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Pseudo-symmetry curvature conditions on hypersurfaces
of Euclidean spaces and on Kahlerian manifolds

J. DEPREZ(1) (2), R. DESZCZ(3) ,L. VERSTRAELEN(1)

Annales Faculte des Sciences de Toulouse Vol. IX, n°2, 1988

Nous étudions des variétés Riemanniennes pseudo-symétri-
ques, qui sont des generalisations des espaces symetriques et semi-symetri-
ques. Nous classifions les hypersurfaces pseudo-symetriques d’un espace
Euclidien. Nous prouvons qu’il n’y a pas de variete Kaehlerienne pseudo-
symetrique et non semi-symetrique.

ABSTRACT. - We study pseudo-symmetric Riemannian manifolds, which
are generalizations of symmetric and semi-symmetric spaces. We classify the
pseudo-symmetric hypersurfaces of a Euclidian space. We prove that there
are no pseudo-symmetric Kaehlerian manifolds that are not semi-symmetric.

I - Introduction

In this paper we study Riemannian manifolds satisfying the curvature
condition R R = fQ(R) (this type of condition will be called a pseudo-
symmetry curvature condition and will be explained in the next section).
This condition arose during the study of umbilical hypersurfaces (see [AD],
[DEP]) and is a generalization of the conditions VR = 0 and R R = 0
(symmetric and semi-symmetric spaces [DDV]).

First, we study one simple case, namely isometric immersions into
an (N + 1 )-dimensional Euclidean space of N-dimensional Riemannian
manifolds satisfying this curvature condition or one of the related conditions
R . C = fQ(C) or R ~ S = fQ(S) for the Weyl conformal curvature
tensor C and the Ricci tensor S. We obtain a full classification of the
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hypersurfaces satisfying one of these conditions. We show that there are
many non-conformally flat Wemannian manifolds satisfying R R = fQ(R)
(in this respect, see Theorem 5.1~ ). Furthermore, we obtain that each
conformally flat hypersurface of a Euclidean space satisfies R R = fQ(R).
Theorems 1 and 3 show that each hypersurface of a Euclidean space
satisfying R~C = fQ(C) satisfies R~R = fQ(R). This is related to a theorem
of Deszcz and Grycak which states that each analytic Wemannian manifold
satisfying R C = f Q(C) also satisfies R R = f Q(R) or C = 0 in case
N ~ 5 (for a precise formulation, see [DG]; see also [G]). Concerning Kähler
manifolds we obtained a stronger result : there are no Kähler manifolds that
satisfy R R = f Q(R) and for which R R ~ 0.

More precisely, we will prove the following theorems.

THEOREM 1. 2014 Let F : (Mn, g)  EN+1 be an isometric immersion

of a Riemannian manifold in a Euclidean space. Then satisfies
R . R = fQ(R) if and only if for each point p in M, F has at most two
distinct principal curvatures in p or R . R = 0 in p.

THEOREM 2.-Let F : (MN,g) ~ be an isometric immersion

of a Riemannian manifold in a Euclidean space. Then (M N g) satisfies
R . S = fQ(S) if and only if for each point p in M, F has at most two
distinct principal curvatures in p or R . S = 0 in p.

THEOREM 3.-Let F : (MN,g) ~ be an isometric immersion

of a Riemannian manifold in a Euclidean space. Then g) satisfies
R . C = f Q(C) if and only if for each point p in M, F has at most two
distinct principal curvatures in p or .1~ . C = 0 in p.

THEOREM 4.-Let (MN, J, g) be a Kähler manifold satisf ying R . R =
fQ(R). Then g) satisfies R ~ R = 0.

2 - Preliminaries

Let (M~, g) be a (connected) n-dimensional Riemannian manifold (N >
2). In the following X, Y, Z denote vector fields that are tangent to MN. V
is the Levi Civita connection of (M N g) and R is the Riemann-Christoffel
curvature tensor of g). S is the (1,1)-tensor related to the Ricci tensor
S of (MN,g) by = ,S(_?~’, Y) for all X and Y. T = tr S is
the scalar curvature of is the (1,1)-tensor field defined by



(XAY)(Z) := g(Z, Y)X - g(Z,X)Y. The Weyl conformal curvature tensor
of (for N > 3) is defined by

Let F : (MN,g) ~ be an isometric immersion of (MN,g) in
an (N + 1)-dimensional Euclidean space. Let ~ be a local normal section
on F. Then the second fundamental form h and the second fundamental
t e ns or A of F are defined by the formulas of Gauss and Weingarten :
V XY = V XY + h(X, Y)03BE and -AX (V is the standard connection
of A is related to h by h(X, Y) = g(AX, Y). We will not distinguish
between Ap and its matrix (p E M). The equation of Gauss is given by

R(X, Y) = AX A AY. (2.2)

Let p E M. In the following x, y, z denote.. vectors in TpM. Let xAy
denote the endomorphism TpM -> TpM : z ’-~ g(z, y)x - g(z, x)y. Since Ap
is symmetric, there exists an orthonormal , e N } of (TpM, gp )
consisting of eigenvectors of Ap, i.e. such that

Aei = Àiei, (2.3)

where A, E R for each i E ~1, ... N) . ~11, ... , ~~ are called the principal
curvatures of F in p. (2.1), (2.2) and (2.3) imply that

where

for all i,j and k in ~1, ... , N~.
Let Xl,..., Xr denote the mutually distinct eigenvalues of Ap with

multiplicities si , ... , sr respectively. Denote by Va the space of eigenvectors
with eigenvalue ~a (a E ~ ~, ... , r}~ . If e=, ek E V~ and e?, e~ E then



and E ~1, ... , N~ and E ~1, ... , r}). We
define numbers Pa := and := aij where e; E Va and e; E V,,
(a,~ E ~1,...,N~ and a,,~ E ~1,...,r}).

Let (M, J, g) be a Kähler manifold and let p E M. Then the following
properties are well known :

R(JX, JY) = R(X, Y) (2.5)
and

R(X, Y)J = JR(X, Y) (2.6)

for all X and Y tangent to M.

(M N g) is called (locally) conformally flat if (M N g) is (locally) confor-
mally equivalent to EN. It is well known that (M N g) is conformally flat if
and only if C = 0 for N > 4. We recall that every surface is conformally flat
and that C = 0 for every 3-dimensional Riemannian manifold. F is called

quasi-umbilical if for each point p in M Ap has an eigenvalue with multipli-
city at least N - 1. For N > 4, E.Cartan proved that F is quasi-umbilical
if and only if (M~, , g) is conformally flat. We remark that C = 0 in p if and
only if Ap has an eigenvalue with multiplicity at least N - 1 if N > 4 (i.e.
also the "pointwise" version of Cartan’s result holds).

Concerning the notations R . C, R . S, ... we say for example that (M N g)
satisfies R. C = 0 if and only if R(X, Y) . C = 0 for all vectorfields X and Y
tangent to M, where R(X, Y) acts as a derivation on the algebra of tensor
fields on M, i.e.

(R(x, r). . C)(Z, U; V, W) _ -C(R(x, Y)Z, U; V, r~’)
- C (Z, R(X, Y)U; V, W ) - C (Z, U; R(X, Y)V, ~v)
- C(Z, ~~ V~ R(X Y)W)

for X, Y, Z, U, V, W tangent to MN. The derivation R(X, Y). is the deriva-
tion 

For every (0, s)-tensor T on M a (0, s + 2)-tensor Q(T) is defined by

= ((Y n Z) . T) (xl , ... , x$ )

(see, e.g. [T]). We say that a Riemannian manifold (MN g) satisfies R ~ T =
fQ(T) if there exists a function f : M -~ R such that

(R(~’~ Z) ’ ~’)(x~, ... , xs)(p) = f(p)~(T~(X~ , ... , XS; Y, Z)(p)



for every p in M and all X 1, ... , , X a Y, Z tangent to M.

3 - Proof of theorem 1

Suppose that F : : (MN g) ~--> is an isometric immersion of a

Riemannian manifold. Let p be a point in M and let { e1, ... , e N } be a
~ basis for TpM satisfying (2.3). From (2.4) it is easy to obtain that

for all i,j, and n in {1, ... , N~. Using this it can be verified
that R R = fQ(R) in p if and only if (R(et, e~) 

for all mutually distinct i, j and k in

~1, ... , N~, i.e. if and only if

(f{p) - = ~ {3.1)

for all mutually distinct i,j and k in {1,..., N ~ .
Let a1, ... , Ay. be the mutually distinct eigenvalues of A(p) and denote

their respective multiplicities by si , ... , sr.
If r = 1, it is clear from (3.1) that R .R = fQ(R) in p.
If r = 2, it is easy to see from (3.1) that R R = fQ(R) for f(p) = 
Now suppose that r > 3 and choose mutually distinct indices a, /3 and ’Y

in ~1, ... , r~. Assume that (M, g) satisfies R- R = fQ(R) in p. {3.1) implies
that



Subtraction of (3.2) and (3.3) yields that ( ~~ - ~1,~ ) f ( p) = 0 from which we
conclude that f ( p) = 0 and hence that R . R = 0 in p. The converse is trivial
(take f (p) = 0). This proves Theorem 1.

From Theorem 1 and the fact that a hypersurface o( a Euclidean space is
conformally flat if and only if it is quasi-umbilical it easily follows that each
conformally flat hypersurface of a Euclidean space satisfies R . R = f Q(R).
Moreover it is now easy to give examples of non-conformally flat Riemannian
manifolds satisfying R - R = fQ(R) : in a Euclidean space all hypersurfaces
with exactly two principal curvatures with multiplicities at least two provide
examples of such manifolds.

4 - Proof of theorem 2

Suppose that F : : (M N g) ~ is an isometric immersion of a

Riemannian manifold. Let p be a point in M and let ~el, ... , eN} be a
basis for TpM satisfying (2.3). From (2.4) it is easy to find that

for all and l in {1,..., N ~ . It can be verified that l~ = in p
if and only if ej) = e~; e=, ej) for all distinct i
and j in {!,..., N~, i.e. if and only if

for all distinct i and j in ~1, ... , N~.
Denote by .~ 1, ... , ~1 r the mutually distinct eigenvalues of A(p) and let

s x , ... , sr be their respective multiplicities. Then R . S = fQ(S) in p if and
only if

for all distinct a and ~3 in {1,..., , r}.

If r = 2, then R ’ = in p for f(p) = 

Now assume that r :> 3. Choose mutually distinct indices cx, 03B2 and 03B3 in
~ 1, ... , r~. Suppose that (M, g) satisfies R ’ = f Q(S’) in p. Since ~a
and A are mutually distinct we may assume that tr A - 0 and tr

0. (4.2) now implies that = 0 and = Q.



Subtraction yields that A~ = 0 and hence that f (p) = 0, which means that
R ~ ,S’ = 0. The converse is trivial.

5 - Proof of theorem 3

Suppose that F : : (MN,g) ~ is an isometric immersion of a

Riemannian manifold. Let p be a point in M and let ~el, ... , eN} be a
basis for TpM satisfying (2.3). From (2.4) it is easy to obtain that

for all i, j, and n in ~ 1, ... , N } . Using this it can be verified
that R ~ C = fQ(C) in p if and only if (R(e=, e~ ) =

ek; e~, e~; ei, for all mutually distinct i, j and k in
{I,... , N~, i.e. if and only if

for all mutually distinct i,j and k in {1,..., N } . Let ~t ~ , ... , Ir be the mu-
tually distinct eigenvalues of A in p and denote their respective multiplicities

If r = 1, it is clear from (5.1) that .R C= fQ(C) in p.
If r = 2, it is easy to see from (5.1) that R. C = fQ(C) in p for

f(p) = .

Now suppose that r ~ 3 and assume that (M, g) satisfies = f C,?(C) in
p. Choose mutually distinct indices a, ~3 and, in ~1, ... , r~. Since a~ and
~1~, are mutually distinct we may suppose that tr A- ~a - a,~ - (N - 2)~1 a ~ 0
and tr A - a,~ - (N - 2)~1a ~ 0. By (5.1) then, we obtain that
f(p) - 0 and f (p) - = 0. It follows that ~,~ = 0 and also
that f ( p) = 0 and hence R C = 0 in p. The converse is trivial.



Theorems 1 and 3 imply the following.

COROLLARY Let F : (MN, g) ~ be an isometric immersion of
a Riemannian manifold in a Euclidean space. The following conditions are
equivalent : :

(i) g) satisfies R . R = fQ(R),
(MN g) satisfies R ~ C = fQ(C).

Proof . If g) satisfies R ~ R = f Q(R), then g) also satisfies
R ~ S’ = f Q(S) since the derivations R(X, Y). and (X A Y). commute with
contractions (see Lemma 2.1 from [DDVV]). It is easy to see then that

(M N , g) also satisfies R ~ C = fQ(C) (use a reasoning similar to the one in
part (iii) of Lemma 2.1 in [DDVV]).

Suppose that (M N , g) satisfies R . C = f Q(C) and let p be a point in M.
There are two possibilities : (i) A(p) has at most two distinct eigenvalues,
or (ii) A(p) has more than two distinct eigenvalues and R C = 0 in p. In
the first case it is clear that R ~ R = f Q(R) in p by Theorem 1. For the
second case, it follows from Proposition 2 from [BVV] that R ~ R(p) = 0
(use formula (3.1) with f (p) = 0).

6 - Proof of theorem 4

Suppose that J, g) is a Kähler manifold satisfying R . R = f Q(R).
Suppose that p is a point in M for which R ~ R(p) ~ 0. We will derive a
contradiction.

It is clear that f ( p) ~ 0. First, observe that

Q(R)(u,v;Jz,Jw;x,y) = (6.1)

for all x, y, u, v, z, w E TpM. Indeed, using (2.5) and (2.6),

(6.1) and (2.5) imply that

R(u, v; (x A y)Jz, Jw) + R( u, V; Jz, (x A y)Jw) 
(6.2)

- R(u, u; (x A y)z, w) - R(u,v;z,(x A y)w) = 0. 
~~°~~



Let {e1, e2,..., eN} be an orthonormal basis for TpM. (6.2) yields that

for all u, v, z, y E TpM.
Let x E By (6.3)

for all u, v E TpM, which implies that

for all u , v E TpM, where

Combination of (6.3) and (6.4) gives that

for all u, v, z, w E TpM. From (6.5) and (2.6) it is easy to see now that
R R(p) = 0, which contradicts our initial assumption.

This proves that R ~ R = 0 on M.
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