
Winter Braids Lecture Notes

Michel Boileau

Around 3-manifold groups
Vol. 5 (2018), Course no II, p. 1-26.

<http://wbln.centre-mersenne.org/item?id=WBLN_2018__5__A2_0>

cedram
Texte mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.centre-mersenne.org/

http://wbln.centre-mersenne.org/item?id=WBLN_2018__5__A2_0
http://www.centre-mersenne.org/
http://www.centre-mersenne.org/


Winter Braids Lecture Notes
Vol. 5 (2018) 1-26
Course no II

Around 3-manifold groups

MICHEL BOILEAU

Abstract

This text is an expanded version of the minicourse given at the session Winter Braids VIII. The
goal is to present some basic properties of 3-manifold groups and to give an overview of some of
the major progress made in their study this last decade. It is mostly of expository nature and does
not intend to cover the subject. I thank the Winter Braids organizers for their invitation and their
kind patience whilst these notes were completed, and the referee for his careful reading and his
suggestions which greatly improved the exposition.

1. Introduction

The last decade has seen spectacular progress in our understanding of the algebraic properties
of the fundamental groups of 3-manifolds due mainly to G. Perelman’s geometrisation theorem
and the works of I. Agol and D. Wise. We know that except for graph manifolds, each closed,
irreducible 3-manifold virtually fibers over the circle and thus its fundamental group has a fi-
nite index subgroup which is an extension of Z by a surface group. Necessary and sufficient
conditions for a given group to be isomorphic to a closed 3-manifold group have been given in
terms of group presentations (see [Gon75],[Tur84]), however, no intrinsic algebraic character-
isation of 3-manifold groups is currently known. The following question will be the guideline of
these lectures.

Question 1.1. Which finitely presented groups can or cannot occur as the fundamental group
of a compact orientable 3-manifold M3?

John Stallings [Sta63] showed that this question is algorithmically undecidable.

Theorem 1.2. Given any non-empty class M of compact connected 3-manifolds, there is
no algorithm for deciding whether or not a finite presentation of a group defines a group
isomorphic to the fundamental group of an element of M.

The proof reduces to showing that being a 3-manifold group is a Markovian property, and
therefore is undecidable by the Adian-Rabin’s Theorem.

Recall that a property P of finitely presented groups, which is preserved under isomorphisms,
is a Markovian property if:

1. there exists a finitely presented group with the property P.

2. there exists a finitely presented group which cannot be embedded into any finitely
presented group with the property P.
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Stallings showed that the free abelian group Z4 cannot be isomorphic to a subgroup of any
3-manifold group. The proof of this fact is not trivial since it needs the Sphere theorem (cf.
Theorem 3.3, section 3).

Recently D. Groves, J. F. Manning and H. Wilton [GMW12] proved that the class of funda-
mental groups of closed, geometric 3-manifolds is algorithmically recognizable provided that a
solution to the word problem is given. Geometric manifolds are 3-manifolds which carry one of
the eight homogeneous 3-dimensional geometry listed by Thurston (see Theorem 6.1, section
6). This result implies that geometric 3-manifold groups can be recognized in some classes of
groups as, for example, linear groups or residually finite groups.

Throughout these lectures we work in the smooth category and, unless otherwise stated,
manifolds will be assumed to be connected, compact and orientable, possibly with boundary.
Basic references for 3-manifold topology are the books [Hem76], [Jac80], [Sta71].

2. Finite presentation

A group G is finitely generated if it can be generated by finitely many elements g1, · · · , gn. In
this case G is a quotient of the free group Fn of rank n by a normal subgroup R Å Fn. If R is
normaly generated by finitely many elements r1, · · · , rk, called relators, the group G is said to
be finitely presented. We write G = 〈g1, · · · , gn | r1, · · · , rk〉, a presentation of the group G with
n generators and k relators. The discrepancy n− k is called the deficiency of the presentation.

If G is finitely generated the minimal number of generators is called the rank rk(G) of G. If
G is finitely presentable, the deficiency def(G) of G is the maximal deficiency over all presen-
tations of G. Here is a classical majoration for the deficiency due to D. Epstein [Ep61]:

Lemma 2.1. For a finitely presentable group G,def(G) ≤ b1(G) − rk(H2(G,Z)).

Given a finite presentation 1→ R→ Fn → G→ 1 for G, the proof of this lemma is based on
the Hopf’s formulas:

H1(G,Z) ∼= Fn/[Fn, Fn]R et H2(G,Z) ∼= (R ∩ [Fn, Fn])/[R, Fn]

Examples

1. def(Fn) = n.

2. def(Z2) = 1 and def(Z3) = 0, while it is negative for n ≥ 4.

3. For a finite group G, def(G) ≤ 0 since a group of deficiency ≥ 1 has infinite abelianiza-
tion.

A finitely presentable group is efficient if its deficiency is realized on a finite presentation.
Abelian groups, free groups, surface groups are efficient. It follows that most finitely generated
abelian groups have deficiency < 0. The only finitely generated abelian groups with deficiency
0 are Z/nZ for n ≥ 2, Z⊕ Z/nZ and Z3.

For a closed orientable surface S of genus g, Lemma 2.1 shows that def(π1(S)) ≤ 2g− 1 and
the equality is realized on the canonical one-relator presentation of π1(S).

On the other hand there are torsion free, finitely presentable groups which are not efficient.
Martin Lustig [Lus95] gave the first example with the group G = 〈, b, c | 2b−3, [, c], [b, c]〉
∼= π1(S3 \ K) × Z, where K ⊂ S3 is the trefoil knot.

A finite dimensional compact manifold admits a cellular decomposition with one 0-cell and
finitely many 1-cells and 2-cells. Any such decomposition gives rise to a finite presentation of
its fundamental group π1(M) where the generators correspond to the 1-cells and the relators
to the 2-cells. So π1(M) is finitely presentable. In his famous article on the Analysis Situs, after
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having introduced the notion of fundamental group attached to a manifold, Poincaré raises the
following questions (see [Poin95]):

"Il pourrait être intéressant de traiter les questions suivantes.

1) Etant donné un groupe G défini par un certains nombres d’équivalences fondamentales,
peut-il donner naissance à une variété fermée à n dimensions?

2) Comment doit-on s’y prendre pour former cette variété?

3) Deux variétés d’un même nombre de dimensions qui ont même groupe G sont-elles
toujours homéomorphes?

Ces questions exigeraient de difficiles études et de longs développements. Je n’en parlerai
pas ici."

It is known since M. Dehn [Deh10, Deh12], see [DeSt87, papers 3 and 4] or [dlH10, section
7], that any finitely presented group can be realized as the fundamental group of a closed
orientable 4-manifold. This fact shows the impossibility of classifying 4-manifolds since it is
impossible to classify finitely presented groups. However the construction does not give in
general an aspherical manifold (i.e. a manifold whose fundamental group is the only non-
trivial homotopy group). In particular the cohomology of this manifold does not coincide with
the cohomology of the group in general (cf. Section 9).

Theorem 2.2. Any finitely presented group is the fundamental group of a 2-complex and also
of a 4-dimensional closed orientable 4-manifold.

Here is a sketch of the proof, see [dlH10] for more details. Given a finite presentation of a
group G = 〈g1, · · · , gn | r1, · · · , rk〉 one can associate a 2-complex X with one 0-cell, n 1-cells
(one for each generator) and k 2-cells (one for each relator) which are attached to the 1-
skeleton according to the relator words. One can always subdivide this 2-complex X to get
a finite simplicial 2-complex. A finite simplicial 2-complex can always be embedded in R5:
this is done for example by sending the vertices to distinct points on the parametrized curve
(t, t2, t3, t5) which has the property that no 6 distinct points lie on a common hyperplane. It
follows then that two distinct 3-simplices meet only at common faces, edges or vertices. One
can endow R5 with a simplicial struture which makes X a subcomplex. The union W of the
interiors of the simplexes in R5 which contain a vertex of X in the barycentric subdivision of
X defines a neighborhood of X which deformation retracts on X; hence G = π1(X) ∼= π1(W).
Moreover, since the codimension of X in W is 3, π1(W) ∼= π1(W \ X), and W \ X deformation
retracts on ∂W. It follows that G = π1(X) ∼= π1(W) ∼= π1(W \ X) ∼= π1(∂W), where M = ∂W is a
closed orientable 4-manifold. �

In contrast, closed 3-manifolds admits topological and geometrical properties that put con-
straints on their fundamental groups. For example, since Heegaard and Poincaré one knows
that every smooth, closed, orientable 3-manifold splits along an embedded surface into two
handlebodies. One way to get such a splitting, called a Heegaard decomposition, is to con-
sider the boundary of a regular neighborhood of the 1-skeleton of a triangulation of the closed
3-manifold. The existence of a Heegaard decomposition shows that the fundamental group of
a closed 3-manifold admits a balanced, presentation which means a presentation with equal
number of generators and relators, that is to say of deficiency 0.

Corollary 2.3. Let M be a closed, orientable 3-manifold, then def(π1(M)) ≥ 0.

In fact one has the following more general and precise result, see [Ep61], which uses the
Sphere Theorem (Theorem 3.3, section 3).

Proposition 2.4. Let M be a compact orientable 3-manifold, then the following holds:

() If ∂M 6= ∅, then def(π1(M)) ≥ 1 − χ(M).

() If ∂M = ∅, then def(π1(M)) ≥ 0. Moreover if M is irreducible, def(π1(M)) = 0.
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3. Prime decomposition

An orientable 3-manifold M is irreducible if any embedded 2-sphere in M bounds a 3-ball.
Otherwise it is said reducible. By Alexander’s theorem [Al24] irreducibility holds for S3 and R3:

Theorem 3.1 (Alexander’s Theorem). Every embedded 2-sphere in S3 or R3 bounds a 3-ball.

Here is a useful criterion for irreducibility, see [Jac80]

Lemma 3.2. Let M be an orientable 3-manifold and p : M̄→ M be a covering. If M̄ is irreducible
then M is irreducible.

To a manifold M one can associate higher homotopy groups πn(M), n > 1 generated by ho-
motopy classes of pointed applications ƒ : (Sn, ?)→ (M, ?). These groups are abelian, while the
fundamental group is usually not. A manifold is said aspherical whenever its higher homotopy
groups πn(M) = {0} for n ≥ 2. The following theorem of C. Papakyriakopoulos [Papa57] is a fun-
damental result for the study of 3-manifolds and their fundamental groups (cf. [Hem76],[Jac80]
[Sta71]).

Theorem 3.3 (Sphere Theorem). Let M be an orientable 3-manifold such that π2(M) 6= {0}.
Then M contains an embedded sphere S2 which does not bound a (homotopy) ball in M. In
particular M is reducible.

Corollary 3.4. Let M be a compact, orientable, irreducible 3-manifold, then :

() π2(M) = {0}.

() π1(M) is infinite if and only if π3(M) = {0}. In this case π1(M) is torsion free and M is
aspherical.

() π1(M) is finite if and only if π3(M) 6= {0}.

Assertion () is a direct consequence of Theorem 3.3. Assertions () and () follow from the
fact that M and its universal cover eM have the same higher homotopy groups πn, for n ≥ 2, and
that π1(M) is infinite if and only if eM is non compact, by using the Hurewicz theorem.

As a corollary we get Proposition 2.4(ii)

Corollary 3.5. Let M be a closed, orientable, irreducible 3-manifold, then:
def(π1(M)) = 0.

For a closed orientable 3-manifold def(π1(M)) ≥ 0 by Corollary 2.3. Hence it is sufficient to
show that def(π1(M)) ≤ 0 when M is irreducible. When π1(M) is finite, this follows from the fact
that the deficiency of a finite group is ≤ 0. When π1(M) is infinite it is a consequence of Lemma
2.1 together with the facts that H2(π1(M),Z) ∼= H2(M,Z) and rk(H2(M,Z)) = b2(M) = b1(M) =
b1(π1(M)) by Poincaré duality. �

Corollary 3.6. The possible abelian fundamental groups for a closed orientable 3-manifold
are π1(S3) = {1}, π1(S1 × S2) = Z, π1(T3) = Z× Z× Z and π1(L(p, q) = Z/pZ.

The connected sum of two orientable 3-manifolds is the orientable 3-manifold obtained by
removing the interior of a 3-ball in each manifold and gluing the remaining parts together by
an orientation reversing homeomorphism of the boundary spheres. A 3-manifold M is prime if
it cannot be decomposed as a non-trivial connected sum of two manifolds, i.e. if M = M1♯M2,
then M1 or M2 is the 3-sphere.

The next theorem shows that any compact orientable 3-manifold can be split along a finite
collection of essential embedded spheres into prime manifolds. It is due to H. Kneser[Kne29],
see also J. Milnor [Mil62] for the uniqueness (cf [Hem76], [Jac80]).

Theorem 3.7 (Prime decomposition). Every compact, orientable 3-manifold is a connected
sum of finitely many 3-manifolds that are either homeomorphic to S1×S2 or irreducible. More-
over, the connected summands are unique up to ordering and orientation-preserving homeo-
morphism.
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As a corollary one gets the following free factorization of the fundamental group of a com-
pact orientable 3-manifold:

Corollary 3.8. For a compact orientable 3-manifold M, π1(M) ∼= Fk ?G1 ? · · · ?Gn, where F is a
free group and G

∼= π1(M) 6= {1}, with M a compact, irreducible, orientable 3-manifold with
(possibly empty) incompressible boundary. This decomposition as a free product is unique.

The notion of incompressibility for a surface in a 3-manifold M is defined in the next section.
The assertion about the incompressibility of the boundaries of the 3-manifolds M relies on the
Loop Theorem (see Theorem 4.1, section 4).

A topological converse to the algebraic decomposition of the fundamental group of a 3-
manifold is given by Stalling’s solution [Sta71] of the Kneser’s conjecture, see also [Hem76,
chapter 7]:

Theorem 3.9. Let M be a compact orientable 3-manifold. Any non-trivial decomposition
π1(M) ∼= A ? B with A 6= {1} and B 6= {1} can be realized by a connected sum M = M1♯M2
with π1(M1) ∼= A and π1(M2) ∼= B.

The idea is to realize the non-trivial groups A and B by complexes KA, KB with vanishing π2,
and join them by an edge to get a complex K with fundamental group A ? B and still vanishing
π2. Then the isomorphism π1(M) ∼= A ? B can be realized by a map ƒ : M → K by starting from
a triangulation of M and defining ƒ first on the 1-skeleton by using the generators, then on the
2-skeleton by using the relations and then extending it to the 3-simplices by using the fact that
π2(K) vanishes. By making ƒ piecewise linear and taking the preimage of a regular value on the
edge between KA and KB, one gets a bicollared 2-dimensional submanifold of M. Then by using
the Loop Theorem (see Theorem 4.1) one can produce a surface  such that π1() = {1}. So
 is a separating 2-sphere yielding the desired connected sum. �

To get a full converse to Corollary 3.8 one needs the solution of the Poincaré Conjecture due
to G. Perelman, see [Per03b], [MoT07]:

Theorem 3.10 (Perelman). Let M be a closed 3-manifold, then π1(M) = {1} if and only if M is
homeomorphic to S3.

A groupe G is freely indecomposable, if it is neither trivial, nor infinite cyclic, nor isomorphic
to the free product of two nontrivial groups.

Corollary 3.11. A compact orientable 3-manifold is irreducible, with a possibly empty incom-
pressible boundary, if and only if π1(M) is freely indecomposable.

4. incompressible surfaces

A surface will always be assumed to be compact and orientable. Incompressible surfaces plays
a key part in the study of 3-manifolds and their fundamental groups.

A properly embedded surface (F, ∂F) ⊂ (M, ∂M) is called incompressible if the morphism
π1(F)→ π1(M) induced by the inclusion is injective and F does not bound a 3-ball. Otherwise 
is called compressible.

The surface (, ∂) ⊂ (M, ∂M) is called essential if it is incompressible and does not cobound
a product region with a subsurface of ∂M.

The proof of the Dehn Lemma by C. Papakyriakopoulos [Papa57] has been a crucial step
for the classification of 3-manifods and in particular the study of embedded surfaces in 3-
manifolds. We state below the Loop Theorem, which is a stronger version due to J. Stallings
[Sta60, Sta71]. It shows that the Euler characteristic of a compressible surface can be in-
creased by cutting the surface along some embedded disk whose interior is disjoint from the
surface.
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Theorem 4.1 (Loop Theorem). Let M be a 3-manifold and let F ⊂ ∂M be a boundary compo-
nent. If ker{π1(F) → π1(M)} 6= {1}, then there exists a properly embedded disk (D, ∂D) ,→
(M,) such that 1 6= [∂D] ∈ ker{π1()→ π1(M)}.

Corollary 4.2. Let M be a compact 3-manifold. Then π1(M) ∼= Z if and only if M = S1 × S2 or
S1 × D2.

Here is a useful way of getting a properly embedded incompressible surface:

Proposition 4.3. Let M be a compact orientable 3-manifold. Let φ : π1(M)→ Z be a non-trivial
epimorphism. Then there exists a properly embedded essential surface F in M such that π1(F)
is a subgroup of kerϕ.

Since S1 is aspherical the epimorphism φ : π1(M) → Z can be realized by a homotopically
non trivial smooth map ƒ : M → S1. In particular ƒ cannot be homotoped off any point in
S1. By Sard’s theorem there is a point  ∈ S1 which corresponds to a regular value of ƒ and
such that F = ƒ−1() is an orientable codimension one properly embedded submanifold of M.
Then by using the Loop Theorem one can perform a surgery on the surface F till it becomes
π1- injective. The process must stop since the Euler characteristic χ(F) increases after each
compression and the surface must survive because the map ƒ is not homotopically trivial. �

Corollary 4.4. Let M be a compact orientable 3-manifold. If H1(M;Q) 6= {0}, then M contains
a properly embedded essential surface. This is in particular true if ∂M is non empty and has a
component of genus ≥ 1.

If ∂M contains a component of genus ≥ 1, then there are two closed curves γ and γ′ on ∂M
which meet transversally in a single point. If say γ represents a trivial class in H1(M;Q), then it
bounds a relative 2- cocycle in H2(M, ∂M;Q) whose intersection number with γ′ is ±1. Hence γ′

cannot represent a trivial class in H1(M;Q). Therefore one of the curves γ or γ′ must represent
a non trivial class in H1(M;Q). �

4.1. Gluing along surfaces

Let (X, ∂X) and (Y, ∂Y) be two compact orientable 3-manifolds. Let F1 ⊂ ∂X and F2 ⊂ ∂Y be two
boundary components. If there is a diffeomorphism ψ : F1 → F2, one can glue F1 and F2:

M = X ∪ψ Y = X t Y/{ ∈ F1 ∼ ψ() ∈ F2}

If the morphisms π1(F1)→ π1(X) and π1(F1)→ π1(Y) are injective, then Seifert-van Kampen
theorem implies that:

π1(M) = π1(X) ? π1(Y)/〈ψ∗(π1(F1)) = π1(F2)〉

Hence π1(M) is the free product of π1(X) and π1(Y) with amalgamation along the subgroups
π1(F1) and ψ∗(π1(F1)), which is usually noted π1(M) = π1(X) ?A π1(Y), where A is identified
with π1(F1) in π1(X) and ψ∗(π1(F1)) in π1(Y).

Conversely a splitting of the group allows to produce an essential surface:

Proposition 4.5. Let M be a compact orientable 3-manifold such that π1(M) is isomorphic to
a non trivial amalgamated product A ?C B with A 6= {1} and B 6= {1} or to a non trivial HNN-
extension A?C. Then M contains a properly embedded essential surface F such that π1(F) ⊂ C,
after conjugation.

A quick proof consists in considering the proper action of π1(M) on the Bass-Serre tree
associated to the splitting of π1(M) and to build an equivariant map ƒ from the universal cover
eM of M to this Bass-Serre tree T. The preimage of a regular value on one edge of T gives an
equivariant surface in eM which projects to an embedded surface in M which can be compressed
using the Loop Theorem to get an incompressible surface F whose fundamental group belongs
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to the stabilizer of the edge and thus is conjugate to a subgroup of C. Another method is to
mimick Stalling’s proof of the Kneser conjecture by using aspherical complexes. �

4.2. Dehn filling

Let X be a compact, orientable 3-manifold such that a component of ∂X is a torus T. Choose a
simple closed curve α ⊂ T which does not bound on T and consider the manifold:

X(α) = X ∪
α={?}×∂D2

S1 × D2

One says that X(α) is obtained from X by Dehn filling of the boundary component T along the
curve α. The topological type of X(α) depends only of the homology class [α] 6= 0 ∈ H1(T;Z),
called the filling slope. A presentation of the fundamental group π1(X(α)) is obtained from a
presentation of π1(X) by adding a relator corresponding to the element α ∈ π1(X).

Dehn filling is a fundamental construction in 3-manifold topology, see [Gor95]. It can be used
to produce many 3-manifolds M, with the homology of S3. The exterior E(K) = S3 \N (K) of a
knot K ⊂ S3 is a compact orientable 3-manifold whose fundamental group π1(E(K)) is normally
generated by a single peripheral element, called a meridional element. The first homology
group H1(E(K);Z) ∼= Z is generated by the image of this meridional element. Let X = E(K) and
choose a simple closed curve α ⊂ ∂X which meets the boundary of a Seifert surface in a single
point. Then H(X(α);Z) = {0} for  = 1,2. Moreover X(α) is homeomorphic to S3 if and only if
the curve α is homologous to the meridian on ∂X by P. Kronheimer and T. Mrowka’s solution of
the property P conjecture see [KrMr04].

4.3. Mapping tori

Let F be a compact, orientable surface and φ : F → F be an orientation preserving diffeomor-
phism, then one defines the mapping torus :

M = F oφ S1 := F × [0,1]/{(,0) ∼ (φ(),1)}
The surface F is a properly embedded, essential, non-separating surface in M. The homeo-

morphism type of M depends only on the isotopy class of the monodromy φ in the mapping
class group π0Diff(F) of the surface. Moreover M is aspherical unless F is the 2-sphere S2.

The group π1(M) is isomorphic to the semi-direct product π1(F)oφ∗ Z, which corresponds to
the split exact sequence:

1→ π1(F)→ π1(M)→ Z→ 1,

The action of Z on π1(F) is given by the automorphism φ∗ ∈ At(π1(F)) induced by the
monodromy φ. Moreover the isomorphism type of π1(M) depends only on the class of φ∗ in
Out(π1(F)). For example F oφ S1 ∼= F × S1 if and only if φ∗ is an inner automorphism, which is
equivalent for φ to be isotopic to the identity.

Because of the virtual fibering theorem (see Theorem 7.8 in section 7), mapping tori be-
came, up to taking a finite cover, predominant in in the study of compact orientable, irreducible
3-manifolds with zero Euler characteristic.

5. Finitely generated subgroups

A surface group is a group isomorphic to the fundamental group of a closed orientable surface.
Surface groups have been central in the study of 3-manifold groups. A group is said to be co-
herent if every finitely generated subgroup is finitely presentable. Coherence is a fundamental
property of 3-manifold groups due to Peter Scott’s compact core theorem [Sco73a, Sco73b],
see also [RuSw90]:

II–7



Michel Boileau

Theorem 5.1 (Compact core theorem). A non compact 3-manifold M with finitely generated
fundamental group contains a compact core, that is to say a 3-dimensional compact submani-
fold N such that the inclusion map N ,→ M induces an isomorphism on fundamental groups. In
particular π1(M) is finitely presentable.

Since subgroups correspond to fundamental groups of covers, one obtains:

Corollary 5.2 (Coherence). Any finitely generated subgroup of a (possibly non compact) 3-
manifold group is fintely presentable, that is to say 3-manifold groups are coherent.

There are examples of closed hyperbolic 4-manifolds whose fundamental group is not coher-
ent see [BoMe94] and [Pot94]. The direct product of two non cyclic free groups is not coherent.
In particular such a group cannot be a 3-manifold subgroup.

The following result shows that the existence of a finitely generated normal subgroup of
infinite index in a 3-manifold group corresponds to rather special topological situations. In its
full generality it is obtained as a combination of results by J. Stallings [Sta62], J. Hempel-W.
Jaco [HeJa72], P. Scott ([Sco83b], G. Mess [Mes01] (see also [Mai01, Mai03]), P. Tukia [Tuk88],
D. Gabai [Ga92], A. Casson-D. Jungreis [CaJu94] and Perelman’s Theorem 3.10.

Theorem 5.3. Let M be an orientable compact 3-manifold. Let K Å π1(M) be a non trivial,
finitely generated, normal subgroup of infinite index. Then one of the following cases occurs:

() K 6∼= Z is the fundamental group of a compact surface, π1(M)/K ∼= Z or Z/2Z ? Z/2Z, and
either M or a 2-fold cover of M is a surface bundle over S1.

() K ∼= Z, π1(M)/N is virtually the fundamental group of a compact surface, and M is virtually
a S1-bundle (i.e. a Seifert fibered manifold).

Corollary 5.4. Let M be a compact orientable 3-manifold. If π1(M) is isomorphic to a non
trivial direct product then M is homeomorphic to a product F × S1 of a compact surface by a
circle.

The following classical lemma together with Corollary 3.8 shows that M, as above, is prime
with possibly a non empty incompressible boundary. The only prime, non irreducible, compact
orientable 3-manifold is S1 × S2. Since K is a non trivial, infinite index, normal subgroup, π1(M)
cannot be isomorphic to Z and therefore M must be irreducible.

Lemma 5.5. A finitely generated normal subgroup K 6= {1} of a non trivial free product G1?G2
has finite index.

Cohomological computations, using the Hochschild-Serre spectral sequence, show that ei-
ther K ∼= Z or the quotient π1(M)/K is virtually infinite cyclic.

The case () where π1(M)/K ∼= Z is due to Stallings [Sta62]. One first shows that K is the
fundamental group of a non separating properly embedded essential surface F in M by applying
the construction given in Corollary 4.4 to the epimorphism onto π1(M)/K ∼= Z and the fact that
by Lemma 5.5 the only finitely generated normal subgroup of infinite index in a free group is
the trivial group. Then one shows that the closure of the manifold obtained by cutting M along
the surface F is homeomorphic to the product F × [0,1] by using the infinite cyclic cover of M
associated to the epimorphism onto π1(M)/K ∼= Z and the following result (see [Sta62]):

Proposition 5.6. Let M be a compact, orientable, irreducible 3-manifold and let F ⊂ ∂M be
a compact 2-manifold not homeomorphic to a sphere or a disk. If the inclusion map F ,→ M
induces an isomorphism on fundamental groups, then there is a homeomorphism between M
and F × [0,1] which sends F to F × 0.

The case () where K ∼= Z corresponds to the characterization of Seifert manifolds. The first
step (see G. Mess [Mes01] and also Maillot [Mai01]) consists in showing that the quotient group
π1(M)/K is quasi-isometric to a complete, quasi- homogeneous Riemannian plane. The second
step follows from work of Casson-Jungreis [CaJu94] and Gabai[Ga92] on convergence groups
on the circle which show that π1(M)/K is virtually a surface group.
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Remark. A statement analogous to Theorem 5.3 holds in the setting of 3-dimensional Poincaré
duality groups, see section 9.

5.1. Simple loop conjecture

One possible way to try to produce surface groups in 3-manifold groups would be to prove an
algebraic analogue of the Loop Theorem 4.1.

Conjecture 5.7 (Simple Loop Conjecture). Let h : π1(S)→ π1(M) be a homomorphism from a
closed orientable surface S of genus g ≥ 1 to a closed orientable 3-manifold M. If ker(h) 6= {1},
then there is an essential simple closed curve γ ⊂ S which belongs to kerh.

The conjecture is true for a torus, but remains open for surface of genus g ≥ 2. If the
conjecture is true in general, a 2-sided map ƒ : S → M which does not induce an injection
on fundamental groups could be replaced by a 2-sided map of a surface of lower genus by
performing a surgery on S and on the map ƒ . After finitely many such steps one would get a
π1-injective map of a closed surface into M, but this surface could be a 2-sphere which may or
may not bound a ball in M.

When the target is a surface the simple loop conjecture was proved by David Gabai [Ga85].
The simple loop conjecture holds when the target M carries a foliation by circles (Seifert fibered
manifold) by J. Hass [Has99] and more generally for a graph manifold by H. Rubinstein and S.
Wang [RuWa98] (the definition of a gaph manifold is given in the next section). More recently
it has been established by Zemke [Zem16] when M carries the geometry SOL (geometric
manifolds are defined in the next section).

Let S be a closed orientable surface of genus g ≥ 2 and G be a group. A homomorphism
h : π1(S) → G admits an essential factorization through a non trivial free product A ? B if
h = h1 ◦ θ where h1 : π1(S)→ A ? B, θ : A ? B→ G are homomorphisms and the image h1(π1(S))
is not conjugate into one of the factors A or B. The following result of Stallings [Sta66] gives
an alternative statement of the Simple Loop Conjecture.

Lemma 5.8. Let h : π1(S) → G be a homomorphism from the fundamental group of a closed
orientable surface S of genus g ≥ 2 into a group G. The kernel kerh contains the class of an
essential simple closed curve if and only if h admits an essential factorization through a non
trivial free product. In particular, if kerh does not contain a simple closed curve, the image
h(π1(S)) is freely indecomposable.

Conjecture 5.9 (Essential factorization). Let S be a closed orientable surface of genus g ≥ 2
and M be a closed orientable 3-manifold. Every homomorphism h : π1(S) → π1(M) is injective
or admits an essential factorization through a free product.

A result of T. Delzant [Del95] implies that, up to conjugacy, there are at most finitely many
homomorphisms of a surface group in the fundamental group of a closed, orientable, hyper-
bolic 3-manifold, which do not admit an essential factorization through a free product. Hence:

Corollary 5.10. Given a closed orientable surface S and a closed orientable hyperbolic 3-
manifold M, up to conjugacy, there are at most finitely many homomorphisms h : π1(S) →
π1(M) such that kerh does not contain a simple loop.

This last result gives some evidence that the conjecture may be true for M a hyperbolic
3-manifold. Recently V. Markovic has announced a proof of the Simple Loop Conjecture for a
hyperbolic 3-manifold.

5.2. Kleinian groups

A major result concerning fundamental groups of hyperbolic 3-manifolds (so called kleinian
groups) is the proof of Marden’s tameness conjecture by Agol [Ag04] and Calegary-Gabai
[CaGa06], see [Can08] for a survey.
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Theorem 5.11. (Tameness Conjecture) Let M be an orientable hyperbolic 3-manifold. If π1(M)
is finitely generated, then M is homeomorphic to the interior of a compact 3-manifold.

Here is an important consequence of the tameness theorem together with works of F. Bona-
hon [Bon86], D. Canary [Can96] and W. Thurston [Thu79]:

Corollary 5.12. Let M be a finite volume hyperbolic 3-manifold and  ⊂ π1(M) be a finitely
generated subgroup. Then one of the following possibilities occures:

()  is the fundamental group of a π1-injective immersed surface which lifts to a fiber in a
finite cover which is a surface bundle (i.e.  is a virtual fiber).

()  is a geometrically finite subgroup, which means that its Nielsen core has finite volume.
For a surface subgroup it is equivalent to being quasi-fuchsian (i.e. the limit set of  is a circle).

Let Comπ1(M)() = {g ∈ π1(M) |  ∩ gg−1 is of finite index in } be the commensurator of 
in π1(M). An equivalent formulation of properties () and () of Corollary 5.12 is as follows:

Property () is equivalent to the fact that Comπ1(M)() has finite index in π1(M).

Property () is equivalent the fact that  has finite index in its commensurator Comπ1(M)().

6. Geometric decomposition

A geometry is a homogeneous, simply-connected, unimodular Riemannian manifold. A mani-
fold is geometric if it is diffeomorphic to the quotient of a geometry by a discrete subgroup of
its isometry group. We recall first the classification of the eight 3-dimensional geometries with
maximal isometry group, see [Thu79, Thu97] [Sco83a], and also [Bon02], [BMP03].

Theorem 6.1 (Classification of 3-dimensional geometries). Up to equivalence there are ex-
actly eight maximal geometries in dimension 3:

1- Three isotropic geometries modeled on S3, E3, and H3;

2- Four anisotropic geometries whith isotropy subgroup SO(2), modeled on S2 × E1,H2 ×
E1, N and eSL(2,R).

3- The geometry SOL with trivial isotropy subgroup, modeled on the simply-connected 3-
dimensional sovable Lie group which is not nilpotent.

A fundamental result of the beginning of this century is the full proof of Thurston’s ge-
ometrization conjecture by Gregori Perelman [Per02, Per03a, Per03b], see also [KL08], [MoT07,
MoT14], [CaZu06], [B3MP10].

Theorem 6.2 (Geometric decomposition). Any compact, orientable, irreducible 3-manifold
splits along a finite collection of essential, pairwise disjoint and non parallel, embedded tori
into geometric submanifolds.

Such a decomposition with a minimal number of tori is unique up to isotopy and isometries
of the geometric pieces. It is called the geometric decomposition of M.

When the geometric decomposition involves only Seifert fibered pieces, the manifold is
called a graph 3-manifold. Such a manifold is obtained by gluing along some boundary compo-
nents finitely many elementary pieces homeomorphic to a solid torus S1 × D2 or a composite
space S1 × {punctured disk}. In the case of a Haken 3-manifolds (i.e. when the manifold is
irreducible and contains a properly embedded essential surface) which is not a torus bundle,
the topological splitting along tori underlying the geometric decomposition is due to W. Jaco -
P. Shalen [JaS79] and K. Johannson [Joh79] and is called the JSJ-splitting of the manifold.

The geometry of a compact, orientable, geometric 3-manifold with zero Euler characteristic
can be characterized in term of its fundamental group.

Corollary 6.3 (Geometric manifolds). Let M be a compact, orientable 3-manifold with zero
Euler characteristic.
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() M is hyperbolic if and only if π1M is infinite, freely indecomposable, not virtually cyclic and
any Z⊕ Z ⊂ π1(M) is peripheral of infinite index.

() M is elliptic (i.e. a finite quotient of S3) if and only if π1(M) is finite.

() M is euclidean if and only if π1(M) contains a Z⊕Z⊕Z subgroup. Such a subgroup is normal
of finite index.

() M is nilpotent (i.e. carries the geometry N) if and only if π1(M) is infinite, nilpotent, but
not virtually abelian.

() M carries the Seifert fibered geometry eSL(2,R) if and only if π1(M) contains an infinite
cyclic normal subgroup and is not nilpotent, nor virtually a product.

() M carries the product geometry H2 × E1 if and only if π1(M) is vrtually a non abelian
product.

() M carries a product geometry S2 × E1 if and only if π1(M) is virtually infinite cyclic.

() M is a Solv manifold (i.e. carries the geometry So) if and only if π1(M) contains a normal
Z⊕ Z subroup but no normal Z, that is to say π1(M) is solvable but not nilpotent.

The geometries () to () correspond to the Seifert fibered manifolds. As a corollary one
gets the following characterization of Seifert fibered orientable manifolds.

Corollary 6.4. A compact, orientable 3-manifold M admits a Seifert fibration if and only if
π1(M) is finite or admits an infinite cyclic normal subgroup.

The geometric decomposition reduces many problem on 3-manifolds to the case of geomet-
ric manifolds and combination theorems. In particular it implies that every closed orientable
aspherical 3-manifold is determined, up to homeomorphism, by its fondamental group. This is
a special case of the so-called Borel conjecture.

Conjecture 6.5 (Borel). Two closed aspherical n-manifolds M and N with isomorphic funda-
mental groups are homeomorphic.

The Borel conjecture is true in dimension 2 by J. Nielsen, using elementary homotopy the-
ory. In dimension 3, it follows from Corollary 6.3, Mostow’s rigidity theorem [Mos73] and Wald-
hausen’s work [Wal68] for the case of closed, irreducible 3-manifolds containing an incom-
pressible surface (so called Haken manifolds).

Theorem 6.6. The Borel conjecture is true in dimension 3.

Another consequence of the geometric decomposition is that the homeomorphism problem
for closed orientable triangulated 3-manifolds is solvable, see [Kup17], see also [AFW15b],
[B3MP10], [Mat03], [ScSh14].

Proposition 6.7 (Homeomorphism problem). The homeomorphism problem for closed ori-
entable triangulated 3-manifolds is solvable.

The geometric decomposition implies that the fundamental group of a compact orientable
3-manifold is isomorphic to the fundamental group of a graph of groups:

• The vertex groups are fundamental groups of geometric manifolds.

• The edge groups are trivial or isomorphic to Z2.

This graph of group structure has many important consequences. For example it allows us to
extend to 3-manifold groups some interesting properties of fundamental groups of geometric
3-manifolds.

Corollary 6.8. Let M be a compact orientable 3-manifolds. Then:
() π1(M) is residually finite (see [Hem87]).

() π1(M) satifies the Tits alternative: any finitely generated subgroup contains a rank two free
group or is virtually solvable.
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There are aspherical closed n-manifolds, n ≥ 4, the fundamental groups of which are not
residually finite see [Mes90].

Another consequence of this graph of group structure is that some classical decision prob-
lems formulated by Dehn are solvable in the class of 3-manifold groups:

() The word problem asks for an algorithm to decide whether or not a word in the genera-
tors represents the trivial element. Its solution for compact 3-manifold group follows from the
property that 3-manifolds groups are residually finite, see for example [AFW15b].

(b) The conjugacy problem asks for an algorithm to decide whether or not a pair of words in
the generators are conjugate. Its solution for compact 3-manifold groups is due to J-P. Préaux
[Pre06, Pre16], see also [AFW15b].

(c) The isomorphism problem in a class of groups asks for an algorithm to decide whether or
not two finite presentations of groups in the given class present isomorphic groups. The isomor-
phism problem for closed orientable 3-manifold groups is solvable, see [AFW15b], [ScSh14],
[Sel95],

7. Some virtual properties of 3-manifold groups

7.1. Surface subgroups

In the following a surface group is the fundamental group of a closed orientable surface. There
are many closed, irreducible, orientable 3-manifolds which do not contain any essential closed
surface. Such 3-manifolds are called small. But it was a long standing conjecture (the surface
subgroup conjecture) that the fundamental group of every closed, irreducible 3-manifold with
infinite fundamental group contains a non trivial surface subgroup. Because of the geometric
decomposition a small 3-manifold must be geometric, and thus must be hyperbolic or carry
a Seifert fibered geometry. An irreducible Seifert fibered 3-manifold with infinite fundamental
group always contains a subgroup Z ⊕ Z. Hence the surface subgroup conjecture reduces to
the case of hyperbolic 3-manifolds. It has been solved by J. Kahn and V. Markovic [KaM12]:

Theorem 7.1 (Surface subgroup theorem). A closed orientable hyperbolic 3-manifold M con-
tains a dense set of π1-injective, immersed, quasi-fuchsian, orientable, closed surfaces.

Here dense means that every pair of distinct points in the sphere at infinity of the univer-
sal cover H3 can be separated by the limit set of a π1-injective, immersed, quasi-fuchsian,
orientable, closed surface in M.

A π1-injective, immersed, closed surface is called quasi-fuchsian if its limit set is a circle. By
the solution of the tamenes conjecture, a π1-injective, immersed, closed surface in a closed
orientable hyperbolic 3-manifold is either quasi-fuchsian or a virtual fiber, see Corollary 5.12

Theorem 7.1 has been a key step towards the proof of the Virtual Fibering Theorem for a
closed hyperbolic 3-manifold M, see Theorem 7.8. Other key ingredients for the proof are the
notions of non-positively curved special cube complex and of right-angled Artin groups (RAAG).

7.2. Right angled Artin groups (RAAG)

Let  be a finite , non empty, simple graph (i.e. without loops or multiple edges) and let
{s1, · · · , sk} be its vertices. One associates to  the right-angled Artin group A() with gen-
erators {s1, · · · , sk} and relations [s, sj] = 1 when there is an edge between the vertices s
and sj. If  is the disjoint union of two graphs 1 and 2, then A() ∼= A(1) ? A(2). For a
detailled introduction to RAAG see [Cha07].

There are very strong constraints for a RAAG to be virtually a 3-manifold group: it only
happens when each connected component of  is a tree or a triangle. See [Dro87], [HeMe99],
[Gor04] for the following result based on the fact that most RAAG are incoherent while 3-
manifold groups are coherent by Theorem5.1:
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Theorem 7.2 (RAAG versus 3-manifold group). A RAAG A() is virtually a 3-manifold group if
and only if one of the following cases occures:

() Each component of  is a tree and A() is isomorphic to π1(S3 \ L) where L ⊂ S3 is a disjoint
union of connected sums of copies of the Hopf link;

() Each component is a triangle and A() is isomorphic to π1(T3♯ · · · ♯T3).

On the other hand deep results of I. Agol [Ag13] and D. Wise [Wi09, Wi12, Wi17] show
that the fundamental group of a closed hyperbolic 3-manifold is virtually a subgroup of a
RAAG. By a result of F. Haglund and D. Wise [HaW08] the fundamental group of a compact
non-positively curved special cube complex is virtually a subgroup of a RAAG. Works of N.
Bergeron-D. Wise [BeW10] and M. Sageev [Sag95] together with Theorem 7.1 show that the
fundamental group of a closed hyperbolic 3-manifold M is isomorphic to the fundamental group
of a compact non-positively curved cube complex. Next Agol [Ag13], based on works of Wise
[Wi09, Wi12, Wi17] succeeded in showing that π1(M) is virtually the fundamental group of a
compact non-positively curved special cube complex, and therefore virtually embeds into a
RAAG. This result has been then extended to the case of any compact, irreducible, orientable
3-manifold with zero Euler characteristic which is not a graph manifold by P. Przytycki and D.
Wise [PW14, PW18], see also Y. Liu [Liu13] for the graph manifold case.

Theorem 7.3 (Virtual embedding into RAAG). Let M be a compact, orientable, irreducible 3-
manifold with zero Euler characteristic and which is not a closed graph manifold. Then π1(M)
contains a finite index subgroup which is a subgroup of a RAAG.

This virtual embedding result has some important algebraic consequences for 3- manifold
groups:

Corollary 7.4. Let M be a compact, orientable, irreducible 3-manifold with zero Euler charac-
teristic and which is not a closed graph manifold. Then:

() π1(M) is large, i.e. for every n ∈ N∗ there is a finite index subgroup which surjects onto a
free group of rank n. In particular M has infinite virtual first betty number.

() π1(M) is linear over Z, that is to say it admits a faithful representation into GLk(Z) for some
integer k ≥ 2, which a priori depends of M.

Property () follows from the fact that RAAG groups are commensurable with right angled
Coxeter groups which are known to be Z-linear, see [HaW10]. It raises the following question:

Question 7.5. With respect to property () is there a uniform dimension k for a linear repre-
sentation over Z, or even over C?

Fundamental groups of nilpotent manifolds, Solv manifolds or aspherical Seifert fibered man-
ifolds which do not carry a product geometry do not virtually embed into a RAAG, but they are
linear. Moreover by [Liu13] one knows precisely which closed orientable graph manifolds have
a fundamental group which virtually embeds into a RAAG, and hence are linear too. So one
could expect a positive answer to the following question:

Question 7.6. Are closed graph manifold groups linear ?

The subgroup separability property of a closed hyperbolic 3-manifold group is a key prop-
erty to study virtual properties of hyperbolic 3-manifolds. It is equivalent to the condition that
finitely generated groups are closed in the profinite topology of π1(M). This is the topology
where the finite index subgroups form a fundamental system of neighborhoods for the trivial
element of π1(M) (see Section 8).

Theorem 7.7. The fundamental group of a closed orientable hyperbolic 3-manifold is sub-
group separable or LERF (locally extended residually finite), that is to say every finitely gener-
ated subgroup is the intersection of finite index subgroups.
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There are examples of graph-manifold groups which are not LERF [BKS87]. Being LERF is
not a common property for finitely generated groups. Free groups are LERF, but for example
the group F2 × F2 is not LERF, see [AG73]. There are also examples of non LERF groups which
are free products of LERF groups with an amalgamated cyclic subgroup [Ri90].

7.3. Virtual Fibering Theorem

After Perelman’s proof of the existence of a geometric decomposition, one of the most im-
portant achievements in 3-manifold topology is the Virtual Fibering Theorem of Agol [Ag08,
Ag13] and Przytycki-Wise [PW14, PW18]. It shows that most compact, irreducible, orientable
3-manifolds with zero Euler characteristic virtually fiber over the circle.

Theorem 7.8 (Virtual fibering theorem). Any compact, orientable, irreducible 3-manifold with
zero Euler characteristic that is not a closed graph manifold admits a finite cover which is a
surface bundle over S1.

This theorem is a consequence of the fact that the fundamental group of such a manifold is
virtually a subgroup of a RAAG (Theorem 7.3) and of Agol’s virtual fibration criterion [Ag08].
The key property is the RFRS (Residually Finite Rationally Solvable) property which is verified
by RAAG and hence by its subgroups. According to [Ag08] a group π is RFRS if there is a cofinal
chain π = π0 ⊃ π1 ⊃ π2 ⊃ · · · of finite index normal subgroups π of π such that for each  the
epimorphism π → π/π+1 factors through H1(π;Q). See [FrKi14], [AFW15a] for more details.

It follows from Theorem 7.8 that virtually the fundamental group of a closed, aspherical,
orientable 3-manifold has a rather special form:

Corollary 7.9. The fundamental group of a closed, aspherical, orientable 3-manifold contains
a finite index subgroup of one of the following types:

() An extension of Z by a surface group;

() An extension of a surface group by Z;

() The fundamental group of a graph of groups where each vertex group is a product of a
free group by Z and each edge group is Z⊕ Z.

Given a prime integer p, a group is called residually p-finite if the intersection of its p-power
index normal subgroups is trivial. It is called virtually residually p-finite if it has a finite index
subgroup which is residually p-finite. Free groups and Surface groups are residually p-finite
for every prime p. M. Aschenbrenner and S. Friedl [AF13] have proved that every 3-manifold
group is virtually residually p-finite for all but finitely many primes p. Right angled Artin groups
(RAGG) have the stronger property to be residually p-finite for every prime p. So 3-manifold
groups which virtually embeds into a RAAG have a finite index subgroup which is residually
p-finite for every prime p.

8. Profinite properties of 3-manifold groups

8.1. Profinite completion of a group

A standard way to study residually finite infinite groups is through their finite quotients. The
question of how much of the topology of a 3-manifold can be detected from the finite quotients
of its fundamental group has attracted some attention recently, see [Re15, Re18]. To a group π
we associate the inverse system {π/K}K where K runs over all finite index normal subgroups
of π. The profinite completion bπ of π is then defined as the inverse limit of this system, i.e.

bπ = lim
←−

π/K.

When each finite group π/K is endowed with the discrete topology, we equip bπ with the
finest topology such that all the epimorphisms bπ→ π/K are continuous.
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Here is a more explicit way, to define the topology on the profinite completion bπ. Consider
the set of all finite index normal subgroups K of π and equip each finite quotient π/K with the
discrete topology. Then the product

∏

K

π/K

is a compact group. The diagonal map g ∈ π→ {gK}K defines a homomorphism:

π : π→
∏

K

π/K.

This homomorphism π : π → bπ is injective since π is residually finite. The profinite completion
of π can be defined as the closure :

bπ = π(π) ⊂
∏

K

π/K.

By construction bπ is a compact, totally disconnected, topological group. A subgroup U ⊂ bπ
is open if and only if it is closed and of finite index. A subgroup H ⊂ bπ is closed if and only if it
is the intersection of all open subgroups of bπ containing it. The induced topology on π is called
the profinite topology: a neighbourhood basis for the trivial element is given by the set of finite
index normal subgroups of π.

When π is finitely generated, a deep result of N. Nikolov and D. Segal [NS07] states that ev-
ery finite index subgroup of bπ is open. The proof uses the classification of finite simple groups.
It means that ÒÒπ = bπ. In particular the map K ⊂ π → K ⊂ bπ gives a one-to-one correspondence
between the subgroups with the same finite index in π and in bπ. Moreover K = bK in this case.
The inverse map is given by H ⊂ bπ→ H ∩ π ⊂ π.

A group homomorphism φ : π1 → π2 between two groups π1 and π2 induces a continuous
homomorphism bφ : bπ1 → bπ2. Moreover if φ is an isomorphism, then so is bφ. On the other hand,
a homomorphism ϕ : bπ1 → bπ2 is not necessarily induced by a homomorphism φ : π1 → π2. If π1
and π2 are finitely generated it follows from [NS07] that any homomorphism between bπ1 and
bπ2 is continuous.

Finitely generated groups with isomorphic profinite completions have the same set of finite
quotients. The converse is true see [DFPR82], [RZ10, Corollary 3.2.8]

Lemma 8.1. Two finitely generated groups have isomorphic profinite completions if and only
if they have the same set of finite quotients.

This follows from the fact that one can define the profinite topology of a finitely generated
group π by using the cofinal collection of characteristic subgroups:

π(n) =
⋂

[π:K]≤n
K.

Therefore studying properties of residually finite and finitely generated groups with iso-
morphic profinite completions is equivalent to the study of properties or invariants which are
detected by their finite quotients.

8.2. 3-manifold groups

M will be a compact orientable aspherical 3-manifold with empty or toroidal boundary. The
geometric decomposition implies that fundamental groups of 3-manifolds are residually finite,
see [Hem87]. Hence π1(M) injects into its profinite completionÚπ1(M).

Following [Re15, Re18] an orientable compact 3-manifold M is called profinitely rigid ifÚπ1(M)
distinguishes π1(M) from all other 3-manifold groups. Otherwise it is called profinitely flexible

It follows from the geometric decomposition that a compact orientable aspherical 3-manifold
which does not contain any essential properly embedded annulus is determined, up to home-
omorphism, by its fundamental group, see [Joh79]. Hence profinite rigidity for such a manifold
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implies that it is determined, up to homeomorphism, by the set of finite quotients of its fun-
damental group. However there are examples of closed 3-manifolds which are not profinitely
rigid. All the examples known at the moment are graph manifolds, they include:

()− Infinitely many Seifert fibered manifolds which are surface bundles with periodic mon-
odromy (J. Hempel [Hem14]).

(b)− Infinitely many Sol manifolds (L. Funar,[Fun13], P. Stebe [Ste72]).

(c)− Infinitely many graph manifolds with a non trivial geometric decomposition
(G. Wilkes [Wil18a])

G. Wilkes [Wil17] showed that the Hempel’s examples are the only profinitely flexible closed
Seifert fibered 3-manifolds. Later in [Wil18a] he gave necessary and sufficient conditions on
the geometric decomposition of a (non Seifert fibered and non Solv) graph manifold for the
manifold to be profinitely rigid. The case of Solv manifolds has been recently handled by G.
Nery in [Ner18].

As a consequence of his work G. Wilkes [Wil18a] obtained:

Theorem 8.2. Two orientable graph 3-manifolds M1 and M2 such thatÛπ1(M1) ∼=Ûπ1(M2) are
commensurable.

This result raises the following question:

Question 8.3 (Commensurability). Given two orientable aspherical 3-manifold M and N does
Ùπ1(N) ∼=Úπ1(M) imply that π1(M) and π1(N) are commensurable?

One could ask for a stronger property which holds true for graph manifolds by [Wil18a]:

Question 8.4 (Virtual rigidity). Does any compact orientable aspherical 3-manifold admit a
profinitely rigid finite sheeted cover?

In particular what about hyperbolic 3-manifolds? Once-punctured torus bundles over the cir-
cle are profinitely rigid by M. Bridson-A. Reid-H. Wilton [BRW17]. Moreover G. Gardam [Gar18]
showed that finite volume hyperbolic 3-manifolds are distinguished by the finite quotients of
their fundamental groups among the snaPea census of 72942 finite volume hyperbolic mani-
folds. Since no examples of profinitely flexible hyperbolic 3-manifolds are known so far, these
result gives some support for a positive answer to the following question:

Question 8.5 (Rigidity). Is a complete, finite volume, hyperbolic 3-manifold profinitely rigid?

A weaker version of profinite rigidity would be to ask for finiteness instead of uniqueness,
see [AFW15a, p. 138]:

Conjecture 8.6 (Finiteness). Given a compact, orientable, aspherical 3-manifold M, there are

only finitely many compact, orientable, irreducible 3-manifolds N withÙπ1(N) ∼=Úπ1(M).

By [Wil17, Wil18a] and [Ner18], this conjecture holds true for graph 3-manifolds. It would be
true for complete, finite volume, hyperbolic 3-manifolds M provided that the profinite comple-
tionÚπ1(M) determines the volume. This raises the question:

Question 8.7. Which invariants or properties of a compact orientable irreducible 3-manifold

M are determined byÚπ1(M)?

They are called profinite invariants or properties. It is conjectured that the volume of a
hyperbolic 3-manifold is a profinite invariant:

Conjecture 8.8. The sum of the volumes of the hyperbolic pieces of the geometric decompo-
sition of a compact orientable aspherical 3-manifold is a profinite invariant.

Since most compact aspherical 3-manifolds with zero Euler characteristic are virtually fibered
over the circle, it is natural to ask whether this fiberness property is a profinite property. This
has been proved by A. Jaikin-Zapirain [JZ17].
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Theorem 8.9 (Fiberness). Let G be an extension of Z by a surface group or a finitely generated

free group. Any compact, orientable 3-manifold M such thatÚπ1(M) ∼= ÒG is a surface bundle over
the circle.

8.3. Cohomological properties

A group π is called good if for any finite abelian group A and any representation α : π→ AtZ(A)
the inclusion ι : π→ bπ induces an isomorphism of twisted cohomology groups:

ι∗ : Hj
α
(bπ;A)→ Hj

α
(π;A), ∀ j.

This notion has been introduced by J.P. Serre [Ser97]. It is crucial to transfer cohomological
informations via profinite completion. For example if π is good of finite cohomological dimen-
sion then bπ is torsion free.

The proof of the following theorem [Cav12] uses the fact that surface groups are good and
the virtual fibration Theorem 7.8

Theorem 8.10. The fundamental group of any compact aspherical 3-manifold is good.

A first corollary states:

Corollary 8.11. For a compact aspherical 3-manifolds:

() The property of being closed is a profinite property.

() The Euler characteristic χ(M) is a profinite invariant.

Assertion () follows from the fact that an aspherical 3-manifold is closed if and only if the
third cohomology group with Z2-coefficients is non-zero. Asserion () is a direct consequence
of the computation of the Euler characteristic.

8.4. Geometries

The profinite completion distinguishes the hyperbolic geometry among Thurston’s geometries
because hyperbolic manifold groups are residually non-abelian simple, while the other geomet-
ric manifold groups contain non-trivial normal subgroups. Much deeper results of H. Wilton and
P.Zaleskii [WZ17a, WZ17b] and G. Wilkes [Wil18a, Wil18b] state that the profinite completion
detects the eight geometric structures and the geometric decomposition of a closed orientable
aspherical 3-manifold:

Theorem 8.12. Let M and N two closed orientable aspherical 3-manifolds such thatÚπ1(M) ∼=
Ùπ1(N), then:

(1) If M admits a geometric structure then N admits the same geometric structure.

(2) The underlying graph of the geometric decompositions of M and N are isomorphic and the
corresponding vertex groups have isomorphic profinite completion, hence the same geometry.

A key ingredient for the proof of these results is the efficiency of the geometric decompo-
sition of a compact, aspherical, orientable 3-manifold M: it means that the profinite topology
of π1(M) induces the profinite topology of the edge and vertex groups of the corresponding
decomposition of π1(M) as a graph of groups. Moreover the edge and vertex groups are closed
in the the profinite topology of π1(M). The closed case follows from [WZ14, Theorem A], and
the case with toroidal boundary can be deduced from it by gluing some hyperbolic pieces onto
each boundary component in order to get a closed manifold whose geometric decomposition
is given by the geometric decomposition of the original manifold together with the attached
hyperbolic manifolds.

Another ingredient of the proof is the use of an analogue of the classical Bass-Serre theory
in the setting of finite graphs of profinite groups. Like in the classical case one can define the
fundamental group of a finite graph of profinite groups and build a profinite Bass-Serre tree on
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which this group acts, see [Rib17]. A consequence of the efficiency of the geometric decom-
position of an aspherical, compact, orientable 3-manifold M is that the profinite completion of
the fundamental group of the corresponding graph of groups is the fundamental group of the
finite graph of profinite groups obtained from the JSJ-graph of M by replacing each vertex and
edge group by its profinite completion and each monomorphism from an edge group into a
vertex group by its extension to the profinite completions. The associated profinite Bass-Serre
tree is the inverse limit of the Bass-Serre trees of the graph of groups decompositions of the
finite index, normal subgroups of π1(M) induced by the geometric decomposition of the corre-
sponding finite cover of M. The profinite completionÚπ1(M) acts continuously on the profinite
Bass-Serre tree with quotient the graph of the geometric decomposition of M. Moreover the
Bass-Serre tree associated to the geometric decomposition of M embeds and is dense in the
profinite Bass-Serre tree.

Theorem 8.12 and the profinite Bass-Serre theory are crucial to establish a weaker version
of profinite rigidity for 3-manifold groups called Grothendieck rigidity.

8.5. Grothendieck rigidity

The following question of Grothendieck [Gr70] initiated the study of the profinite rigidity of
residually finite, finitely presented groups:

Grothendieck problem Let ƒ : π1 → π2 be a homomorphism of finitely presented, residually
finite groups for which the extension bƒ :Óπ1 →Óπ2 is an isomorphism. Is ƒ an isomorphism?

Bridson-Grunewald [BG04] answered negatively this question in 2004. Finitely generated
exemples were previously given by Platonov-Tavgen [PT86] in 1986.

According to [LR11] a residually finite group G is said to be Grothendieck rigid if for every
finitely generated proper subgroup H ⊂ G the inclusion induced map ÒH → ÒG is not an isomor-
phism.

For instance free groups and surface groups are Grothendieck rigid. The case of closed
or geometric 3-manifold groups follows from [Cav12] and [LR11], and the general case with
boundary from [BoFr17].

Theorem 8.13. The fundamental group of any irreducible, orientable, compact, connected
3-manifold with empty or toroidal boundary is Grothendieck rigid.

Scott’s compact core Theorem 5.1 allows to show that the Grothendieck rigidity for a 3-
manifold group is equivalent to the following topological statement [BoFr17]

Theorem 8.14. A map ƒ : M → N between two aspherical, orientable, compact, connected

3-manifold with empty or toroidal boundary induces an isomorphism cƒ∗ :Úπ1(M)→Ùπ1(N) if and
only if it is a homotopy equivalence.

The map ƒ is not assumed to be proper, that is to say to send ∂M in ∂N. The Grothendieck
rigidity shows that the profinite flexibility of a 3-manifold group cannot be induced by a map.
This might lead one to believe that profinite flexibility among 3-manifold groups is in some
sense exotic.

In [BrWi14] M. Bridson and H. Wilton showed that given an arbitrary pair of finitely pre-
sented, residually finite groups ƒ : π1 ,→ π2 there is no algorithm to decide whether or not the
induced map bƒ : bπ1 → bπ2 is an isomorphism. Also there does not exist either algorithms that
can decide whether the profinite map bƒ is surjective, or whether bπ1 and bπ2 are isomorphic.

8.6. Knot groups

Knot groups occupy a special place among 3-manifold groups and thus it is natural to study
their profinite completions. The following theorem summarises the main results obtained so
far about profinite completions of knot groups see [BoFr15], [BrRe15], [Uek18], [Wil18c]
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Theorem 8.15. Let K1 and K2 be two knots in S3 such that Ûπ1(E(K1)) ∼= Ûπ1(E(K2)). Then the
following results hold:

1. K1 and K2 have the same Seifert genus;

2. K1 is fibered if and only if K2 is fibered;

3. K1 and K2 have the same Alexander polynomial;

4. If K1 is an iterated torus knot, then K1 = K2;

5. If K1 is the figure-eight knot, then K1 = K2..

The proof that the Seifert genus of a knot is a profinite invariant relies on the goodness
property of knot groups and the computation of the Seifert genus via the homology of the knot
group with coefficient twisted by finite linear representations.

The profinite completion Ûπ1(E(K)) detects the figure-eight complement and the iterated
torus knot complements among all compact connected 3-manifolds, see [BrRe15], [Wil18c].
Thus one may wonder to what extend the profinite completion allows to characterise knot
groups among 3-manifold groups.

One may also expect knot groups to be profinitely rigid among knot groups. Prime knots
with isomorphic groups have homeomorphic complements by W. Whitten [Wh87], hence one
can expect:

Conjecture 8.16. A prime knot K ⊂ S3 is determined, up to homeomorphism, by Ûπ1(E(K)).

9. Poincaré duality groups

When G is the fundamental group of a closed, aspherical n-manifold, its homology and coho-
mology with coefficients in a ZG-module A satisfy a form of Poincaré duality between H(G;A)
and Hn−(G;A). A group with this property is called an n-dimensional Poincaré duality group or
a PD(n)-group.

A group G is a PD(n)-group if it acts freely, properly discontinuously and cocompactly on
a contractible cell complex X with H∗

c
(X,Z) ∼= H∗

c
(Rn,Z). This property is equivalent to the

following algebraic conditions (see [Bro82, Chapter VIII]):

(1) G is of type FP: there is a projective Z[G]-resolution of the trivial Z[G]-module Z which is
finitely generated in each dimension and 0 in all but finitely many dimensions;

(2) Hn(G;ZG) ∼= Z and H(G;ZG) = {0} for all  6= n.

The FP condition implies that PD(n)-groups are torsion-free and finitely generated. The sec-
ond one implies that for n ≥ 2, PD(n)-groups are 1-ended and therefore indecomposable by
Stallings theorem (cf. [Sta71, 4.A.6.6])

A PD(n)-group G is said orientable if the action of G on Hn(G;ZG) is trivial, and non-orientable
otherwise. Each PD(n)-group contains an orientable PD(n)-group of index 1 or 2.

We list below some basic properties of a PD(n)-group G, see [Bro82, Chapter VIII]:

() G is finitely generated.

() G has finite cohomological dimension cd(G) = n.

() The following three properties are equivalent for a subgroup H ⊂ G:

1. H is a PD(n)-group

2. H is a finite index subgroup of G

3. cd(H) = n
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() A subgroup H has infinite index in G if and only if cd(H) < n.

In the 60’s Wall asked whether this duality property is sufficient to characterise the funda-
mental groups of closed aspherical n-dimensional manifolds. For each n ≥ 4, M. Davis [Dav98,
Theorem C] produced examples of PD(n)-groups which are not finitely presentable, and thus
cannot be the fundamental group of a closed, aspherical n-dimensional manifold. This leads to
the following conjecture:

Conjecture 9.1 (Wall). A finitely presented PD(n)-group is isomorphic to the fundamental
group of a closed, aspherical n-dimensional manifold.

B. Eckmann, P. Linnell and H. Müller solved the 2-dimensional case, see [Ec87].

Theorem 9.2. A PD(2)-group is a surface group.

In dimension 3 the question remains widely open, though spectacular progress in the under-
standing of the algebraic properties of 3-manifolds groups have been made. In the remainder
of this section PD(3)-group are assumed to be orientable, since one can reduce the Wall con-
jecture to the orientable case. It is worth remarking that by the Sphere Theorem 3.3 and Perel-
man’s Theorem 3.10 a PD(3)-group can only be the fundamental group of a closed, aspherical
3-manifold. Results similar to some of the fundamental results in 3-manifold theory, have been
established in the setting of PD(3)-groups, see [Hil19], [Wa03, Wa04], [Tho95]. They give some
evidence towards Wall’s conjecture in dimension 3. For a detailled exposition of results in this
direction, we refer to J. Hillman’s books [Hil02, Hil19].

B. Bowditch [Bow04] verified Wall Conjecture for a PD(3) groups which contains a non-trivial,
normal cyclic subgroup, see also [Hil85] for the case of positive first Betti number. Combining
results of B. Bowditch [Bow04], J. Hillman[Hil85, Hil87] and C.B. Thomas [Tho84] allows us to
establish a PD(3)-version of Theorem 5.3:

Theorem 9.3. A PD(3)-group G contains a non trivial finitely generated normal subgroup
K of infinite index such that G/K is finitely presentable if and only if G is isomorphic to the
fundamental group of a 3-manifold which is either a surface bundle or Seifert fibered.

By a surface bundle we mean either a bundle over S1, or the union of two twisted -bundles
along their boundaries (often called semi-bundle).

An important special case of Theorem 9.3 states:

Corollary 9.4. A PD(3)-group G is isomorphic to the fundamental group of a surface bundle
over S1 if and only if it admits an epimorphism onto Z with finitely generated kernel.

In the 3-manifold case the finitely presentable assumption for the quotient G/K in Theorem
9.3 is not needed since 3-manifold groups are coherent by Scott’s Theorem 2.2, hence G and
K are finitely presentable and so is G/K. This raises the following questions:

Question 9.5. Is a PD(3)-group finitely presentable? Is it coherent? Is it almost coherent?

Remark. Theorem 9.3 remains true under the weaker assumption that the quotient G/K is al-
most finitely presentable or FP2. A group G is called FPn if there is a projective Z[G]-resolution
of the trivial Z[G]-module Z which is finitely generated in degrees n or less. The condition FP1
is equivalent to being finitely generated. Finitely presentable groups are FP2, but the converse
does not hold. Since PD(3)-groups are FP, they are finitely generated and almost finitely pre-
sentable. A group G is almost coherent if every finitely generated subgroups is FP2. It leads
to a stronger, homological version of Theorem 9.3 which shows the importance of the FP2
condition.

Theorem 9.6. A PD(3)-group G contains a non-trivial FP2 normal subgroup of infinite index if
and only if G is isomorphic to the fundamental group of a 3-manifold which is either a surface
bundle or Seifert fibered.
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Several other deep results illustrate the strong correlation between the algebraic properties
of PD(3) groups and those of 3-manifold groups. For example M. Dunwoody and E. Swenson
[DuSw00] proved the following version of the torus theorem:

Theorem 9.7 (Torus Theorem). If an orientable PD(3) group G contains a Z⊕Z subgroup then
either G splits over some subgroup Z⊕ Z or G is a Seifert fibered 3-manifold group.

More generally an orientable PD(3)-group admits a canonical splitting along free abelian
groups of rank 2 with vertex groups isomorphic to either Seifert manifold groups or atoroidal
PD(3) pairs in the sense of [Cas07, Definition 1(2)]. This splitting as a graph of groups is
analogous to the one induced on the fundamental group of a closed orientable aspherical 3-
manifold by the JSJ-splitting. See [DuSw00] and [Wa03, Theorem 10.8] or [Wa04, Theorem 4.2]
for the case of finitely presentable PD(3) groups, and [Cas07] or [Kro90] and [Hil06] for the
general case which avoids the finitely presentable assumption (cf. [Hil19] for more details).

These results show that one of the main open cases of the Wall Conjecture 9.1 is the case
of atoroidal PD(3)-groups, that is when the PD(3)-group does not contain any subgroup iso-
morphic to Z ⊕ Z. A possible approach in this case would be to split the Wall Conjecture into
two conjectures with a more geometric flavour: the weak hyperbolization conjecture and the
Cannon conjecture.

The weak hyperbolization conjecture is a generalization of the hyperbolization conjecture in
the setting of geometric group theory. It holds true for a CAT(0) PD(3)-group by [KaK07].

Conjecture 9.8 (Weak hyperbolization conjecture). The Caley graph of an atoroidal finitely
presented PD(3)-group is Gromov-hyperbolic.

It follows from [BeM91] that a torsion free group whose Caley graph is Gromov-hyperbolic
is a PD(3)-group if and only if its boundary is homeomorphic to S2. Then the solution of the
geometrization conjecture implies that for word hyperbolic PD(3)-groups the Wall Conjecture
is equivalent to the Cannon Conjecture

Conjecture 9.9 (Cannon Conjecture). A torsion free, infinite group whose Caley graph is
Gromov-hyperbolic and whose boundary is homeomorphic to S2 is a Kleinian group.

V. Markovic [Mar13], see also [Hai14], has showed that the Cannon Conjecture for a group
G is equivalent to the existence of enough quasi-convex surface subgroups in G to separate
every pair of points in the boundary of G. This raises the question of the existence of surface
subgroups in a PD(3)-group.

Conjecture 9.10. An atoroidal PD(3)-group always contains a PD(2)-group.

A weaker interesting step in this direction would be to show that an atoroidal PD(3)-group
always contains a FP2 subgroup of infinite index. This would imply that an atoroidal PD(3)-
group always contain a non-abelian free group by the following result due to M. Kapovich and
B. Kleiner [KaK05, Corollary 1.3(2)]

Proposition 9.11. An infinite index FP2 subgroup of an orientable PD(3) group either contains
a surface subgroup or is free.

This, in turn, would be sufficient to show that PD(3)-groups verfy the Tits alternative, since
by the torus theorem [DuSw00] a non atoroidal PD(3)-group is a Seifert fibered 3-manifold
group or splits over a Z ⊕ Z subgroup. The Tits alternative for PD(3)-groups is still an open
question, see [BoB19], [Hil03], [Hil19] for a detailed discussion of this question.

The fact that PD(3)-groups are torsion free and the geometrization of finite group actions on
a closed orientable 3-manifold implies that a PD(3) group is isomorphic to a 3-manifold group if
and only if it is virtually a 3-manifold group. (See [GMW12, Theorem 5.1].) This result together
with the virtual fibration Theorem 7.8 and Theorem 9.3 leads to the following criterion for an
atoroidal PD(3)-group to be a 3-manifold group:
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Corollary 9.12. An atoroidal PD(3)-group is the fundamental group of a closed 3-manifold if
and only if it virtually splits as an extension of Z by a finitely generated group.

Recently D. Kielak generalised Agol’s virtual fibration criterion [Ag08] to the setting of
finitely generated groups. His main result [Kie18, Thm 5.3] together with Theorem 7.8 and
Corollary 9.12 gives the following more algebraic criterion:

Corollary 9.13. An atoroidal PD(3)-group G is the fundamental group of a closed 3-manifold

if and only if G is virtually RFRS and its first L2-Betti number β
(2)
1 (G) = 0.

The criterion given in Corollary 9.13 shows that it may be of interest to study profinite
properties of PD(3)-groups. Few results are known in this direction, even concerning some
basic properties which seem difficult to establish without geometry:

Question 9.14. Let G be a PD(3)-group:

(1) Does G admit a non trivial finite quotient?

(2) Is the profinite completion of G infinite?

(3) Is G residually finite?

(4) Is G a good group in the sense of Serre?

For 3-manifold groups these properties are consequences of the existence of a geometric
decomposition (Theorem 6.2) and of the virtual fibering theorem (Theorem 7.8). It is also worth
to mention that G. Mess [Mes90] has exhibited PD(n)-groups which are not residually finite for
n ≥ 4. Moreover M. Bridson and H. Wilton [BrWi15] have showed that there is no algorithm to
determine whether or not a finitely presented group has a non-trivial finite quotient.

So the following weaker version of Wall Conjecture 9.1 is of interest:

Conjecture 9.15. A PD(3)-group whose profinite completion is isomorphic to the profinite
completion of a 3-manifold group is isomorphic to a 3-manifold group.

It is even not known whether the assumption that the profinite completion of the PD(3)-
group G is isomorphic to the profinite completion of a 3-manifold group does imply that G is
residually finite or good.
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