Boundary approach filters for analytic functions
Annales de l'Institut Fourier, Tome 23 (1973) no. 3, p. 187-213
Soit H l’espace des fonctions bornées holomorphes dans D:|z|<1, et soit D ¯ l’espace des idéaux maximaux de l’algèbre H , une compactification de D. On étudie les relations entre les fonctions de H et leurs valeurs limites sur D ¯-D. Soit D 1 le sous-ensemble de D ¯ sur le point 1. Un sous-ensemble A de D 1 est un “ensemble de Fatou” si tout f dans H a une limite en e iθ A pour presque tout θ. Le sous-ensemble nontangentiel est un ensemble de Fatou d’après le théorème de Fatou. Il y a beaucoup d’ensembles de Fatou plus grands, par exemple le sous-ensemble de D 1 des points fixes, mais il n’y a pas un ensemble de Fatou maximal. L’ensemble des points Q de D 1 dont {Q} est un ensemble de Fatou est dense dans D 1 .
Let H be the class of bounded analytic functions on D:|z|<1, and let D ¯ be the set of maximal ideals of the algebra H , a compactification of D. The relations between functions in H and their cluster values on D ¯-D are studied. Let D 1 be the subset of D ¯ over the point 1. A subset A of D 1 is a “Fatou set” if every f in H has a limit at e iθ A for almost every θ. The nontangential subset of D 1 is a Fatou set according to the Fatou theorem. There are many larger Fatou sets, for example the fine topology subset of D 1 but there is no largest Fatou set. The set of those points of D 1 which are Fatou singletons is dense in D 1 .
@article{AIF_1973__23_3_187_0,
     author = {Doob, J. L.},
     title = {Boundary approach filters for analytic functions},
     journal = {Annales de l'Institut Fourier},
     publisher = {Imprimerie Louis-Jean},
     address = {Gap},
     volume = {23},
     number = {3},
     year = {1973},
     pages = {187-213},
     doi = {10.5802/aif.476},
     zbl = {0251.30034},
     mrnumber = {51 \#3448},
     language = {en},
     url = {http://http://www.numdam.org/item/AIF_1973__23_3_187_0}
}
Doob, J. L. Boundary approach filters for analytic functions. Annales de l'Institut Fourier, Tome 23 (1973) no. 3, pp. 187-213. doi : 10.5802/aif.476. http://www.numdam.org/item/AIF_1973__23_3_187_0/

[1] M. Brelot and J.L. Doob, Limites angulaires et limites fines, Ann. Inst. Fourier, 13 (1963), 395-415. | Numdam | MR 33 #4299 | Zbl 0132.33902

[2] J.L. Doob, Conditional Brownian motion and the boundary limits of harmonic functions, Bull. Soc. Math. France 85 (1957), 431-458. | Numdam | MR 22 #844 | Zbl 0097.34004

[3] Kenneth Hoffman, Banach spaces of analytic functions, Prentice Hall 1962. | Zbl 0117.34001

[4] Kenneth Hoffman, Bounded analytic functions and Gleason parts, Ann. Math. 86 (1967), 74-111. | MR 35 #5945 | Zbl 0192.48302

[5] L. Lumer-Naïm, Sur le rôle de la frontière de R.S. Martin dans la théorie du potentiel, Ann. Inst. Fourier 7 (1957), 183-281. | Numdam | MR 20 #6608 | Zbl 0086.30603

[6] Gabriel Mokodobzki, Ultrafiltres rapides sur N. Construction d'une densité relative de deux potentiels comparables, Séminaire Théorie Potentiel Brelot-Choquet-Deny 1967/1968 Exp. 12. | Numdam | Zbl 0177.37701

[7] M. Rosenfeld and Max L. Weiss, A function algebra approach to a theorem of Lindelöf, J. London Math. Soc. (2) 2 (1970), 209-215. | Zbl 0193.10301

[8] M. Tsuji, Potential theory in modern function theory, Tokyo 1959. | MR 22 #5712 | Zbl 0087.28401