah)

fo(a1) f20f1(80) = f1 0 f1(A0)

f1(ah)
foofo(A%) = f1 0 fo(A%)
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where the arrows correspond to the standard orientation of the unit interval [0,1] ¢ R
through the identification

(1.5) [0,1] » AL, t—(1—t,¢t).

1.2. Combinatorial simplexes

Definition 2. A combinatorial n-simplex AS is an abstract simplicial complex given by the
power set of a linearly ordered set S of cardinality n+ 1.

The standard combinatorial n-simplex A[ n] corresponds to the set [n] ={0,1,...,n} with
the natural linear order.

It is clear that for any combinatorial n-simplex AS there is a unique bijection s: [n] — S,
i — s;, preserving the linear order.

The facets or boundary components of a combinatorial n-simplex AS are combinatorial
(n—1)-simplexes 9;AS, i € [n], corresponding to the subsets S\ {s;} with the natural induced
linear order:

(1.6) 9;AS = A(S\ {si}).

Pictorially, one can still think in terms of the topological simplexes, for example, the combi-
natorial 2-simplex A[2] can be drawn as follows

A{1}
02A[2]
d0A[2] A{O}
91A[2]
A{2}

but one should keep in mind that, compared to the face maps (1.3), the operations of taking
the boundary components are composed in the opposite order, so that the identity (1.4)
should be replaced by

(1.7) 9j9; =09i9j+1 if (<.

1.3. Ordered A-triangulations

Definition 3. An ordered A-triangulation is a CW-complex X where, for any n € Z~q, each
n-cell is given by a characteristic map of the form

(1.8) a: A" — X,
and, for any i€ [n], aof; is the characteristic map of an (n— 1)-cell.

Example 1. There exists an ordered A-triangulation X of the 3-sphere consisting of one
3-cell, two 2-cells, two 1-cells, and one 0-cell with the following characteristic maps:
0 - ¢

\ a: A3 > X,

p Y B=aofo=0aof3,
Yy=aofi=aof,

°+5 g §=Bofi=vof, Ljel2], j#1,
p=7Yof1,
o=éofi=pof, ije[ll.

In the picture above, the boundary of the 3-cell is identified with the coordinate plane com-
pactified to a 2-sphere by adding a point at infinity.
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In what follows, ordered A-triangulations will often be informally called just triangulations.

1.4. Pachner moves

Choose a splitting [n] =IUJ with non-empty I and J of cardinality p = |I| and g = |/| so that
p+qg=n+1. The subsets

(1.9) A" = Uierfi(A"Y) and 9A" = uUjgfi(A"h)

are topological (n— 1)-dimensional balls sharing a common boundary (homeomorphic to the
(n—2)-sphere S"2). A Pachner move of type (p, q) is the operation of replacing a homeo-
morphic image of 9;A” by 9;A" (a homeomorphic image thereof) in a triangulated (n— 1)-
dimensional manifold.

The Pachner move corresponding to the specific splitting [n] =Ip UJo with

n n

(1.10) Ip= {0,2,...,2{5J} and Jo= {1,3,...,2[5-‘—1}
will be called the distinguished Pachner move. Here we use the floor | x| (the largest integer
not greater than x) and the ceiling [x] (the smallest integer not less than x) functions. The
corresponding partition of n + 1 is given by the formula

n n
(1.11) (Po. q0) = (ol. oD = (| 5 |+ 1.[ 5]).
The following table gives the values for small n=d + 1:
(1.12) d | 1 2 3 4 5 6 7

(Po.q0) | (2,1) (2,2) (3.2) (3.3) (43) (44) (5.4)
The following pictures illustrate few Pachner moves in small dimensions.

(1.13) Q> - @ Type (2,2), d =2

(1.14) Type (1,3),d=2

(1.15) Type (3,2),d=3

\ 2%
OV

Pachner’s theorem [9], which states that two triangulated PL-manifolds are PL-homeomorphic
if and only if they are related by a finite sequence of Pachner moves, allows to construct PL-
invariants provided one finds algebraic realisations of the Pachner moves. A typical example
are the Turaev-Viro invariants of 3-manifolds [13] which are based on the theory of 6j-symbols
of the representation theory of Hopf algebras giving algebraic realisations of the Pachner
moves of the types (p, 5—p), p € {1, 2, 3,4}, which are closely related to Matveev-Piergallini
moves in the dual language of special spines of 3-manifolds [6, 7, 10].

1.5. Algebraic realisations

A restricted class of algebraic realisations of the Pachner moves in d dimensions can be
obtained as follows.

One associates a (finite dimensional) complex vector space V(s) to each (d — 1)-simplex
s, and a vector V(p) € V(3pp) ® --- ® V(3gp) to each d-simplex p in such a way that if s*
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is a (d— 1)-simplex s with opposite (induced) orientation then the associated vector space
should be the dual vector space V(s)* = V(s*), and the functorial properties with respect to
the gluing operations should be satisfied. In particular, for the distinguished Pachner moves,
the following equality should be satisfied:

(1.16) (®k<tEV2k,20 (®V(82i1)) = (® k< EV2k+1,21+1) (®)V(82j+1U))
where u is a (d + 1)-simplex and
(1.17) Evi;: V(a,-a,-u)* ® V(o;0ju) = C

is the operation of contracting between elements of dual vectors spaces. In this way, one
arrives at a multilinear algebraic relation on the vectors associated to the d-simplexes. The
following table gives a list of algebraic structures which can be used for realisation of at least
the distinguished Pachner moves in dimensions up to 3:
d | 1 |2 | 3
algebraic structure || projectors | algebras | bi-algebras

1.6. Thecased=3

The distinguished Pachner move of the type (3, 2) can be realised by a linearmap S: VeV —
V ® V satisfying the equality
(1.18) 51,251,352,3=52,351,2

where V is a vector space and S;; is an element of the endomorphism algebra of the vec-
tor space V®3 acting as S in the i-th and j-th components and identically in the remaining
component, e.g. S1,2 =S ® idy. Namely, for any oriented 2-simplex (triangle) t we assign the
vector space V(t) =V and for any oriented 3-simplex (tetrahedron) s the vector

(1.19) V(s)=5€V(39s)® V(315)® V(325)® V(33s)=Ve V*e Ve V*=End(Ve V)

where we use the fact that the induced orientations on the even facets of a simplex are
opposite to those on the odd facets. If V is provided with the structure of a bi-algebra with
the multiplication Vy: V® V — V and the co-multiplication Ay: V — V ® V, then the element

(1.20) S=(idyeVy)(Av®idy): VeV VeV

is easily seen to satisfy relation (1.18).

1.7. Thecased=4

Let p be an oriented 4-simplex also called pentachoron. We will find it convenient to represent
a pentachoron diagrammatically as a five valent vertex

aop 92P aup

p
RN
91p 93p

which allows to represent the distinguished Pachner move of the type (3, 3) as the following
(string) diagrammatic equality

uo1 uos uops uz3 uzs uss uo1 uos uos uzs uzs Uas
oL |~
Up us
uz = us
/ N
Ug ui
\ O\ v

uiz uia usa ui2 Uig uss
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where u is a 5-simplex with the notation
ui=9iu, u;=odu,

and the internal edges correspond to internal shared tetrahedra. Specifically, the internal
edge connecting the pentachora u; and u; with i < j correspond to the common internal
tetrahedron u shared between those pentachora.

Using the fact that the induced orientations on even facets are opposite to those on odd
facets, the vector V(p) € V(3pp) ® --- ® V(94p) can be thought of as a linear map

V(p): V(a1p*) @ V(33p™) — V(30p) ® V(d2p) ® V(34P)

with a similar string diagrammatical notation as for an abstract pentachoron

V(aop) V(2P)  v(a,p)

~_ |
V(p)
/ \
V(31p*) V(o3p*)

In the simplest case of a constant realisation

NV
(1.21) Vip)=Q = Q| :VeV-VeVeV
/N

we arrive at a graphical equation to be called Pachner (3,3)-relation

\\//7 XT/
Q Q
(1.22) ) — o
/ \

Q Q

AN\ /)

whose analytic form reads as

(1.23) (Qo®idyes)(idy ®Q ® idy) (0 ® idye2)(idy ®Q)
= (idye2 ®0 ® idye2) (idyes ®Q0) (idy ®Q ® idy) (idye2 ®0) (Q ® idy)

where o0 = oy,y is the permutation operator defined by
(1.24) Oxy: XY —-Y®X, xey—ye®ex, VxeX, VyeY.

We can also use the same graphical notation

for the matrix coefficients

=0 wee®weenew)=(wewew olesen)
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associated with dual linear bases {e;} c V and {«/} c V*. In this way, we obtain a coordinate
form of the Pachner (3,3)-relation given by a system of non-linear algebraic equations

"\T/”//'” < ‘%T/
Q Q
Q = Q
7 \
Q Q
L\ Ve

r

where summations over the implicit indices on the internal edges are assumed. The explicit
analytic form of these equations reads as follows:

i.,LmAs,jnntuk _ m,n,k Alj.tHiu,s
(1.25) Z Os,t Qp,u Qq,r - Zt: Qs,t Qu,r QP:Q ’
s,tu

s, t,u

Example 2. For any abelian group A and a bi-character x: A x A — C, we have a solution in
the form of a linear operator between the vector spaces of complex valued functions on A2
and A3:

3

(1.26) Q:C*” S %, (QN(X v, 2) = x(X, 2)f (X + Y, y + 2).

If A is a locally compact abelian (abbreviated as LCA) group, then the matrix coefficients
make sense as tempered distributions over A>:

(1.27) O’J')";z =Dy(x,u,y,v,2) :=x(x,2)6(x—u+y)os(y—v+2), V(XyzuVv)e A3,

where §(x) is Dirac’s delta distribution over A defined by

(1.28) f 5(xX)f (x)dx = f(0)
A

with a chosen Haar measure dx on A and any Schwartz-Bruhat test function f: A — C. Equa-
tions (1.25) are satisfied by (1.27), provided the summations are interpreted as integrations
with respect to the Haar measure. Indeed, for any (i,j, k,,m,n,p,q,r) € A%, we have two
tempered distributions

2% Ls Qui"Qy Qg s t u)
= | x(i,m)s(i—s+D6(l—t+m)QS-Qtukd(s, t, u)
A3 p.u “q.r
= x(i,m) L QirinQU Mk du
= x(i, m)f X+ L ns(i+ (= p +/)5(— u+ Qg™  du
B :

= X(&, mX(i+ L 8(i+ = p+ QL I+NK
=x0 M)+ Lnx(t+m,K)(i+1l—p+)5(l+m—qg+j+n)s(+n—r+k)
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and
m,n,k Alj,tAius
(1.30) Lao Qly 0, d(s, tu)

st

= f . x(m, kK)6(m—s+n)s(n—t + k)og{'rfogfgs d(s, t, u)
A
— Lj,n+k ni,u,m+n
—X(m, k)fA Ou,r Op’q du

=x(m, k)J xX(Ln+KYS(l—u+j)6(j—r+n+ k)oi,)uém+n du
A ,

=x(m, K)x(Ln+K)s(—r+n+ k)Q;';’Z/"’"”
=x(m, Kx(Ln+ K, m+n)bé(—r+n+Kk)o(i—p++))6(l+j—qg+m+n)

which coincide due to the fact that x(x, y) is a bi-character.

2. H-triangulations

Definition 4. An H-triangulation is a pair (X, H) where X is an ordered A-triangulation of
a closed compact oriented 3-manifold and H is a vertex-disjoint simple cycle cover of the
1-skeleton of X1.

The Pachner moves in 3 dimensions have natural relative versions adapted to H-triangulations,
and the corresponding equivalence classes are in bijection with the topological classes of
pairs (M, L) where M is a closed compact oriented 3-manifold and L c M is a link [2].

2.1. One vertex H-triangulations

Let (M, K) be a pair consisting of a closed compact oriented 3-manifold M and a knot K c M. A
one vertex H-triangulation of (M, K) is a triangulation of M with one vertex and a distinguished
edge representing the knot K. A one vertex H-triangulation of a knot in S3 can be constructed
starting from a non-trivial knot diagram D as follows.

First, take S3 as the standard one point compactification of R3 and fix an embedding
52 ¢ S3 as the closure of the standard embedding R2 c R3, (x, y) — (X, y, 0). Next, we choose
D as the image of a polygonal knot K c R? x [—€, €] c R3 under the orthogonal projection of
R3 — R2, with a small positive real €, so that the vertices of K project to mid-points of the
edges of D (here we think of D as a 4-valent graph with vertices at crossings), except for
one distinguished edge, to which we assume two vertices of K are projected. We consider
K together with its natural cellular decomposition. In the case of the figure-eight knot, the
diagram in Fig. 2.1(a) satisfies all these conditions where the images of the vertices of the
cellular decomposition of K are represented by small filled circles and the distinguished edge
of D is the one containing the uppermost horizontal segment.

The cellular decomposition of K extends to that of S3 by keeping the same vertex set
and adding new edges so that each crossing point of D is surrounded by the images of four
new edges as in Fig. 2.1(b) where the higher dimensional cells are given by tetrahedral cells
contained in R? x [—¢, €], together with their own natural cellular structure and which are
projected to shaded quadrilaterals containing the crossings of D and also by two 3-cells ¢+
given by the intersections of the complements of the tetrahedral cells in S3 with the two balls
B, and B_ obtained as closures in S3 of the upper and lower half spaces respectively, i.e.

(2.1) B:={(x,y,2)eR3U {0} | £z>0}
sothat S3 =B, uUB_ and S2=B, nB_.

1Here we use the graph theoretical terminology, where, for a given graph, a vertex-disjoint simple cycle cover
is a subgraph containing all the vertices of the graph and which topologically is a disjoint union of circles.
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(a) (b) (c) (d)

Figure 2.1: Construction of a one vertex cell decomposition of the pair
(53, 41): (a) a knot diagram with a cellular structure; (b) the induced cellu-
lar decomposition of S3 with crossings contained in shaded tetrahedral cells;
(c) each shaded tetrahedron is collapsed to a segment represented by four
oriented edges of the tetrahedron; (d) the result of gluing of the cells c+ along
the 2-cell corresponding to the outer region of the knot diagram.

A-A-R-L-

Figure 2.2: An isotopy which collapses a tetrahedron to a segment.

From the constructed cellular decomposition of S3 we produce a new cellular complex by
an isotopy which starts from the identity map and ends with a projection to a topological
quotient space (still homeomorphic to S3) with respect to the equivalence relation under
which all points of K, except the segment which projects to the distinguished edge of D,
are equivalent to each other, and each tetrahedral cell is collapsed to a single edge as in
Fig. 2.2. The resulting cellular complex is composed of two 3-cells cs+, the images of ¢4,
while the 2-skeleton is given by the complementary regions of the quadrilaterals containing
the crossings of the diagram D as in Fig. 2.1(c) where the non-collapsed part of K is the
uppermost horizontal segment, and the 2-cells are given by non-shaded regions, namely four
triangular cells and one quadrilateral cell corresponding to the outer region. The orientations
on the edges with different types of arrows allow to keep track of the information on their
identifications, namely, one type of arrow corresponds to one and the same (geometrical)
edge, the image of the corresponding collapsed tetrahedron.

By gluing two 3-cells c+ together along the 2-cell corresponding to the outer region in
the knot diagram we obtain a cellular complex given by one 3-cell whose boundary is com-
posed of the remaining 2-cells, each 2-cell appearing twice with opposite orientations as in
Fig. 2.1(d) where the boundary 2-sphere of the 3-cell is identified with the coordinate plane
compactified to a 2-sphere by adding a point at infinity. The obtained complex can be non-
canonically transformed into a A-triangulation by cutting the 3-cell into tetrahedra. In our
example this is achieved by cutting along two new triangular 2-cells, see Fig. 2.3(b), where
a linear order of vertices of each tetrahedron is induced by the directions of arrows on the
edges.

Below, we present three more examples of one vertex H-triangulations of the knots 31, 5>
and 61 in S3.

Example 3 (One vertex H-triangulation of (53, 31)). The construction is given by Fig. 2.4.

Namely, as explained in Subsection 2.1, the diagram (a) of the trefoil knot induces a cellular
decomposition (b) of S3 which, upon removing the 2-cell corresponding to the outer region of
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A

Figure 2.3: A one-vertex H-triangulation of the pair (53, 41) with three tetrahedra.

(a) (b) (c)

Figure 2.4: Construction of a one vertex H-triangulation of the pair (S3, 31).

(b), immediately gives rise to H-triangulation (c). Thus, we have one tetrahedron T with the
face identifications

(2.2) ;T ~a3_;T, ie{0,1}.

The quotient space X is a triangulation of S3 with one vertex and two edges: the edge e——
in Fig. 2.4(c), which is knotted like trefoil and has the only edge 03 of T as pre-image and
the edge «—— in Fig. 2.4(c), having all five other edges of T as pre-images. The obtained
triangulation is, in fact, the one described in Example 1.

Example 4 (One vertex H-triangulation of (S3, 52)). The construction is given in Fig. 2.5
where in the last picture (d) one can easily identify four tetrahedra piled up from bottom to

Z —

(a) (b) (c) (d)

Figure 2.5: Construction of a one vertex H-triangulation of the pair (S3, 52).

top. Enumerating them as T;, i € [ 3], in the order from bottom to top, we have the following

1I-10
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face identifications:

(2.3) 02To~a3Tp, 90To ~033T2, 01To~9d0T1, 9171 ~ 3072,

92T1 ~91T3, 93T1 ~ 9073, 9172 ~32T3, 9272 ~33Ts.
Example 5 (One vertex H-triangulation of (53, 61)). The construction is given in Fig. 2.6
where in the last picture (d) one can easily identify five tetrahedra piled up from bottom to

top. Enumerating them as T;, i € [4], in the order from bottom to top, we have the following
face identifications:

(2.4) 92T ~093To, 90To~090T1, 91T ~93T3, 9171 ~92T2, 92T1 ~ 9074,
93T1 ~d0T2, 01T2 ~981T4, 83T2 ~0d0T3, 0173 ~ 3374, 0273 ~32T4.

v

(a) (b) (c) (d)

Figure 2.6: Construction of a one vertex H-triangulation of the pair (53, 61).

3. Shaped triangulations

Definition 5. A triangulation X is called shaped if each tetrahedron of X carries the structure
of an ideal hyperbolic tetrahedron.

The shape of one tetrahedron can be described either by dihedral angles or by complex
shape variables associated with edges according to the following rules:

— SinY Lia
zZ= sinﬁe
Y Z=1-z"1
Z’'=(1-2)"1

zz'z" =-1

Definition 6. Let X be a shaped triangulation. The (complex) weight w(e) of edge e of X is
the product of all tetrahedral shapes associated with this edge. The total angle a(e) at edge
e of X is the sum of all dihedral angles around that edge.

We have the following evident formula
(3.1) w(e) = |w(e)|e@®).

Definition 7. An edge e of a triangulation X is called weight (respectively angle) balanced
if its weight (respectively the total angle) is equal to 1 (respectively 2m).

II-11
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(Thurston’s) gluing equations (respectively angle (structure) equations) of a triangulation
X of a cusped 3-manifold correspond to weight (respectively angle) balancing of all edges of
X.

Remark 1. For any shaped triangulation, define its volume as the sum of volumes of all
tetrahedra. Then, maximisation of the volume in the space of angle structures corresponds
to completing the angle equations to gluing equations together with the completeness con-
dition. More generally, maximisation of the volume in the subspace of all shape structures
with fixed total angles around edges corresponds to identification of the complete hyperbolic
structure with the cone singularities specified by the total angles.

Remark 2. The gluing (respectively angle) equations are compatible with the Pachner moves
of the type (3,2) provided the edge associated to the move is weight (respectively angle)
balanced. In that case, the move will be called shaped (respectively angled).

The last remark allows us to impose the gluing or angle equations only partially and to
consider them in the broader context of arbitrary triangulations. As one cannot apply the
(3,2) Pachner move along the non-balanced edges, the latter should be considered as an
additional structure of the underlying 3-manifold or topological space.

Example 6. Consider the following 2-vertex H-triangulation of the pair (53, 41):

A A A AN

where the knot is represented by the bottom edges of the last two tetrahedra, and we indicate
the complex shape variables next to their associated edges. The edge weights are as follows:

(3.2) W(o——s) =X, W(e—=»—o0) =Y,
(3.3) W(e——-2e) =X'X"y'y" = —,

Xy
(3.4) W(e——e) = uvVv’/x’x” = %

v
(35) W(o—»—o) = uu’vy'y" = W’

u//vllx

(36) W(O—)—O) — ul(u//)zvl(.v//)zxy - u—vy
Imposing the gluing equations on all edges except those representing the knot, we obtain
(3.7) xy=1, (1—V)u=x, (1—-u)v=y.

We observe that system (3.7) describes the deformation variety of the figure-eight knot com-
plement, where the variables x and y are naturally associated with the meridian. In particular,
the additional condition x =y =1 in (3.7) corresponds to the complete hyperbolic structure.

Example 7. Let X be the one tetrahedron triangulation of S3 from Example 1. Taking a shape
structure on X given by dihedral angles a, B, ¥ according to this picture

11-12
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we obtain the following total angles:
(3.8) Ale———e)=a, da(e——e)=0a+ 2B+2y=2n—0a

which depend only on the angle a, but not on B or . Geometrically, the total angles deter-
mine a (hyperbolic) metric with conical singularities along the unbalanced edges. Maximisa-
tion of the volume of X with fixed conical singularities (i.e. fixed a) fixes the angles B and y
in terms of a. Indeed, the volume of an ideal hyperbolic tetrahedron with dihedral angles a,
B, v is given by Milnor’s formula [8]

(3.9) vol(a, B, v) = N(a) + A(B) + A(v),
where
(3.10) A(x):=—f log|2sin@|d6

0

is Lobachevsky’s function which is antisymmetric
(3.11) N=x) = —A\(x)
and m-periodic

(3.12) A(Xx + m) = A(X).

The critical points of vol(a, B, v) at fixed a are given by the equations

m—ao
(3.13) dvol(a, B, Vlda=0 =0 & AN(@B)=N(y) & B=7= >

so that the volume of the complete hyperbolic structure on X with conical singularities along
its 1-skeleton determined by a is given by the formula

(3.14) vol(X) = vol(a, B, ¥)lg=y = 2A(a/2),
where we have used the formula

m
(3.15) /\(2x)=2/\(x)+2A(x+ 5)

In the next section, we obtain this result by taking the quasi-classical limit of the Teichmuller
TQFT partition function of X, which, due to the gauge invariance in the space of shape struc-
tures, depends also only on the angle a but not on 8 or .

4. Teichmiiller TQFT

For two sets A and B we will denote by AB the set of maps from B to A. For any finite set
E we denote by S(RF) the set of Schwartz class functions on RE and by S’/(Rf) the dual
space of tempered distributions on RE. We will also denote by X; the set of i-simplexes of

a triangulation X. In a triangulation of an oriented pseudo 3-manifold, there two types of
tetrahedra:

positive and negative

where the linear order on the vertices is given by the number of incoming arrows. We will
denote by &(T) € {£1} the sign of tetrahedron T.
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4.1. Kinematical kernel
Let X be a triangulation. Define a map
(4.1) p: X3 = S’ (R2 x RX3),
p(T(x, y) = eMeTXY(Dg(xg — x1 + X2)6(x2 — x3 + Y(T)), X :=Xx(3T).

Remark 3. Formula (4.1) can also be written in terms of the distribution valued solution (1.27)
of the Pachner (3, 3)-relation (1.25) in the case of the LCA group R:

(4.2) p(T)(x,y) = Dx(xo, X1, X2, X3, y(T))
where the bi-character x is given by the formula
(4.3) x(s, t) = e2™eMst  y(s, t) e R,

Definition-Proposition 1. Let X be a triangulation of a compact closed oriented pseudo 3-
manifold satisfying the condition H2(X \ Xo, Z) = 0. The kinematical kernel of X is an element
Kx € S’(RX3) defined by the integral

(4.4) Kx(y) =f dx [ ] p(Mx, ).
RX2

TeXs

We do not give the proof here, but it is an implicit part of the proof of Theorem 7 of [1] as
it will be clear from equality (4.17) in the next subsection.

Example 8. Let X be the triangulation from Example 1. We have
(4.5) X3=A{T}, Xa={F1,F2}, (8T, =(F1,F2,F2,F1), &T)=1
so that
(4.6) pP(T)(x,y)=e>™V§(x1—x2 +X2)8(x2 — X1+ )
=6(x1)6(x2+y), xi:=x(F), y:=y(T)

and thus

(4.7) Kx(y) =J d(x1,x2)6(x1)6(x2 +y) =1.
RZ

4.2. Dynamical content

We fix a positive real parameter h, and we let b denote a solution of the equation

(4.8) (b+bHvhA=1
satisfying the inequalities
(4.9) Rb>0, 3b=0.
We also denote
(4.10) 9= b+ b7 = ! .
2m 2nv/h

Let X be a shaped triangulation. We define a map
(4.11) Vixs > €%, yN) = e

' ' ’ b (y(T) — i9e(T)(az + a3))*")
where
(4.12) a;:=angle(9po;T), Vie{l,?2,6 3},
and

1 e—2ixz dz

(4.13) p(x) = exp (Z JRHO sinh(bz) sinh(b-12) ?)
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is Faddeev's quantum dilogarithm which is a meromorphic function on the entire complex
plane with the zeros and poles located outside the strip

(4.14) |3x] < 8
and satisfying the unitarity condition under the complex conjugation
1
(4.15) dp(x) = =
®p(X)

Definition-Proposition 2. Let X be a shaped triangulation. The dynamical content of X is a
test function Dx € S(RX3) defined by the following product formula:

(4.16) Dx) = [ ] ¢

TeX3

The fact that Dx € S(RX3) is a consequence of the properties of Faddeev’s quantum dilog-
arithm and the positivity of the dihedral angles, see for details [1].

Theorem 1. Let X be a shaped triangulation of a compact closed oriented pseudo 3-manifold
M satisfying the condition H2(X \ Xo, Z) = 0. Then the absolute value of the Teichmiiller TQFT
partition function defined by

(4.17) Zr(X) =Kx(Dx) = f Kx(y)Dx(y)dy

RX3
is invariant under angled (3, 2) Pachner moves. If additionally M is a manifold (i.e. without
cusps) then |Zr(X)| depends only on the total dihedral angles.

This theorem follows from Theorem 4 of [1]. Its last part is a consequence of the gauge
invariance in the space of shape structures induced by the Hamiltonian action of the group
RIX1=1 through the Neumann-Zagier Poisson structure and where the Hamiltonians are given
by the total angles.

Example 9. Let X be the triangulation from Example 1, see also Examples 7 and 8 for
notation. We have
62n9cxy

4.18 K =1, D =
( ) x(¥) x(¥) 25 (/= 190+ 7))

so that

(4.19) 1Z5(X)| = =|®p (i3(m—a))|

2nSay eZnSorz
J - dy J dz
R @b (y—i9(a+ 7)) R—i9(a+y) Pb(2)
where in the last equality we have used the Fourier transformation formula of Faddeev’s
quantum dilogarithm:

(4.20) J &y (y)e2™Y dy = Coe~ ™ dp(x + in9), 0<—3Ix<e<m9, C{o:=elA+m1)/12
R+ie

From the calculation in (4.19), we see that the result depends only on the angle a but not on
B or ¥ in agreement with the last part of Theorem 1 and Example 7.

4.3. Quasi-classical limit

Faddeev’s quantum dilogarithm has the following asymptotic behaviour:

X
4.21 <1>(—) ~ @72
(4.21) P\2m6/|p0

which implies that |Zz(X)] in (4.19) behaves as

i(m—a)
q)b( 21b )

—LLix(—eX)

1 Sl (—ei(m—a) _1 ~ i (e—ia _ Na/2)
~ e7npz S Li2(—€ ) _ eampzdt2(e™) _ T

(4.22) 1Z6(X)lp—0 ~ e
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Upon comparing with (3.14), the obtained formula is consistent with the following quasi-
classical behaviour of the Teichmuller TQFT partition function:
voI(X))
2mh

which is conjectured to hold for all shaped triangulations as soon as the partition function
can be defined.

(4.23) 1Zr(X)lr-0 ~exp(—
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