@article{AFST_1986-1987_5_8_2_175_0, author = {Aguirre, J. and Escobedo, M.}, title = {A {Cauchy} problem for $u_t - \Delta u = u^p \ \hbox{with}\ 0 < p < 1$. {Asymptotic} behaviour of solutions}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {175--203}, publisher = {Universit\'e Paul Sabatier}, address = {Toulouse}, volume = {Ser. 5, 8}, number = {2}, year = {1986-1987}, zbl = {0601.35051}, language = {en}, url = {http://archive.numdam.org/item/AFST_1986-1987_5_8_2_175_0/} }
TY - JOUR AU - Aguirre, J. AU - Escobedo, M. TI - A Cauchy problem for $u_t - \Delta u = u^p \ \hbox{with}\ 0 < p < 1$. Asymptotic behaviour of solutions JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1986-1987 SP - 175 EP - 203 VL - 8 IS - 2 PB - Université Paul Sabatier PP - Toulouse UR - http://archive.numdam.org/item/AFST_1986-1987_5_8_2_175_0/ LA - en ID - AFST_1986-1987_5_8_2_175_0 ER -
%0 Journal Article %A Aguirre, J. %A Escobedo, M. %T A Cauchy problem for $u_t - \Delta u = u^p \ \hbox{with}\ 0 < p < 1$. Asymptotic behaviour of solutions %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1986-1987 %P 175-203 %V 8 %N 2 %I Université Paul Sabatier %C Toulouse %U http://archive.numdam.org/item/AFST_1986-1987_5_8_2_175_0/ %G en %F AFST_1986-1987_5_8_2_175_0
Aguirre, J.; Escobedo, M. A Cauchy problem for $u_t - \Delta u = u^p \ \hbox{with}\ 0 < p < 1$. Asymptotic behaviour of solutions. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 5, Tome 8 (1986-1987) no. 2, pp. 175-203. http://archive.numdam.org/item/AFST_1986-1987_5_8_2_175_0/
[1] Multidimensional nonlinear diffusion arising in population genetics, Advances in Mathematics, t. 30, 1978, p. 33-76. | MR | Zbl
) and ). -[2] Analyse Convexe et Problèmes Variationnels. Dunod, Paris, 1974. | Zbl
) and ).-[3] Variational problems related to self-similar solutions of the heat equation. - to appear in J. of Nonlinear Analysis, Theory, Methods & Appl.. | Zbl
) and ).-[4]
) & ) & ).- in preparation.[5] On the blowing up of solutions of the Cauchy problem for ut = Δu + u1+α, J. Fac. Sci. Univ. of Tokio, Sect. I, t. 13, 1966, p. 109-124. | MR | Zbl
).-[6] Large time bahaviour of the solutions of a semilinear parabolic equation in Rn, J. of Diff. Eq., t. 53, 1984, p. 259-276. | MR | Zbl
) and ).-[7] Non uniqueness for a semilinear initial value problem, Indiana Univ. Math. J., t. 31, n°2, 1982, p. 167-189. | MR | Zbl
) and ).-[8] On non-existence of global solutions of some semilinear parabolic equations, Proc. Japan Acad., t. 49, 1973, p. 503-505. | MR | Zbl
). -[9] Remarks on the time behaviour of a non linear diffusion equation. Prépublication du Laboratoire d'Analyse Numérique, Universit, P. et M. Curie (Paris VI), 1985.
).-[10] On the growing up problem for semilinear heat equations, J. Math. Soc. Japan, t. 29, 1977, p. 407-424. | MR | Zbl
), ) and ).-[11] Rapidly decaying solutions of an O.D.E. with applications to semilinear parabolic P.D.E.'s. - to appear. | MR
).-[12] Existence and non-existence of global solutions for a semilinear heat equation, Israel J. of Math., t. 38, n°1-2, 1981, p. 29-39. | MR | Zbl
).-