An elliptic analogue of the Franklin-Schneider theorem
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 5, Volume 2 (1980) no. 2, pp. 101-116.
@article{AFST_1980_5_2_2_101_0,
     author = {Bijlsma, Alex},
     title = {An elliptic analogue of the {Franklin-Schneider} theorem},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {101--116},
     publisher = {Universit\'e Paul Sabatier},
     address = {Toulouse},
     volume = {Ser. 5, 2},
     number = {2},
     year = {1980},
     zbl = {0447.10034},
     mrnumber = {595193},
     language = {en},
     url = {http://archive.numdam.org/item/AFST_1980_5_2_2_101_0/}
}
TY  - JOUR
AU  - Bijlsma, Alex
TI  - An elliptic analogue of the Franklin-Schneider theorem
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 1980
DA  - 1980///
SP  - 101
EP  - 116
VL  - Ser. 5, 2
IS  - 2
PB  - Université Paul Sabatier
PP  - Toulouse
UR  - http://archive.numdam.org/item/AFST_1980_5_2_2_101_0/
UR  - https://zbmath.org/?q=an%3A0447.10034
UR  - https://www.ams.org/mathscinet-getitem?mr=595193
LA  - en
ID  - AFST_1980_5_2_2_101_0
ER  - 
%0 Journal Article
%A Bijlsma, Alex
%T An elliptic analogue of the Franklin-Schneider theorem
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 1980
%P 101-116
%V Ser. 5, 2
%N 2
%I Université Paul Sabatier
%C Toulouse
%G en
%F AFST_1980_5_2_2_101_0
Bijlsma, Alex. An elliptic analogue of the Franklin-Schneider theorem. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 5, Volume 2 (1980) no. 2, pp. 101-116. http://archive.numdam.org/item/AFST_1980_5_2_2_101_0/

[1] L.V. Ahlfors. «Complex analysis». 2nd edition. McGraw-Hill Book co., New-York, 1966. | MR | Zbl

[2] A. Bijlsma. «On the simultaneous approximation of a, b and ab». Compositio Math. 35 (1977), 99-111. | Numdam | MR | Zbl

[3] A. Bijlsma & P.L. Cijsouw. «Dependence relations of logarithms of algebraic numbers».

[4] W.D. Brownawell &D.W. Masser. «Multiplicity estimates for analytic functions (I)». | Zbl

[5] P.L. Cijsouw &M. Waldschmidt. «Linear forms and simultaneous approximations». Compositio Math. 34 (1977), 173-197. | Numdam | Zbl

[6] N.I. Fel'Dman. «The periods of elliptic functions». (in Russian). Acta Arith. 24 (1973/74), 477-489. | MR | Zbl

[7] S. Lang. «Elliptic curves, diophantine analysis». Springer-Verlag, Berlin, 1978. | MR | Zbl

[8] D.W. Masser. «Elliptic functions and transcendence». Lecture Notes in Mathematics 437, Springer-Verlag, Berlin, 1975. | MR | Zbl

[9] D.W. Masser. «Some recent results in transcendence theory». Astérisque 61 (1979), 145-154. | MR | Zbl

[10] E. Reyssat. «Approximation algébrique de nombres liés aux fonctions elliptiques et exponentielle». | Numdam | Zbl

[11] M. Waldschmidt. «Nombres transcendants». Lecture Notes in Mathematics 402. Springer-Verlag, Berlin, 1974. | MR | Zbl

[12] M. Waldschmidt. «Simultaneous approximation of numbers connected with the exponential function». J. Austral. Math. Soc. (Ser. A) 25 (1978), 466-478. | MR | Zbl