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Congruence subgroups of braid groups

TARA E. BRENDLE

Abstract

These notes are based on a mini-course given at CIRM in February 2018 as part of the workshop
Winter Braids VIII.

1. Introduction

Congruence subgroups of matrix groups are usually defined as the kernel of the mod m re-
duction of a linear group. More precisely, starting with a subgroup G < GL(n,Z), we define the
level-m subgroup G[m] as the kernel of the composition map G ,→ GL(n,Z) → GL(n,Z/m).
Congruence subgroups play an important role in the theory of arithmetic groups and hence
in any closely related groups; as a starting point, see Raghunathan’s survey of results on the
congruence problem for algebraic groups [49] which includes an overview of contributions
from Bass, Margulis, Prasad, Serre, and many others, or see Farb-Margalit [18, Section 6.4]
for an introduction specific to the context of mapping class groups.

Similarly, we can define congruence subgroups of any group via a choice of representation
into GL(n,Z). In the case of the braid group, and mapping class groups more generally, we
will define a symplectic representation of Bn and use it to define braid congruence groups
Bn[m].

Our viewpoint throughout will be heavily influenced by that of mapping class groups, and
indeed, we will define the braid group Bn as the mapping class group of a disk with n marked
points. As such, we will use simple closed curves in surfaces as a key mechanism for studying
braid groups.

There are many excellent references on braid groups and mapping class groups. These
lecture notes will largely follow the notation and terminology of Farb-Margalit’s “Primer” [18].
Other references that will be particularly useful as supplements to these lecture notes include
Birman’s classic text [9] and the recent survey on Birman-Hilden theory by Margalit-Winarski
[37].

Overview. In Section 2 below, we cover some basic material on mapping class groups of
surfaces, before using these as a vehicle for defining symplectic representations of braid
groups, and of mapping class groups more generally, in Section 3, where we also introduce
the kernels of these maps, including congruence subgroups. These lecture notes will largely
focus on three particular braid congruence groups, corresponding to the choices m = 0,2,
and 4; these will be covered in Sections 5, 4, and 6, respectively; the order here reflects the
fact that it turns out the level-2 braid congruence group plays a key role in all three cases and
hence we treat it first. In Section 7 we give sample applications of our characterizations of
these groups, and we also describe connections between the various congruence groups that
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make an appearance, of the symplectic group as well as the braid group. Finally in Section 8
we discuss some related work and further directions for future exploration.

Acknowledgments

We are extremely grateful to Dan Margalit and Andrew Putman, with whom the author collab-
orated on the work that forms the basis for these lectures. We would like to thank the orga-
nizers of the Winter Braids workshop series: Paolo Bellingeri, Vincent Florens, Jean-Baptiste
Meilhan, and Emmanuel Wagner. We would also like to thank local organizer Benjamin Au-
doux, as well as the many participants in Winter Braids VIII who attended these lectures and
asked many helpful and clarifying questions. We are also indebted to Joan Birman, Celeste
Damiani, Benson Farb, Alan McLeay, and Charalampos Stylianakis for useful discussions and
for providing certain references. Finally, we are thankful to the referee, whose thoroughness
and thoughtfulness have substantially improved these notes.

2. Mapping class groups

Let Srg denote a compact orientable surface of genus g with r boundary components. If r = 0,
we will simply write Sg. Let Dn denote a disk with n points removed. Since our surfaces are
orientable, we will always consider them as coming equipped with a particular orientation.
For S = Srg or S = Dn, we define the mapping class group of S, denoted Mod(S), as follows.

Mod(S) := Homeo+(S, ∂S)/ isotopy rel ∂S.

In other words, a homeomorphism representing an element of Mod(S) must be orientation-
preserving and must fix the boundary pointwise, as must all isotopies. If the surface has
n points removed, these n punctures may be permuted by a mapping class, though the
punctures cannot move during isotopies. For our purposes, such as in the case S = Dn, it is
often useful to think of the n removed points as a collection of n marked points in the disk.
The mapping class group is also known as the Teichmüller modular group, hence the notation
Mod(S).

The extended mapping class group Mod±(S) is defined similarly to Mod(S), except that
we allow orientation-reversing maps; in other words we take the quotient of the group
Homeo±(S, ∂S) under isotopy rel ∂S. When ∂S = 0, the group Mod(S) is a subgroup of
Mod±(S), and when ∂S 6= 0, we have Mod(S) = Mod±(S).

Basic cases: sphere and torus. The mapping class group of a sphere Mod(S0) is triv-
ial; this follows from the Jordan Curve Theorem. The case of the torus is more interesting:
Mod(S1) ∼= SL(2,Z). To see this, consider the torus as the unit square with sides identified in
the usual way. Note that a map of the plane that preserves the integer lattice is determined
by where it sends the basis vectors (1,0) and (0,1). In the torus we can picture these vectors
as corresponding to standard meridian and longitude curves.

Any simple closed curve on a torus can be uniquely described up to isotopy by a pair of
relatively prime integers r and s; we can think of the curve (in homology, say) as r copies of
the meridian plus s copies of the longitude. The fact that the meridian and longitude intersect
exactly once means that once we know that the image of the meridian, say, is given by
relatively prime integers r, s, then the corresponding pair r′, s′ for the longitude is uniquely
determined by the equation rs′ − sr′ = 1. This enables us to write down a matrix in SL(2,Z)

of the form
�

r s
r′ s′

�

recording the action of the mapping class on our chosen meridian and

longitude. In fact, any map of the torus can be understood in this way; for details see [18,
Chapter 2].

III–2



Course no III— Congruence subgroups of braid groups

In general, however, mapping class groups are not isomorphic to familiar groups. And
although the example of the torus correctly suggests that we stand to gain a great deal
of insight by comparing mapping class groups to linear groups, it is a long-standing open
question as to whether mapping class groups are themselves linear in general. (Bigelow-
Budney have shown that Mod(S2) embeds as a subgroup of GL(64,C) [7], but for g ≥ 3 the
question remains open.)

Other viewpoints. Before continuing, we note here some useful further viewpoints on
Mod(S) and/or Mod±(S).

• Group theoretic. The Dehn-Nielsen-Baer Theorem gives us a purely (combinatorial)
group theoretic description of Mod±(S). It states that the action of the extended map-
ping class group Mod±(Sg) on the surface group π1(Sg, ?) with respect to a basepoint
? induces the following isomorphism:

Mod±(Sg) ∼= Ot(π1(Sg, ?))

See, for example, [18, Section 8.1] for a proof and discussion of the contributions of
the theorem’s three namesakes.

• Riemann surfaces. For g ≥ 2, the mapping class group Mod(Sg) arises as the orb-
ifold fundamental group of the moduli space of Riemann surfaces M(Sg), the param-
eter space of hyperbolic metrics on Sg; see, for example, [18, Chapter 12]. Moreover
Mod±(Sg) is isomorphic to the group of isometries of the Teichmüller space Teich(Sg)
when g ≥ 3, the universal cover of M(Sg), which is the space of marked surfaces of
genus g. A description of this isomorphism and its injectivity is given in [18, Section
12.1], and its surjectivity is a theorem of Royden [51].

• Classifying spaces. When g ≥ 2, the space BHomeo+(Sg) is a K(Mod(Sg),1)-space
[18, Proposition 5.12]. See also further discussion relating this viewpoint and the pre-
vious in [18, Section 12.6].

• Combinatorial models. There are many abstract simplicial complexes associated to
surfaces that serve as combinatorial models for mapping class groups. The most fa-
mous example is the so-called complex of curves C(S), and it is a theorem of Ivanov
([28]; see also [34] and [36]) that the simplicial automorphism group of C(Sg) is iso-
morphic to the extended mapping class group Mod±(Sg).

Basic examples. Many examples of mapping classes arise from “nice” embeddings of the
surface in 3-space. For example, Figure 2.1 shows two rotations of a surface of genus g arising
from two different embeddings of the surface.

Dehn twists. We next define an important type of element in Mod(S) that is more local
in nature and intrinsic to the surface rather than any ambient space. Let c denote a simple
closed curve in the surface S. Choose a regular (annular) neighborhood of c, and parametrize
this annulus A as follows: A := {reθ | 1 ≤ r ≤ 2}, where c corresponds to the subset of A
where r = 3

2 . We define a homeomorphism of A by reθ 7→ re(θ+2πr); see Figure 2.2. This map
has the following nice properties.

1. Each component of ∂A is fixed pointwise.

2. The core c is fixed setwise.
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Figure 2.1. Two embeddings of a surface of genus four. Left: The hyperellip-
tic involution ι; any surface admits such an involution. Right: A “one-click”
counter-clockwise rotation by π

2 with respect to an axis normal to the plane

of the page; a genus g surface admits an analogous rotation by 2π
g .

Figure 2.2. The Dehn twist Tc on an annulus with core curve c.

3. The two points on c corresponding to θ = 0 and θ = π are interchanged by this map.

Using Property (1) above, we can define a homeomorphism on all of S, simply by extending
by the identity. The corresponding mapping class is called the (left) Dehn twist about c and
is denoted Tc. The mapping class Tc is independent of the choice of annular neighborhood A
and the parametrization of A. Moreover Tc is well defined on the isotopy class of the curve
c; for this reason we will often not distinguish between a simple closed curve and its isotopy
class. (We leave it to the reader as a somewhat tedious exercise to prove well-definedness
carefully.) See Farb-Margalit [18, Chapter 3] or Rolfsen[50, Chapter 2(C)] for further details. It
is also important to note that the definition of a Dehn twist does not rely on any orientation of
c; our notations of a ‘left’ twist versus a ‘right’ twist arise from an orientation of the surface
instead.

Dehn first proved that finitely many Dehn twists generate Mod(Srg) [16]. Humphries later
showed that the twists about the 2g + 1 simple closed curves shown in Figure 2.3 generate
Mod(Sg) when g ≥ 2 (when g = 1, two of the three indicated curves are isotopic and hence
only two twists are required to generate the mapping class group of a torus) and moreover
that Mod(Sg) cannot be generated with fewer Dehn twists [25]. Indeed, the Humphries gen-
erators also generate Mod(S1g) if we view S1g has being obtained from Sg as follows: the
complement of the curves shown in Figure 2.3 has two components, and we remove the in-
terior of a disk from the component on the right. In general, a total of 2g + r Dehn twists are
required n order to generate Mod(Srg) when r ≥ 1 [35, Theorem 3.1].
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Figure 2.3. The Humphries generating set for Mod(Sg) consists of 2g+1 Dehn
twists about the simple closed curves pictured above.

Figure 2.4. A half-twist exchanging two marked points: the intermediate step
shows the effect of the map as defined by the formula above, while the final
step shows the result after isotopy in which only the boundary and the two
points marked by stars must remain fixed.

Half-twists. In the case where we have marked points on the surface S we also define a
half-twist. In this case, it is easiest to view the punctures of S as marked points. To begin,
consider the disk D = {reθ | r ≤ 2} in C, with two marked points p = 3

2 and q = − 32 on the
real axis. We define the half-twist map exchanging p and q as follows.

reθ 7→

(

reθ if 0 ≤ r ≤ 1

re(θ+2πr) if 1 ≤ r ≤ 2.

In other words, we extend the Dehn twist about the curve c = { 32e
θ} (defined on our standard

annulus A := {reθ | 1 ≤ r ≤ 2}) by the identity across the unit disk. If we did not have the
two marked points, this map would be isotopic to the identity. The map itself exchanges the
two marked points p and q, with p moving ‘in front of’ q. The key point is that isotopies are
not allowed to move marked points, and so this map is nontrivial in the mapping class group
of the disk with two marked points (or punctures). The net effect is to interchange the points
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Figure 2.5. A half-twist exchanging two marked points: on the disk Dn (here
n = 2), and in the cylinder Dn × [0,1].

p and q, while fixing the boundary of D pointwise. One can imagine putting two fingers on
the points p and q and then interchanging the two points by rotating one’s hand clockwise
while holding the boundary of D2 fixed. See Figure 2.4.

More generally, we can choose any properly embedded arc α joining two marked points
in Dn, and define the half-twist hα as an element of Mod(Dn) by mapping a regular neigh-
borhood of α to our disk D, taking the pair of marked points to p and q and taking α to the
segment of the real axis joining p and q, performing the half-twist map exchanging p and q,
and then mapping back to Dn (and extending by the identity outside the chosen disk).

Braid groups as mapping class groups. We define the n-strand braid group, denoted
Bn, as the mapping class group of the n-punctured disk Dn. We can recover the traditional
viewpoint of the braid group Bn in terms of geometric braids by keeping track of the marked
points “during” a half-twist; see Figure 2.5. If we perform the half-twist shown in Figure 2.5 in
a disk containing the th and (+ 1)st marked points, and extend by the identity to the rest of
the disk Dn, then we will denote this map by σ.

The following well-known presentation for Bn first appeared in an early paper of Artin [5] :

〈σ1, . . . , σn−1 | σσj = σjσ if | − j| ≥ 2;

σσjσ = σjσσj if | − j| = 1〉

3. Symplectic representations and their kernels

The mapping class group of any surface S = Srg acts naturally on the first homology group

H1(S;Z), preserving the algebraic (i.e. signed) intersection pairing b(·, ·) on oriented simple
closed curves on S. It is easy to check that this intersection pairing gives rise to an alternating
bilinear form 〈·, ·〉 on H1(S,R). When r ∈ {0,1}, the form 〈·, ·〉 is also nondegenerate and hence
symplectic. This in turn gives rise to a symplectic representation:

ρ : Mod(S)→ Sp(2g,Z).

Exercise 1. Explain why the intersection pairing fails to give rise to a symplectic form when
r ≥ 2.

Sample calculations. In the cases r ∈ {0,1}, the surface S also admits a symplectic basis
for H1(S;Z), that is, a free basis {1, b1, . . . , g, bg} for H1(S;Z) (viewed as a Z-module) with
the property that 〈, b〉 = 1 and 〈, j〉 = 〈, bj〉 = 0 whenever  6= j. Figure 3.1 shows simple
closed curves representing a standard symplectic basis in the case S = S1g; we can also think
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of the “same” curves as representing a symplectic basis in the case S = Sg by capping off
the boundary component with a disk to obtain a closed surface.

Figure 3.1. A standard symplectic basis for H1(S1g;Z).

As a first example, consider the torus T = S1, with the simple closed curves  and b as
shown in Figure 3.2. Then taking the curves  and b as representatives of a symplectic basis

Figure 3.2. A torus with two simple closed curves.

for H1(S;Z), with appropriately chosen orientations, we have the following

ρ(Tα) =
�

1 1
0 1

�

; ρ(Tβ) =
�

1 0
−1 1

�

.

For a second example, recall that ι ∈ Mod(Sg) denotes the order-two rotation depicted in
Figure 2.1 above. In this case we have that ρ(ι) = − d2g, where d2g denotes the 2g × 2g
identity matrix. In other words, ι is a hyperelliptic involution, by which we mean an involution
that acts by − d on H1(Sg;Z). This example will play a crucial role in what follows.

Torelli groups. Given any symplectic basis for H1(S;Z), one can find a representative set
of simple closed curves realizing this basis; we will call this “homology realization”, and refer
the reader to Farb-Margalit’s development of the Meeks-Petrusky realization method as one
example [18, Chapter 6.2]. Using this fact, one can show that the symplectic representation
ρ : Mod(S) → Sp(2g,Z) defined above is surjective in the case where S = Srg and r ∈ {0,1};
see, for example, [44, Chapter 2]. In these cases, we define the Torelli group I(S) of the
surface S to be the kernel of the symplectic representation ρ; in general ρ is not faithful. The
notation I stands for “Identity” and is commonly used for the Torelli group.

Putting this all together, we have the following short exact sequence:

1 I(S) Mod(S) Sp(2g,Z) 1.
ρ

(3.1)

It is important to emphasize that the above definition of the Torelli group is only valid in the
cases r ∈ {0,1}. When r ≥ 2, the “right” definition of the Torelli group is less clear, due to the
degeneracy of the intersection form; again see [44] or [46]. Having said that, we note for the
sake of completeness that the process of capping off boundary components gives rise to a
surjection from Mod(Srg) onto Mod(Sg), and hence there is always a surjection from Mod(Srg)
onto Sp(2g,Z) for all r ≥ 0.

We note that when g = 1, the Torelli group is trivial. Considering the short exact se-
quence (3.1) above, this is just saying that the mapping class group of a torus is just Sp(2,Z) ∼=
SL(2,Z), as described in the previous section.
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Basic elements in Torelli groups. In the remainder of this section we will continue to
assume that r ∈ {0,1}, and we will also continue to use the same notation for a curve and
its isotopy class in the surface S.

We noted above that Mod(Srg) is generated by Dehn twists. Let  and b be oriented simple
closed curves in Srg. The following formula [18, Proposition 6.3] tells us the effect of any
power k of the Dehn twist T on the homology class [b].

ρ(Tk )([b]) = [b] + k ·
b(, b)[](3.2)

The formula makes precise our intuition that, when performing a Dehn twist about a simple
closed curve , the effect on another simple closed curve b is that b “picks up a copy of
” each time b intersects . Using this formula, we can immediately find some families of
elements in I(S).

Separating twists. It is clear from Formula 3.2 above that if  is a nullhomologous curve,
then T ∈ I(S). Some examples of separating curves appear in Figure 3.3.

Figure 3.3. Left: Three examples of separating curves; Right: Two examples
of bounding pairs:  ∪ b and ′ ∪ b′.

Bounding pairs (BPs). If we perform a Dehn twist about a nonseparating simple closed
curve , then we can see that T is not in the Torelli group by applying Formula 3.2 to any
curve c with b(, c) = 1. (Exercise: why does such a curve c always exist?) However, we can
cancel out the action of T by finding a simple closed curve b that is disjoint from  and such
that the union ∪b separates the surface, and then composing the first twist with the inverse
of the second. In other words, TT

−1
b ∈ I(S).

To see this, first note that since  and b cobound a subsurface R of Srg, we have (with
appropriately chosen orientations) [] = [b] in H1(S;Z). Further, for every time a curve c
crosses  “from the right”, say, then c must also either cross  a second time from the left,
or else crosses b from the left, so that the net effect on homology is trivial. (Exercise: check
this carefully.) We call the curves , b a bounding pair and the composition TT

−1
b a bounding

pair map, or BP-map for short. See Figure 3.3.

Fake BPs. In the previous example, we gave a topological explanation for the fact that BPs
are elements of I(S), which used the fact that the two curves involved in the BP-map TT

−1
b

were disjoint. However, we do not need this assumption to prove the same result. We only
need the assumption that [] = [b], again, with appropriate choice of orientations for the
curves  and b. In this case, Formula 3.2 tells us immediately that ρ(T) = ρ(Tb), and hence
ρ(TT

−1
b ) = d2g; it is important to recall here that the algebraic intersection number b is well

defined on homology classes, not just on isotopy classes of curves, as we noted at the start
of Section 3.

Therefore, in order to generalise the notion of a BP map, we can simply choose any two
simple closed curves  and b such that [] = [b] and with b(, b) = 0, and Formula 3.2
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again shows immediately that TT
−1
b ∈ I(S). If in addition the geometric intersection (, b) is

nonzero, we say that TT
−1
b is a fake BP map. We will next describe a particularly important

type of fake BP maps.

Simply intersecting pairs (SIPs). Consider two curves , c where b(, c) = 0 and (, c) =
2; in this case we say that  and c form a simply intersecting pair; see Figure 3.4. Using
Formula 3.2 again, we see that the condition that b(, c) = 0 implies that Tc() is homologous
to . Thus TT

−1
Tc()

is a fake BP map. Now, one can check easily that for any mapping class

ƒ ∈ Mod(S) and any Dehn twist Tc, we have that ƒTƒ−1 = Tƒ (). Hence TT
−1
Tc()

= TTcT−1 T−1c .
In other words, the commutator [T, Tc] of the twists corresponding to a simply intersecting
pair lies in the Torelli group. We refer to such an element as an SIP map.

Figure 3.4. The two curves shown here form a simply intersecting pair (SIP),
from which we can derive a special case of a fake BP.

In much of the early literature on mapping class groups, separating twists and BP maps
played a leading role. For example, combined work of Birman [8] and her student Powell [43]
first showed that I(S) was generated by separating twists and BP maps. A few years later,
Johnson showed that finitely many BP maps suffice to generate I(S) [30] when g ≥ 3. Mess
then showed that I(S2) is a free group on an infinite collection of separating twists [40].

As far as we are aware, the type of example now known as a fake BP first appeared in
Turaev’s Bourbaki survey on linear representations of braid groups as a tool for exploring
faithfulness [56]; this serves as our first clue that Torelli groups are a useful tool to inform our
study of braid groups. Fake BPs finally gained a more prominent role in the study of Torelli
groups through work of Putman [47], who used them to give an infinite presentation of I(S).

Generalizations: congruence groups. Using the symplectic representation, there is an
easy way to find finite index subgroups of Mod(S), simply by passing from Z to Z/m for some
integer m. We define a map ρm to be the composition of the symplectic representation with
the map on corresponding symplectic groups induced by mod m reduction. See Newman’s
book “Integral Matrices” for a good general discussion of symplectic groups over the ring
Z/m [42, Chapter VII, Section 33].

Mod(S) Sp(2g,Z) Sp(2g,Z/m).
ρ

ρm

mod
m(3.3)

The kernel of the map Sp(2g,Z) → Sp(2g,Z/m) is known as the level m principal con-
gruence subgroup of Sp(2g,Z) and is denoted Sp(2g,Z)[m] or sometimes just Sp[m]. The
kernel of the map ρm is known as the level m congruence subgroup of Mod(S) and is denoted
Mod(S)[m] or simply Mod[m]. We can view congruence subgroups of mapping class groups
as generalizations of the Torelli group; indeed, we can consider the Torelli group itself as the
level 0 congruence subgroup Mod(Sg)[0].

Congruence subgroups play an important role in the theory of mapping class groups in
a variety of settings. For example, when m ≥ 3, the congruence subgroup Mod(Sg)[m] is
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torsion-free and (by definition) finite-index, which enables us to come to grips with geo-
metric group theory invariants such as virtual cohomological dimension and duality [24]. As
another example, in the algebro-geometric setting, the regular cover of M(Sg) corresponding
to Mod(Sg)[m] is the moduli space of surfaces of genus g equipped with a full level m struc-
ture, that is, a basis for the m-torsion in their Jacobian; see Fullarton-Putman for an overview
of this viewpoint [19]. See Putman’s lecture notes [45] for further exposition of this topic.

We record some further notes here about congruence subgroups. For further information,
Raghunathan’s survey includes a comprehensive list of various further references [49].

• The symplectic group has the congruence property.

• For m ≥ 3, the congruence group Mod(Sg)[m] is pure in the sense of Ivanov [27].
Roughly speaking, this means that all elements have a (nearly) canonical factorisation.

• The existence of congruence subgroups is closely related to the property of residual
finiteness. For example, see Ivanov’s proof [26, Section 11.1] of Grossman’s theorem
[22] that mapping class groups are residually finite

• There is a more general notion of congruence subgroups of braid groups. Let H be
a characteristic, finite index subgroup of the fundamental group π1(S); in our case
we consider S = Dn. We then get a map from Mod(S) to Ot(π1(S)/H) (recall the
Dehn-Nielsen-Baer Theorem from Section 2 above). The kernel of this map is called
a principal congruence subgroup in this setting. For all n, the pure braid group of
the sphere with n marked points is congruence, that is, every finite index subgroup
contains a principal congruence subgroup, a fact first proven by Diaz-Donagi-Harbeter
in 1989 [17]. More recently McReynolds recorded an elementary proof of this fact
due to Thurston; the introduction of McReynolds’ paper also contains many further
references to related work and different proofs [38]. In fact, this is essentially the
same framework used by Ivanov to establish residual finiteness, and in addition to
Ivanov’s paper cited above we refer the reader to Farb-Margalit’s treatment of Ivanov’s
approach for more details [18, Section 6.4.3].

Hyperelliptic mapping class groups. Recall the involution ι of Sg given by rotation by
π indicated in Figure 2.1 above; this is a hyperelliptic involution since it acts as − d on
H1(Sg,Z). We can consider the surface S1g as a subsurface of Sg ( we can “cap off” the

boundary component of S1g to recover Sg), and consider the restriction of ι to S1g. In both
cases, we define the hyperelliptic mapping class group, denoted SMod(S), as follows:

SMod(S) := {ƒ ∈ Mod(S) | ƒ ι = ιƒ}

We are somewhat abusing notation in the above definition in the case where S = S1g. This is

because ι does not induce a mapping class in Mod(S1g) since it does not fix ∂S1g pointwise.
The notation SMod(S) comes from Birman-Hilden [10], who used the term symmetric map-
ping class group for this subgroup of Mod(S). Indeed, we say that a simple closed curve is
symmetric if it is preserved setwise by ι, and we say that an isotopy class  of simple closed
curves is symmetric if it has a symmetric representative.

For the moment, we will focus on the case of the surface S1g. The hyperelliptic involution ι
induces a branched double cover of the disk Dn, with the n marked points of Dn corresponding
to the n = 2g + 1 branch points. Consider Figure 3.5, which shows a collection of curves and
a properly embedded arc in Dn, along with their pre-images in the cover S1g.

Birman-Hilden proved that this branched double cover induces an isomorphism between
Mod(Dn) and SMod(S1g), giving us a new characterization of the braid group [10, Theorem
1]. If one wants to work with braid groups from this viewpoint, it is worthwhile to work out
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Figure 3.5. The Birman-Hilden dictionary: a collection of simple closed curves
and an arc in the disk D7 together with their pre-images under the hyperel-
liptic involution.

the details of the “dictionary” between the two groups given in Exercise 2. To that end, it
is helpful to distinguish between topological types of simple closed curves in Dn. We say a
curve is even if it bounds a disk containing an even number of marked points; we similarly
say it is odd if it bounds a disk containing an odd number of marked points. When we need
to be more specific, we will refer to a k-curve, meaning a curve that bounds a disk in Dn

containing precisely k marked points.

Exercise 2. Work out the dictionary between the groups Mod(Dn) and SMod(S1g) by demon-
strating the following correspondences induced by the hyperelliptic involution indicated in
Figure 3.5. The notation here follows the same figure.

1. A half-twist in Dn corresponds to a Dehn twist about a nonseparating symmetric curve
in S1g:

h̄↔ T

2. A Dehn twist about an even curve b̄ in Dn corresponds to a product of the Dehn twists
about the two curves b, b′ in its pre-image upstairs in S1g:

Tb̄↔ TbTb′ .

It is worth distinguishing a special case here: if c̄ is a 2-curve in Dn, then the two
components in its pre-image will be isotopic to a symmetric curve c in S1g, and we
have:

Tc̄↔ T2c .

3. The square of a Dehn twist about a 2k + 1-curve d̄ in Dn corresponds to a Dehn twist
about its pre-image d, where d is a separating curve that bounds a genus k subsurface
of S1g:

T2
d̄
↔ Td
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Symplectic representations of braid groups. Again, we focus primarily on the case
where n = 2g + 1. The Birman-Hilden isomorphism enables us to define symplectic rep-
resentations of the braid group as follows. In the case n = 2g + 1, we can define a map
β : Bn → Sp(2g,Z) by composing the Birman-Hilden isomorphism with inclusion of the hy-
perelliptic mapping class group into the full mapping class group, and then finally applying
the classical symplectic representation ρ as defined above. For any integer m, we can then
pass to Sp(2g,Z/m) to obtain a family of representations of the braid group that we will de-
note βm, by analogy with the representations ρm defined above. The following commutative
diagram summarizes the preceding discussion in the case where n = 2g + 1.

Bn = Mod(Dn) Sp(2g,Z) Sp(2g,Z/m)

SMod(S1g) Mod(S1g)

β

Birman-Hilden ∼=

βm

mod
m

ρ

The case where n is even. If we wish to work with the braid group Bn for n = 2g + 2, we
will need to modify the Birman-Hilden construction given above. In this case, we consider the
restriction of the hyperelliptic involution ι to a surface S2g as shown in Figure 3.6. This gives

rise to a branched double cover of the disk Dn for n = 2g + 2. We can then define SMod(S2g)
using this involution, and the Birman-Hilden isomorphism and dictionary go through similarly
in this case.

Figure 3.6. The quotient of a surface of genus g with two boundary compo-
nents under the hyperelliptic involution (given by rotation about the indicated
axis) is a disk with n = 2g + 2 marked points corresponding to the n branch
points.

Defining the symplectic representation of Bn is only slightly more complicated when n =
2g + 2. We give a brief summary here and refer the reader to [14] for details. As explained
above, the Birman-Hilden correspondence again allows us to consider Bn as the subgroup
SMod(S2g) of Mod(S2g). Now, let p̃ = {p1, p2} in ∂S2g be the pre-image of a basepoint p ∈ ∂Dn.

There is a map Mod(S2g)→ At(H1(S2g, p̃;Z)). The relative homology group H1(S2g, p̃;Z) admits
a symplectic intersection form, with symplectic basis given by 2g “standard” basis elements
analogous to the basis for H1(S1g,Z) shown in Figure 3.1, together with two further basis
elements, one represented by an arc joining p1 to p2 and one by a single component of the
boundary, with suitable orientations.

In other words, the map Mod(S2g)→ At(H1(S2g, p̃;Z)) is in fact a map Mod(S2g)→ Sp(2g +
2,Z). Moreover, all our maps fix boundaries pointwise, so in fact the image of our map lies in
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the subgroup Sp(2g+2,Z)∂ consisting of those elements of Sp(2g+2,Z) that fix the element
of H1(S2g, p̃;Z) corresponding to a component of ∂S2g.

We summarize the preceding discussion in the following commutative diagram in the case
where n = 2g + 2:

Bn = Mod(Dn) Sp(2g + 2,Z)∂ Sp(2g + 2,Z) Sp(2g + 2,Z/m)

SMod(S2g) Mod(S2g)

β

∼=

βm

mod
m

ρ

Although it is useful to know that the constructions described in these notes go through for
all Bn, regardless of parity, the reader may find it useful to focus initially on the case where
n = 2g + 1 in what follows.

Burau representation. We just defined a symplectic representation of the braid group via
a branched double cover of the disk Dn. For those familiar with the Burau representation, this
should sound familiar. We will describe a different way to obtain the same representation (up
to conjugacy) in this context, largely inspired by Turaev’s excellent survey article [56].

Consider D0n, the n-punctured disk, with a basepoint p on ∂Dn. The exponent sum map

π1(Dn, p) → Z corresponds to a regular cover ÝD0n with infinite cyclic deck group; we fix a
generating deck transformation t. (Note that this map can also be viewed recording the total
winding number of loops around the marked points of Dn.) We can picture ÝD0n by taking copies
of D0n indexed by powers of the generator t as shown in Figure 3.7 for the case n = 3. We

Figure 3.7. The zeroth, first, and second “decks” in the universal cyclic cover of D03.

construct ÝD0n, the universal cyclic cover of D0n by cutting along an arc from each puncture to
∂Dn. We then assign each side of the arc a “+” or “-”, and glue the + side of a cut-arc in copy
tk to the − side of the corresponding arc in copy tk+1. Thus, whenever a path crosses one of
these arcs “downstairs”, in the universal cyclic cover the lifted path will move from deck tk

“up” a level to deck tk+1 or “down” a level to deck tk−1, depending on the direction of travel.
The first homology group H1(ÝD0n;Z) is a Z[t±1]-module.

Exercise 3. Show that H1(ÝD0n;Z) is free of rank n−1 as a Z[t±1]-module, and find generators.
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Figure 3.8. Left: The loop  forms part of a standard generating set for
π1(D0n, p); Right: the result of applying the half-twist σ to .

We define the reduced Burau representation as follows:

Bn → At(H1(ÝD0n;Z))

ƒ 7→ ƒ̃∗

where ƒ̃∗ denotes the unique lift of ƒ ∈ Bn = Mod(D0n) to ÝD0n fixing the fiber over the basepoint
p ∈ ∂Dn.

Similarly, we define the unreduced Burau representation as

Bn → At(H1(ÝD0n, p̃;Z))

ƒ 7→ ƒ̃∗

where p̃ denotes the pre-image of the basepoint p in ÝD0n.
Figure 3.8 shows a disk with two punctures which we think of as the th and ( + 1)st

punctures for the general. The left-hand side of the figure indicates a standard generating
set for π1(D0n, p) consisting of loops , for  ∈ {1, . . . , n}, where each loop travels clockwise
around the th puncture. The right-hand side of Figure 3.8 shows the effect of the half-twist σ
on the loops  and +1:

 7→ +1−1
+1 7→ 

Considering our “sliced disk model” for the infinite cyclic cover, we see that lifting the loop
+1

−1
 to ÝD0n corresponds to the following element:

(t0 · ) + (t1 · +1) − (t1 · ) = (1 − t) + t+1

On the left-hand side of the equation above, we are emphasizing the fact that the coefficient
of the form tk records the fact that a lift of a given loop j is occuring in “level k” of the infinite
cyclic cover. If we consider σ as acting on the right, this calculation gives us the th row of
the unreduced Burau representation written as an n× n matrix over Z[t±1]. The (+ 1)th row
is even simpler to work out, and we obtain:

σ 7→ d−1 ⊕
�

1 − t t
1 0

�

⊕ dn−−1 .

The notation here indicates that the 2 × 2 block occurs along the diagonal in the ,  + 1
position, and the rest of the matrix is the identity. This is perhaps a more familiar definition
of the unreduced Burau representation of the braid group Bn.

To recover the double cover viewpoint we had previously utilized, one can simply take two
copies of the “sliced disk”, corresponding to t0 and t1. We begin by glueing the t0-level to the
t1-level as before. Then, instead of glueing the t1-level to the t2-level as in the construction
of the infinite cyclic cover, we replace t2 with t0. In other words, set t2 = 1. Doing so results
in a torus with one boundary component, as shown below in Figure 3.9.
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Figure 3.9. Left: Two copies of D03, where dots correspond to branch points
and ∗ is the basepoint; Right: The two copies are now glued together to form
a torus.

Exercise 4. Perform this glueing construction carefully. As indicated in Figure 3.9, one needs
to “pinch” the endpoints of the slices in each copy of the disk to a single point, so that each
arc that we are cutting along in each copy of the disk has a copy of a branch point on one
end, and the basepoint ∗ ∈ Dn at the other.

It turns out that our symplectic representation of Bn is (up to conjugacy) nothing other
than the Burau representation with t = −1. It is a theorem due to Squier that if we consider t
as a complex parameter with |t| = 1, then the Burau representation is unitary [53].

Exercise 5. Prove the following result from linear algebra: if a matrix is unitary with respect
to a non-degenerate hermitian form h, then the imaginary part of h is a symplectic form.

Gambaudo-Ghys work out carefully how to recover the topological version of the Burau
representation at t = −1, that is, the symplectic representation β defined above, from the
algebraic description arising from Squier’s work [21]. We note that they refer to this repre-
sentation of Bn as the Burau-Squier representation.

Braid congruence groups. Our goal in what follows is to study the kernels of these sym-
plectic representations. To that end, we introduce the following notation:

BI := kerβ

Bn[m] := kerβm

The notation BI indicates “braid Torelli”. By analogy with congruence subgroups of mapping
class groups, we will refer to the group Bn[m] as the level-m braid congruence group. We
will also understand the “level zero” braid congruence group Bn[0] to be just the braid Torelli
group BI.

Problem 3.1. Characterize the level-m braid congruence group Bn[m].

Of course, this problem is somewhat vague as stated. Given that our viewpoint is based
on mapping class groups of surfaces, our specific goal will be to find topological characteri-
zations of Bn[m] that are somehow intrinsic to the disk Dn.

4. Level 2: Pure Braids and Dehn Twists

The case m = 2 turns out to be the key to understanding all three level-m braid congruence
groups that are the focus of these lecture notes. Indeed, it turns out that Bn[2] is a familiar
and well-studied group.

Recall that the pure braid group PBn is just the kernel of the map from the braid group Bn
to the symmetric group on n objects that records the permutation of marked points induced
by a braid. It is a well-known result of Artin [4] that PBn is generated by Dehn twists in

III–15



Tara E. Brendle

Dn. Indeed, he proved much more, including the fact that PBn is finitely generated by such
elements. These elements are commonly denoted Aj, for 1 ≤  < j ≤ n. As a geometric braid
this is usually depicted as the jth strand of a braid crossing in front of the other strands
and “hooking around” the th strand before returning to its original position, as shown in
Figure 4.1.

Figure 4.1. Left: The pure braid generator Aj as a geometric braid; Right: The
Dehn twist Tcj and the square of the half-twist hαj both correspond to the
braid Aj.

In the disk model, as an element of Mod(Dn), this is nothing other than a Dehn twist about
the 2-curve cj as shown. Note that Tcj is just the square of the half-twist corresponding to
the arc αj contained in the interior of the disk bounded by cj, joining the th marked point to
the jth marked point as shown in Figure 4.1.

Approximately two decades after Artin’s description of the pure braid group PBn appeared,
Arnol’d gave a different characterization of PBn as the level-2 braid congruence group. We
briefly sketch his argument here; for full details see his original paper [3], particularly Lemma
1 and subsequent discussion, or see Brendle-Margalit [14, Section 2].

Let Xn denote the surface S1g if n = 2g + 1, or the surface S2g if n = 2g + 2. In either
case, as described in our discussion of the Birman-Hilden correspondence in Section 3, we
consider the hyperelliptic involution ι as a branched double cover of Xn over the disk Dn. For
our current purposes it will be useful to consider the punctured disk D0n obtained from the
marked disk Dn by removing the n marked points.

We define a map H1(Xn;Z/2)→ H1(D0n;Z/2) as follows. Suppose γ is a simple closed curve
in Xn that represents a cycle H1(Xn;Z/2). We can modify γ by a homotopy to ensure that
it avoids branch points, and then project to D0n in order to obtain a representative of an
element of H1(D0n;Z/2). In our Birman-Hilden dictionary (Figure 3.5), γ might be a symmetric
representative of the isotopy class of c, so we could replace γ by the curve labeled c (or
we could choose instead the curve labeled c′, or many other possibilities!), which in turn
projects to the 2-curve c̄ in D0n. Arnol’d proved that this process is independent of the choices
involved.

Arnol’d further proved that the image of this map is the subspace of H1(D0n;Z/2) consisting
of those elements that have an even number of nonzero coordinates in a standard homol-
ogy basis; we denote this subspace by H1(D0n;Z/2)

even. Keeping in mind the Birman-Hilden
dictionary of Figure 3.5, the key observation here is that the boundary of a disk containing
a branch point in Xn maps to an odd curve, specifically a 1-curve in D0n; such a curve is
nullhomologous working over Z/2.

Now, the isomorphism H1(Xn;Z/2) → H1(D0n;Z/2)
even is Bn-equivariant. The braid group

Bn acts in the obvious way on H1(D0n;Z/2)
even via Dn, and the elements of Bn that act trivially

on H1(D0n;Z/2)
even are precisely those that fixed each of the n marked points of Dn, i.e., the

pure braid group PBn. The braid group Bn also acts on H1(Xn;Z/2) via the Birman-Hilden
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Figure 5.1. Two symmetric separating curves.

correspondence, and by definition the elements of Bn acting trivially are precisely those in
the level 2 congruence group Bn[2]. Hence Bn[2] is nothing other than the pure braid group
PBn.

Putting Arnold’s result together with that of Artin, we have the following characterization
of the level 2 braid congruence group.

Theorem 4.1 (Artin, Arnol’d). The braid congruence group Bn[2] is normally generated by
Dehn twists. In fact, Bn[2] is normally generated by Dehn twists about 2-curves.

For a subset R of a group G, we let NG〈R〉 denote the normal closure of the set R in G, that
is, the smallest normal subgroup of G containing R; we will drop the subscript G when this
is clear from context. Using this notation, we can rewrite the statement of Theorem 4.1 as
follows:

Bn[2] = PBn = NBn 〈Tc | c is a simple closed curve in Dn〉.

The results we have gathered in the case of the level-2 braid congruence group turn out to
be important in understanding levels 0 and 4, as we shall see.

5. Level 0: Braid Torelli

We will next apply the Arnol’d-Artin characterization of the level-2 braid congruence group
Bn[2] to the level-0 braid congruence group, that is, to the braid Torelli group BI. We will
exploit the Birman-Hilden viewpoint in order to draw on our knowledge of the Torelli group
I(S). In other words, our starting point will be the hyperelliptic Torelli group SI(S), that is,
the intersection of the Torelli group I(S) and the hyperelliptic mapping class group SMod(S).

We first consider how basic elements of the Torelli group can be realized symmetrically
with respect to our hyperelliptic involution ι.

Symmetric separating twists. If c is a separating curve in the surface S that is also
symmetric with respect to ι, then Tc ∈ SI(S). We refer to such an element as a symmetric
separating twist. Examples of such curves are shown in Figure 5.1.

Symmetric SIP. If  and b are two symmetric curves in S that together form a simply
intersecting pair, then the commutator [T, Tb] ∈ SI(S). We refer to such an element as a
symmetric SIP map. An example of the curves involved in a symmetric SIP are shown in
Figure 5.2.

Symmetrized SIP. Suppose that  and b form a simply intersecting pair, and let ′ denote
ι() and similarly let b′ denote ι(b). If ′ ∪ b′ is disjoint from  ∪ b, then the product of the
two SIP-maps [T, Tb][T′ , Tb′ ] lies in SI(S). We call this element a symmetrized SIP map;
see Figure 5.2.

III–17



Tara E. Brendle

Figure 5.2. Left: a symmetric SIP; Right: a symmetrized SIP

Non-example: BP maps. Consider the BP map TT
−1
′ indicated in Figure 3.3. Despite

the symmetric nature of the two curves, this map is not an element of SI(S), since the
hyperelliptic involution ι conjugates TT

−1
′ to its inverse.

Hain-Morifuji Conjecture. It was a conjecture of Hain [23, Conjecture 1], also implicit in
work of Morifuji [41, Section 4], that the group SI(S) is generated by symmetric separating
twists for all g ≥ 0. This conjecture was proven by Brendle-Margalit-Putman, and we state
here a formulation of this result in terms of braid groups.

Theorem 5.1. [11, Theorem C ] For n ≥ 1, the group BIn is normally generated by squares
of Dehn twists about odd curves in Dn.

Using the notation introduced in the previous section, we can reformulate this as follows:

Bn[0] = BIn = NBn 〈T
2
c | c is an odd simple closed curve in Dn〉.

In fact, it turns out that for any n, it suffices to include only 3-curves and 5-curves in the nor-
mal generating set for BIn. However, as observed by Fullarton, one cannot pare the list down
further due to constraints imposed by abelianization; see the discussion following Theorem
C in Brendle-Margalit-Putman [11].

Johnson kernel. The symplectic representation ρ of the mapping class group Mod(Sg)
records the action of a mapping class group on homology H1(Sg,Z), which is just π1(S) mod-
ulo its commutator subgroup. The Johnson homomorphism extends this idea, recording the
action on π1(Sg) modulo the second term in its lower central series (up to conjugation). More
precisely, Johnson homomorphism is a map from the Torelli group I(Sg) onto (a quotient
of) the triple wedge product of H1(Sg,Z); for details two good references are Johnson’s first
paper on this topic [29] or Farb-Margalit’s overview of Johnson’s work [18, Section 6.6].

Exercise 6. Show that any element of SI(S) must lie in the kernel of the Johnson homo-
morphism. HINT: One can establish this without knowing much about the Johnson homomor-
phism. The key points are:

1. the fact that our hyperelliptic involution, by definition, acts by − d on homology; and

2. the parity of the number of factors in our wedge product target.

Johnson proved the deep theorem that the kernel of the Johnson homomorphism is pre-
cisely the normal subgroup of Mod(Sg) generated by Dehn twists about separating simple
closed curves [31]. Hence we conclude from Exercise 6 above that any element of SI(S) can
be expressed as a product of separating twists. The Hain-Morifuji conjecture further asserts
that this can be done symmetrically.

From a purely group theoretic perspective, the conjecture may seem highly implausible: if
one knows set of generators R for a group G, one doesn’t normally find a generating set for
a subgroup H of G simply by selecting those generators from the set R that happen to lie in
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the subgroup H. For example, Mod(Sg) is generated by the set of all Dehn twists. But the set
of all Dehn twists that happen to lie in the Torelli group is just the set of Dehn twists about
all separating curves. This subset generates the Johnson kernel, an infinite index subgroup
of the Torelli group.

The starting point for understanding BIn (and hence SI(S)) is Arnol’d’s result, stated as
part of Theorem 4.1 above, that Bn[2] = PBn, together with a result due to A’Campo [1,
Théorème 1] stating that the image of PBn under the symplectic representation β : Bn →
Sp(2g,Z) is precisely the principal congruence group Sp[2]. (Arnold’s result tells us only
that β(PBn) is contained in Sp[2].) Piecing together these results, we obtain the following
commutative diagram.

BI

PBn Bn n

Sp[2] Sp(2g,Z) Sp(2g,Z/2)

β
(5.1)

From this commutative diagram, we have that PBn/BI ∼= Sp[2].
Let θ denote the subgroup of the pure braid group PBn normally generated by squares of

Dehn twists about odd curves. Since θ < BI, we obtain a quotient map π:

PBn/θ PBn/BI Sp[2].π ∼=(5.2)

If we had a sufficiently nice presentation of Sp[2], that is, a presentation that was obviously
the right kind of quotient of PBn, then we’d be done.

However, we don’t have this a priori, and so instead we use the action of Sp[2] on the
complex of lax isotropic bases, an abstract simplicial complex where vertices correspond
(roughly) to certain partial symplectic basis for H1(Sg;Z/2). We give a brief sketch here;
see [11, Section 3] for details. First, we invoke a theorem of Putman [48] that enables us to
write Sp[2] as a quotient of free products of vertex stabilizer subgroups in Sp[2]. We can
then restrict the quotient map π defined above to a corresponding subgroups of PBn modulo
θ that stabilize a curve in the disk Dn. Cutting along this curve allows us to reduce to disks
with fewer marked points. The proof then proceeds by induction and requires a Birman Exact
Sequence for the hyperelliptic Torelli group [13, Theorem 4.2].

6. Level 4

Before we begin our discussion of the level-4 braid congruence group Bn[4], we briefly recap
our key results on braid congruence groups so far. Our first result on level-2 is due to Arnol’d
and Artin:

Bn[2] = PBn = NBn 〈Tc | c is any simple closed curve in Dn 〉

where N 〈−〉 denotes the normal closure of the group generated by the types of elements
indicated. (Equivalently, we could take c to be any 2-curve in the above.) The result above
was then used by Brendle-Margalit-Putman to characterize the level-0 / braid Torelli case:

Bn[0] = BIn = NBn 〈T
2
c | c is an odd curve in Dn 〉

As noted in Section 5, one does not in fact need all odd-curves; one can normally generate
BIn using just 3-curves and 5-curves.

Exercise 7. Recall the following elementary exercise from group theory: any group in which
every nontrivial element has order 2 is necessarily abelian.
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Now, if G is a group, we denote by G2 the subgroup of G generated by the squares of
all the elements. It follows from Exercise 7 that G/G2 is universal among ‘mod two abelian
quotients’ of G, that is, abelian quotients of G in which every nontrivial element has order
two. With this notation in hand, we can state the following characterization of the level-4
braid congruence group.

Theorem 6.1 (Brendle-Margalit [14]).

Bn[4] = PB2 = NBn 〈T
2
c | c is any simple closed curve in Dn〉

In other words, the level-4 braid congruence group arises both as the kernel of the uni-
versal mod two abelianization of the pure braid group, and as the subgroup generated by
squares of Dehn twists. Note the latter equivalence in the statement is not immediate; a
priori the subgroup generated by squares of Dehn twists could be a proper subgroup of the
subgroup of the pure braid group generated by all squares.

Abelianization of PBn. We begin our sketch of the proof of Theorem 6.1 with a description
of the abelianization of the pure braid group PBn.

Recall from Section 4 that Artin gave a finite generating set {Aj | 1 ≤  < j ≤ n} for
PBn consisting of

�n
2

�

elements. One can then use, say, the presentation given by Birman [9,
Lemma 1.8.2] or Artin’s original presentation [4] to deduce the abelianization of PBn. The
result is just

�n
2

�

copies of Z, with each pure braid generator Aj generating one of the
�n
2

�

summands in the abelianization. We can further reduce modulo any integer ℓ in order to
obtain a family of finite quotients of PBn. We will denote the abelianization map by α, and
its further mod ℓ reduction by αℓ. We will be particularly concerned with the case ℓ = 2, as
summarized in the following diagram.

PBn Z(
n
2) (Z/2)(

n
2).α

α2

mod

2
(6.1)

We will prove both of the equalities in the statement of Theorem 6.1 using the character-
ization of PB2n as the kernel of α2; see Exercise 7 above. For brevity, in what follows we will
use the following simplified notation:

N 〈T2c 〉 := NBn 〈T
2
c | c is any simple closed curve in Dn〉.

We prove the second equality first. Note that the image of N 〈T2c 〉 under α is 2Z(
n
2). Further,

the full pre-image of 2Z(
n
2) under α is PB2n. We already know that N 〈T2c 〉 < PB2n. In order to

obtain the reverse inclusion, it suffices to show that N 〈T2c 〉 contains the kernel of α, that is,
the commutator subgroup of the pure braid group PBn. We can prove this via a case-by-case
examination of the different commutators of Artin’s generators, according to the respective
topological types of the curves involved in the Dehn twists Aj. There is only one case that
is not straightforward to check, namely [A12, A23]. Note that any commutator [, b] can be
realized as a product of squares, for example as follows:

[, b] = b−1b−1 = (2)(−1b)2b−2.

In this case, however, we are able to use the Squared Lantern Relation given in Figure 6.1
to write the commutator [A12, A23] explicitly as the product of squares of Dehn twists rather
than squares of products of twists.
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Figure 6.1. The squared lantern relation: [Tc, Td] = T2c T
2
bT

2
eT

2
 .

We now establish the first equality by showing that Bn[4] is in fact equal to PB2n, the kernel
of α2. Consider the following sequence of maps.

PBn Sp(2g,Z)[2] sp2g(Z/2)

d+2A A

β

(6.2)

The group sp2g(Z/2) is the additive group of persymmetric matrices, that is, matrices that
are symmetric along the anti-diagonal. The first map is just the restriction of the symplectic
representation β to PBn; recall from Section 5 that A’Campo has shown that the map shown
here is surjective. The second map is defined as in the diagram and is well known to be
surjective; see for example [42, Chapter VII, 33-34].

Consider the kernel of the composition of these two maps. On the one hand, this kernel
is clearly the level-4 braid congruence group Bn[4], since the kernel of the second map is
just Sp(2g,Z)[4]. On the other hand, it is easy to check that the kernel of the composition
is just the kernel of the mod two abelianization map α2, since as an abelian group we have
that sp2g(Z/2) ∼= (Z/2)(

n
2); to see this, consider the constraints on matrix entries imposed by

the persymmetric condition.

7. Connections and applications

We will end these notes by recording some relationships between various braid congruence
subgroups we have studied, as well as congruence subgroups of the symplectic group, and
well known subgroups of braid groups such as point pushing groups and Brunnian braid
groups.

Forgetful maps. Let p1, · · · , pn denote the n punctures in the disk Dn. If we “fill in” one
of the punctures, say, p, we get a ‘forgetful map’ F between corresponding mapping class
groups, with kernel corresponding to all possible ways to “push” the point p around the
disk, that is, all possible loops based at p. This gives rise to a version of the Birman Exact
Sequence [9, Section 4.1] (or see discussion in Farb-Margalit [18, Section 4.2]) as follows.

1 π1(Dn, p) PBn PBn−1 1
F
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Figure 7.1. The given (2h)-curve on the right is the image of the odd curve
on the left under the “forget p” map.

We can extend our notion of a forgetful map to any subset S ⊆ {1, . . . , n}, and define a map
FS : PBn → PBn−|S | by filling in all punctures p for  ∈ S. The following proposition relates level
zero braid congruence groups to level four braid congruence groups via forgetful maps.

Proposition 7.1. For any S ⊆ {1, . . . , n}, we have FS(BIn) = Bk[4], where k = n − |S |.

The proof is elementary now that we have our topological characterizations of BIn and
Bn[4].

Proof. We have the following sequence of inclusions and equalities:

FS(BIn) ⊆ FS(Bn[4]) = FS(NBn 〈T
2
c 〉) ⊆ NBk 〈T

2
c 〉 = Bk[4].

The equalities all follow from Theorem 6.1. The first inclusion follows from the fact that BIn ⊆
Bn[m] for all integers m. The second inclusion is due to the fact that Dehn twists always map
to (possibly trivial) Dehn twists under any forgetful map.

To see the reverse inclusion, suppose T2c ∈ Bk[4]. If c is an odd curve in Dk, then under
the forgetful map FS , the twist Tc is the image of the twist about an odd curve c̃ in Dn that
surrounds precisely the same “unforgotten” punctures, and hence T2c = FS(T2c̃ ). If instead c
is a (2h)-curve in Dk for some integer h, then Tc is the image under FS of the twist about a
(2h + 1)-curve c̃ surrounding the same 2h unforgotten punctures as well as one additional
forgotten puncture p for  ∈ S; see Figure 7.1. Hence by Theorems 6.1 and 5.1 we have:

Bk[4] ⊆ FS(NBn 〈T
2
c | c an odd curve 〉) = FS(BIn).

�

More on point pushing subgroups. As a further application, we can prove the some-
what curious fact that, under the symplectic representation ρ, the image of point pushing
subgroups in always contains the level four congruence subgroup of the symplectic group.
Indeed, we can say a bit more, and give a sample result here. The first statement in this
theorem is due to Yu [58, Theorem 7.3(iii)], and the second is due to Brendle-Margalit [12].
Recall from Section 3 that the notation (Sp(2g+ 2,Z)[m])∂ denotes the subgroup stabilizing
the vector corresponding to one of the two boundary components of S2g.

Theorem 7.2 (Yu, Brendle-Margalit). Let g ≥ 2.

1. If n = 2g + 1, then ρ(π1(Dn, p)) contains Sp(2g,Z)[4] and we have

ρ(π1(Dn, p))/ Sp(2g,Z)[4] ∼= (Z/2)2g
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2. If n = 2g + 2, then ρ(π1(Dn, p)) contains (Sp(2g + 2,Z)[4])∂ and

ρ(π1(Dn, p))/(Sp(2g + 2,Z)[4])∂ ∼= (Z/2)2g+1

In particular, this theorem answers a question of user “JSE” posed on MathOverflow [32].
A more general version of Theorem 7.2 can be found in [12], correcting a misstated version
of this result given in the original paper [14]. The proof uses A’Campo’s result described in
Section 5 that PBn surjects onto Sp(2g,Z)[2], a result due to Mennicke [39] that the level
m congruence subgroup Sp(2g,Z)[m] is generated by mth powers of transvections, and a
symmetric version of homology realization (which was described in Section 3 above).

One can use Theorem 7.2 to compute the indices of ρ(π1(Dn, p)) in Sp(2g,Z)[2] and
(Sp(2g + 2,Z)[2])∂, for the different parity cases respectively, using the facts that

[Sp(2g,Z)[2] : Sp(2g,Z)[4]] = 2(
2g+1
2 )

and
[(Sp(2g + 2,Z)[2])∂ : (Sp(2g + 2,Z)[4])∂] = 2(

2g+2
2 ).

For example, when n = 2g + 1, we have:

[Sp(2g,Z)[2] : ρ(π1(Dn, p))] = 2g(2g+1) − 22g.

Remarks on Brunnian braids. A Brunnian braid is a (pure) braid that becomes trivial
when any one of its n strands is deleted. The set of all Brunnian braids forms a subgroup of
PBn, denoted Brnn, and can be defined in terms of point pushing subgroups as follows:

Brnn := π1(Dn, p1) ∩ · · · ∩ π1(Dn, pn).

Finally, it follows that ρ(Brn3) has infinite index in SL(2,Z); again, see [12] for a correction
of a misstatement in [14]. Let Z denote the center of B3; this is an infinite cyclic group
generated by a Dehn twist about the boundary of the disk Dn. The group Z is also the kernel
of the symplectic representation ρ : B3 → SL(2,Z) (recalling that Sp(2,Z) = SL(2,Z)). Let
M = ρ(σ1). No element of the coset σk1Z is Brunnian, and hence no power of M lies in ρ(Brn3).

We remark that Cohen-Wu [15] previously showed that, in contrast to the previous result,
the group of Brunnian 3-braids on the sphere rather than the disk, specifically the Brunnian
subgroup of Mod(S00,3), maps isomorphically onto SL(2,Z)[4] under the symplectic represen-
tation.

8. Further directions

The beauty of braid groups is that they lie at the intersection of many different fields, and
as we have seen, braid congruence groups are similarly pervasive in mathematics. In these
notes we have described them from mainly the viewpoint of geometric group theory, via
mapping class groups, but along the way we have encountered work coming from areas
such as algebra and representation theory (e.g. Squier [53], Newman [42], Cohen-Wu [15]),
4-manifold topology (Gambaudo-Ghys [21]), algebraic geometry (Hain [23]), and number
theory (Yu [58]). Each of these viewpoints represents a promising direction for further study
of braid congruence groups; see the introduction of [14] for additional references.

In these notes, we have focused exclusively on the braid congruence groups Bn[m] for just
three values of m: 0,2, and 4, and we have focused on basic questions such as generation.
There is no doubt much more to say about each of these groups. Indeed, Kordek-Margalit
have already vastly expanded our understanding of Bn[4], recently proving a number of
results concerning the cohomology of Bn[4] and its representation theory [33].

We are also starting to better understand Bn[m] for other values of m. Stylianakis has
given a topological interpretation of generators for Bn[3], along with several other related
results for Bn[p] where p is a prime number [54]. The work of Stylianakis is largely based
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on Wajnryb’s presentation [57] for Sp[Z/p] for primes p ≥ 3, given as a quotient of the
pure braid group, which in turn incorporates work of Sunday [55] and Assion [6]. Building on
work of Stylianakis, Damiani-McLeay-Stylianakis have announced some preliminary results
on crystallographic quotients of braid congruence groups, while Appel-Bloomquist-Gravel-
Holden [2] recently announced generalisations of some of Stylianakis’s results to Bn[m] for
arbitrary m.

In a different direction, our level zero braid congruence group BIn arose from studying the
Burau representation at the particular value t = −1. There is a certain amount of literature
relating to different choices of t; we have already mentioned Squier’s work, for example. More
recently, Scherich has looked at other real specializations of the Burau representation of the
three-strand braid group [52]. It would be interesting to study further the kernels arising from
different various natural choices of the parameter t.

Finally, in the broader context of geometric group theory, there are natural analogies that
arise between mapping class groups and automorphism groups of free groups, providing yet
another avenue of exploration. It is well known that braid groups embed in At(Fn) via their
action on π1(Dn), and we have somewhat exploited this viewpoint in obtaining some of the
results described herein, but no doubt additional insights remain to be gained along these
lines. As one example, Fullarton has proven an analogue of the Hain-Morifuji conjecture in the
At(Fn) setting [20], where palindromic automorphisms play the role of hyperelliptic mapping
classes; it would be interesting to determine what further analogies might hold.
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Anal. i Priložen., 2(3):1–3, 1968.

[4] E. Artin. Theory of braids. Ann. of Math. (2), 48:101–126, 1947.
[5] Emil Artin. Theorie der Zöpfe. Abh. Math. Sem. Univ. Hamburg, 4(1):47–72, 1925.
[6] Joachim Assion. Einige endliche Faktorgruppen der Zopfgruppen. Math. Z., 163(3):291–302, 1978.
[7] Stephen J. Bigelow and Ryan D. Budney. The mapping class group of a genus two surface is linear. Algebr.

Geom. Topol., 1:699–708, 2001.
[8] Joan S. Birman. On Siegel’s modular group. Math. Ann., 191:59–68, 1971.
[9] Joan S. Birman. Braids, links, and mapping class groups. Princeton University Press, Princeton, N.J.; University

of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 82.
[10] Joan S. Birman and Hugh M. Hilden. On isotopies of homeomorphisms of Riemann surfaces. Ann. of Math. (2),

97:424–439, 1973.
[11] Tara Brendle, Dan Margalit, and Andrew Putman. Generators for the hyperelliptic Torelli group and the kernel

of the Burau representation at t = −1. Invent. Math., 200(1):263–310, 2015.
[12] Tara E. Brendle and Dan Margalit. Corrigendum to: The level four braid group. Preprint in preparation.
[13] Tara E. Brendle and Dan Margalit. Point pushing, homology, and the hyperelliptic involution. Michigan Math. J.,

62(3):451–473, 2013.
[14] Tara E. Brendle and Dan Margalit. The level four braid group. J. Reine Angew. Math., 735:249–264, 2018.
[15] F. R. Cohen and J. Wu. On braid groups and homotopy groups. In Groups, homotopy and configuration spaces,

volume 13 of Geom. Topol. Monogr., pages 169–193. Geom. Topol. Publ., Coventry, 2008.
[16] Max Dehn. Papers on group theory and topology. Springer-Verlag, New York, 1987. Translated from the German

and with introductions and an appendix by John Stillwell, With an appendix by Otto Schreier.
[17] Steven Diaz, Ron Donagi, and David Harbater. Every curve is a Hurwitz space. Duke Math. J., 59(3):737–746,

1989.
[18] Benson Farb and Dan Margalit. A primer on mapping class groups, volume 49 of Princeton Mathematical Series.

Princeton University Press, Princeton, NJ, 2012.
[19] Neil Fullarton and Andrew Putman. The high-dimensional cohomology of the moduli space of curves with level

structures. J. Eur. Math. Soc., to appear.
[20] Neil J. Fullarton. A generating set for the palindromic Torelli group. Algebr. Geom. Topol., 15(6):3535–3567,

2015.
[21] Jean-Marc Gambaudo and Étienne Ghys. Braids and signatures. Bull. Soc. Math. France, 133(4):541–579, 2005.

III–24

https://people.math.gatech.edu/~dmargalit7/reu.shtml/Braided_Poster.pdf


Course no III— Congruence subgroups of braid groups

[22] Edna K. Grossman. On the residual finiteness of certain mapping class groups. J. London Math. Soc. (2), 9:160–
164, 1974/75.

[23] Richard Hain. Finiteness and Torelli spaces. In Problems on mapping class groups and related topics, volume 74
of Proc. Sympos. Pure Math., pages 57–70. Amer. Math. Soc., Providence, RI, 2006.

[24] John L. Harer. The virtual cohomological dimension of the mapping class group of an orientable surface. Invent.
Math., 84(1):157–176, 1986.

[25] Stephen P. Humphries. Generators for the mapping class group. In Topology of low-dimensional manifolds (Proc.
Second Sussex Conf., Chelwood Gate, 1977), volume 722 of Lecture Notes in Math., pages 44–47. Springer,
Berlin, 1979.

[26] N. V. Ivanov. Residual finiteness of modular Teichmüller groups. Sibirsk. Mat. Zh., 32(1):182–185, 222, 1991.
[27] Nikolai V. Ivanov. Subgroups of Teichmüller modular groups, volume 115 of Translations of Mathematical Mono-

graphs. American Mathematical Society, Providence, RI, 1992. Translated from the Russian by E. J. F. Primrose
and revised by the author.

[28] Nikolai V. Ivanov. Automorphism of complexes of curves and of Teichmüller spaces. Internat. Math. Res. No-
tices, 1997(14):651–666, 1997.

[29] Dennis Johnson. An abelian quotient of the mapping class group Ig. Math. Ann., 249(3):225–242, 1980.
[30] Dennis Johnson. The structure of the Torelli group. I. A finite set of generators for I. Ann. of Math. (2),

118(3):423–442, 1983.
[31] Dennis Johnson. The structure of the Torelli group. II. A characterization of the group generated by twists on

bounding curves. Topology, 24(2):113–126, 1985.
[32] JSE. The image of the point-pushing group in the hyperelliptic representation

of the braid group. MathOverflow, https://mathoverflow.net/questions/105048/
the-image-of-the-point-pushing-group-in-the-hyperelliptic-representation-of-the.

[33] Kevin Kordek and Dan Margalit. Representation stability in the level 4 braid group. arXiv:1903.03119.
[34] Mustafa Korkmaz. Automorphisms of complexes of curves on punctured spheres and on punctured tori. Topol-

ogy Appl., 95(2):85–111, 1999.
[35] Catherine Labruère and Luis Paris. Presentations for the punctured mapping class groups in terms of Artin

groups. Algebr. Geom. Topol., 1:73–114, 2001.
[36] Feng Luo. Automorphisms of the complex of curves. Topology, 39(2):283–298, 2000.
[37] Dan Margalit and Rebecca Winarski. Birman-Hilden theory. Celebratio Mathematica, To appear.
[38] D. B. McReynolds. The congruence subgroup problem for pure braid groups: Thurston’s proof. New York J.

Math., 18:925–942, 2012.
[39] J. Mennicke. Zur Theorie der Siegelschen Modulgruppe. Math. Ann., 159:115–129, 1965.
[40] Geoffrey Mess. The Torelli groups for genus 2 and 3 surfaces. Topology, 31(4):775–790, 1992.
[41] Takayuki Morifuji. On Meyer’s function of hyperelliptic mapping class groups. J. Math. Soc. Japan, 55(1):117–

129, 2003.
[42] Morris Newman. Integral matrices. Academic Press, New York-London, 1972. Pure and Applied Mathematics,

Vol. 45.
[43] Jerome Powell. Two theorems on the mapping class group of a surface. Proc. Amer. Math. Soc., 68(3):347–350,

1978.
[44] Andrew Putman. Lectures on the torelli group. https://www3.nd.edu/ andyp/teaching/2014SpringMath541/.
[45] Andrew Putman. The Torelli group and congruence subgroups of the mapping class group.

https://www3.nd.edu/ andyp/notes/.
[46] Andrew Putman. Cutting and pasting in the Torelli group. Geom. Topol., 11:829–865, 2007.
[47] Andrew Putman. An infinite presentation of the Torelli group. Geom. Funct. Anal., 19(2):591–643, 2009.
[48] Andrew Putman. Obtaining presentations from group actions without making choices. Algebr. Geom. Topol.,

11(3):1737–1766, 2011.
[49] M. S. Raghunathan. The congruence subgroup problem. Proc. Indian Acad. Sci. Math. Sci., 114(4):299–308,

2004.
[50] Dale Rolfsen. Knots and links. Publish or Perish, Inc., Berkeley, Calif., 1976. Mathematics Lecture Series, No. 7.
[51] H. L. Royden. Automorphisms and isometries of Teichmüller space. In Advances in the Theory of Riemann

Surfaces (Proc. Conf., Stony Brook, N.Y., 1969), volume 66 of Ann. of Math. Studies, pages 369–383. Princeton
Univ. Press, 1971.

[52] Nancy Scherich. Classification of the real discrete specialisations of the Burau representation of B3. Math. Proc.
Cambridge Philos. Soc., 168(2):295–304, 2020.

[53] Craig C. Squier. The Burau representation is unitary. Proc. Amer. Math. Soc., 90(2):199–202, 1984.
[54] Charalampos Stylianakis. Congruence subgroups of braid groups. Internat. J. Algebra Comput., 28(2):345–364,

2018.
[55] J. G. Sunday. Presentations of the groups SL(2, m) and PSL(2, m). Canadian J. Math., 24:1129–1131, 1972.
[56] Vladimir Turaev. Faithful linear representations of the braid groups. Astérisque, (276):389–409, 2002. Séminaire

Bourbaki, Vol. 1999/2000.
[57] Bronislaw Wajnryb. A braidlike presentation of Sp(n, p). Israel J. Math., 76(3):265–288, 1991.
[58] J.-K. Yu. Toward a proof of the Cohen-Lenstra conjecture in the function field case. Preprint., 1996.

III–25

https://mathoverflow.net/questions/105048/the-image-of-the-point-pushing-group-in-the-hyperelliptic-representation-of-the
https://mathoverflow.net/questions/105048/the-image-of-the-point-pushing-group-in-the-hyperelliptic-representation-of-the


Tara E. Brendle

Tara E. Brendle, School of Mathematics & Statistics, University Place, University of Glasgow, G12 8SQ •

tara.brendle@glasgow.ac.uk

III–26

mailto:tara.brendle@glasgow.ac.uk

	1. Introduction
	Acknowledgments

	2. Mapping class groups
	3. Symplectic representations and their kernels
	4. Level 2: Pure Braids and Dehn Twists
	5. Level 0: Braid Torelli
	6. Level 4
	7. Connections and applications
	8. Further directions
	References

