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Families of polynomials and determining measures

JOZEF SICIAK(1)

Annales Faculte des Sciences de Toulouse Vol. IX, n°2, 1988

RÉSUMÉ. 2014 Soit  une mesure de probabilite sur une partie borélienne
bornée non pluripolaire E de CN, on etudie l’allure de croissance des
familles de polynomes ponctuellement bornees p-presque partout sur E.
On définit une fonction M(t; E, ) (0 _ t  1) associée au couple (E, ).
Sous des hypotheses naturelles sur E et ~, on montre que M(1; E, ~) = 1
si et seulement si le couple (E, ~) satisfait a la condition polynomiale
(G* ), gener alisant la condition polynomiale de Leja dans le cas plan, si et
seulement si  est une mesure determinante pour E par rapport a la fonction
L-extremale L E . °

ABSTRACT. - Given a probability measure ~ on a bounded nonpluripolar
Borel subset E of C~, we study the growth behaviour of polynomial families
which are pointwise bounded on E. We define a function M(t, E, ~)
(0  t ~ 1) associated to the pair (E, Under natural assumptions on E
and  we prove that E, ) = 1 if and only if the pair (E, ) satisfies the
polynomial condition (G* ) (a generalization of the Leja’s condition in the
plane), if and only if  is determining for E with respect to the L-extremal
function L E . °

0 - Introduction

Given a domain 03A9 in CN, we denote by P(H) the class of plurisubhar-
monic (plsh) functions on H. Let

where (3 is a real constant depending on u. For a bounded set E in C~
define

(1) Jagellonian University, Institute of Mathematics, ul. Reymonta 4, 30-059 Krakow -
Poland



The uppersemicontinuous regularization L~(z) := is

called the L-extremal function of E. It is known that if E is a compact
subset of C with positive logaritmic capacity then LE is identical with the
Green function for C~E with pole at infinity.

For a bounded set E in either LE - ~, in which case E is pluripolar
(plp), or LE E £.

DEFINITION o.l. We say that a point a in is an £-regular point
of E C if LE(a) = 0. A point a E CN such that LE(a) = 0 and
LE(a) > 0 is called irregular point of E. It is clear that LE is continuous
at each regular point. By Bedford-Taylor theorem on negligible sets the set
of irregular points of any subset E of is plp. If E is a compact set
and LE = L~ on E (i. e. if LE is continuous at each point of E~ then LE
is continuous in and LE = LE. A compact set E with LE = LE is

called £-regular. The set of £-regular points of a compact £-regular set E
is identical with the pol ynomiall y convex hull E of E.

DEFINITION 0.2. A finite positive Borel measure ~C on a bounded Borel
set E in C~ is called determining for E, if for every Borel subset F of E
with p(F) = one has L~, = LE.

Observe that if LE = LE and , is determining for E, then for every F C
E with = ~c(E) one ha~ LF = LE (because LF = L~ = L~  LF).

It is known that = LE, if A is plp. Therefore L~ = LF for a subset
F of E if and only if LF = 0 quasi-almost everywhere (q, a. e.~ on E. We
say that a property P holds q. a. e. on E, if it holds for each point of E except
at most of a plp subset of E.

We say that a property P holds quasi-star-almost-everywhere (q*.a.e.) on
E, if it holds for each point of a subset F of E with LF = LE.

. 
It is clear that if ~c is determining for E and P holds ~c. a. e. on E then it

holds q* . a. e. on E.

DEFINITION 0.3. Let /~ be a finite positive Borel measure on a bounded
Borel set in We say that the pair (E, p) satisfics (£*)-condition at a
point a of if for every family F of polynomials of N-complex variables
and for every number b > 1 the polynomial family

is uniformly bounded on a neighborhood U of a.



We say that the pair (E, ~c) satisfies (£* )-condition, if for every b > 1
and for every polynomial family ,~’ bounded p-a.e. on E the family is

uniformly bounded on a neighborhood of E.
It is clear that if E is compact then (E, ~c) satisfies (£* )-condition, if and

only if it satisfies (,C* ) at each point of E.
All these notions are important for applications of the extremal function

LE. There are strict relations between them. Also are known important
examples of pairs (E, ~c) satisfying (;C*) and of determining measures (e.g.
[2], [5], [6], ~7~, [8], [14]).

In this paper we introduce a new function M (t) = E, p) associated
to every pair (E, ~C) by the formula

It is clear that M is a decreasing function and 1 _ M(t)  The
function M*(t) := (0  t ~ 1), .~t*(0) := .JI~(0), is decreasingr~t g

and uppersemicontinuous on ~0,1 j .
In the sequel we shall often assume (without loss of generality) that p is

a probability measure (i.e. p.(E) = 1 ).
The function .~t appears to be a useful notion strictly related to the

determining measures and the (£* )-condition. For example we have obtained
the following results involving the function M.

THEOREM A. If E C is compact and ~ vanishes on plp subsets of
then the following conditions are equivalent

(i~ The pair (E, satisfies (£* )-condition;
If u E ,C and u  0 p-a.e. on E, then ~.c  0 on E ;

(iii ) ~tit * ( 1 ) = 1;
= 1;

(v) is determining for E and E is 

THEOREM B. Let A C Cp, B c C~ be two bounded Borel sets and
v two probability measures on A and B, respectively. Put MA(t) :_ -

M(t; A, ~)~ MB(t) ~_ M(t; B; ~’) and MAxB(t) := M(t, A x B, ® v).
Then

(z~  



~ 

COROLLARY . - If A c CP, B ~ CP are compact sets and v vanish
on plp sets, then if the pairs (A, p), (B, v) °satisfy one of the equivalent
conditions of Theorem A then the pair (A x B, ~u ® v) satis,fies each of the
conditions.

The equivalence of the conditions (i} and (v) was earlier obtained by
LEVENBERG ~6~ . NGUYEN THANH VAN formulated the (£*)-condition in his
paper ~7~ ; his definition was inspired by paper [5] containing as a
special case so called "Polynomial Lemma", which in the present language
reads as follows :

Let r be a rectifiable curve in the complex plane and let 03BB be the lenghth
measure on r. Then the pair (r, satisfies (,~* ).

It is worthwhile to mention that the LEJA’s paper [5] permits immediately
to obtain the following estimate for the function M(t) - M(t; [A, b~, ~) :

where

The exact formula for the function M(t; [a, 6], A), where [a, 6] is a bounded
interval of the real line Rand A is the Lebesgue measure on R, reads as
follows

and may be easily derived from the following inequality due to DUDLEY and
RANDOL [4J

true for every polynomial f of a complex variable and for every compact set
A G [a, 6] with A(~L) ~ t(b- a), 0 ~ ~ 1.

This paper was written during the author’s stay at the Université Paul
Sabatier, Toulouse (September-October 1987), as an invited profesor. I want
to thank the University for the invitation. My warmest thanks go to Profesor
Nguyen Thanh Van for his extraordinary hospitality and for the inspiring
discussions on the subject of the paper.



1 - Determining measures for arbitrary bounded
. Bore! subsets of CN

Let us start with the following.

LEMMA 1.1. Let F be a subset of a bounded set E in If the set

is not plp, then there exist a nonplp subset Go of G, a number b > 1 and a
polynomial family ~’ such that

1 ~ ,~’ is bounded at each point of F.

2) ~b given by (D. ~~ is unbounded at each point z EGo. .

Proo, f . It is known that Fi := ~ z E F;L:F(z) > 0 } is plp, so there
exists a function w in the class £ with w = -~ on Fl and w  - log 2 on
E. It is also known [10] that w can be represented in the form

where Pm is a polynomial on C~ of degree  m. We shall consider two
cases : either FI = F, or F.

Case Fi = F. By Bedford-Taylor theorem on negligible sets [1] the set

is plp. Hence there exists a non pluripolar subset G’ of G such that

There is a real number f with 0  f  1 such that the set Go := {x E
G’; w(z) > log E} is not plp. Take any b with 1  b  2. Then the family

has the required properties. Indeed, 1) is satisfied because



If z E Go, we have

Case F. Since F1 ~ F, we have L) E L and uk := k w+ LF E L
for every k > 1. If z E G and w ( z ) > 0 the sequence Uk(Z) is increasing
to the limit Lp(z) > 0. Therefore there exists k such that the set Gk :=
{z E G; Uk(Z) > 0 ~ is not plp. For such k there is E > 0 such that

is not plp. Write u k in the form

By the theorem on negligible sets there is a non pluripolar subset Go of G’
with

The set Go? any number b with 1  b  1 + e and the polynomial family
~’ : -_ > 1 ~ have the required property. Indeed 

2-k  1 on F, which gives 1). On the other hand, if z ~E Go
then 

______ ,

which implies 2).

LEMMA 1.2. If a polynomial family .~’ is bounded q*.a.e. on a subset
E of then for ever~~ b > 1 the family ~’b is bounded q. a. e. on E and

uniformly on a neighborhood of every £-regular point a of E. If E is compact
and £-regular, and 7 is bounded q*.a.e. on E then for each b > 1 the family
.~b is uniformly bounded on a neighborhood of E.

~roof . Without loss of generality we can assume E is not plp. Let ~’
be a polynomial family bounded at each point of a subset F of E with

L~. Put



Then Ej C E?+1 and F C Eo := ~i° Ej. Hence LE~ ,~ L~o = LF = LE. By
the definition of the L-extremal function we have

which implies that for each b > 1 the family Fb is bounded at ,every £-

regular .point of E. So Fb is bounded q.a.e. on E. Moreover, if = 0,
then LE(z)  b on a r. By Dini’s argument there is j sufficiently
large with  b on the r, which implies by (1.3) that the
family Fb is uniformly bounded on a ball |z - a|  r, if a is any £-regular
point of E. The proof of the remaining part of Lemma 1.2. is trivial.

THEOREM 1.3. - Given a probability measure on a bounded Borel set E
in CN the following conditions are equivalent .

I. The measure ~u is determining for E ;
II. If u E ~C and u  0 p-a. e. on E, then u  0 q. a. e. on E ;

III. If .~’ is a polynomial family bounded on E, then for every b > 1
the family Fb is bounded q. a. e. on E.

Proof. I ==~ II. Let u be a fixed function in the class £ with u  0 

on E. Put F := {z E E; u(x)  0}. Then u(z)  LF(z) = LE(z). Hence
u  0 q.a.e. on E.

I ~ III. Let F be a polynomial family bounded on E. Let Ej
be given by (1.2). Then Ej C and p(F) = p(E) for F := By

LE. It is known [12] that LF as j --~ oo. Hence by (1.3)
the family F is bounded q*.a.e. on E, and by Lemma 1.2. the family 7b is
bounded q.a.a. on E for every b > 1.

The implication III =~ I follows directly from Lemma 1.1.

It remains to show that II ==~ I. Fix F C E with p(F) = and let

u be a function of the class £ such that u sOon F. Then u  0 q.a.e. on
E. Hence u  7y~ in CN. By the arbitrariness of u we get LF  which

gives LF = because LE :5 LF.

2 - The function 

Given a probability measure ~ on a bounded Borel set E in C~ the
function M is defined by the formula



It is clear that 1 ~ M(t2) ~ M(t1)  +~ if 0  tt2 ~ 1. The function
~*(~) := is also decrasing. It follows from (0.1) that

which implies

where A is any Borel subset of E.

Remark 2.1. If p vanishes on plp sets then

Indeed, it’ is clear that In order to prove the opposite inequality
observe that given t with 0 ~ t ~ 1 and mER with m  
these exists A C E sucht that and supE L*A > log m. Put
Ao := {z E A; LA(z) = L~(z) ~ . Then p(Ao) = p(A) > t and LA > LAo. .
Hence log rz  supE supE M(t). By the arbitrariness of m we
get .~t ~ (~) ~ 

Remark 2.2.-If .~I * ( 1 ) = 1, then M is continuous at t = 1 and
= 1. Hence, if .Ilit * ( 1 ) = 1 then LA,a -> L~ for every sequence An of

Borel subsets of E such that --~ p(E).

Remark 2.3. If p vanishes on plp sets and M (1) = 1 then L~ = 0 on E.
In particular, if E is compact and M(I) = 1 then E is £-regular. Indeed, put
Eo:= {z e = U ~ . Then = 1 and = 0

on E, i.e. L~ = 0 on E. It is clear that the pairs (E, /~) for which = 1

or ~t * ( 1 ) = 1 are of great importance for applications of the £-extremal
function.

PROPOSITION 2.4. - D e fine

where the sup is taken over all polynomials f of degree > 1 and over all
compact sets ACE. If E is compact, then



Proof. - Fix t with 0  t  1. Given any number m with m  M(t),
take A c E with > t and supE LA > log. m. Next choose u in the class’
£ with u  0 on A and supE u > log m. By the Approximation Lemma
[13] there is a sequence uv := max n log ‘f j (, where f j is a polynomial

>

of degree::; n j , such that uv ~ u as v ~ ~. Given E > 0 there exists a
compact. set I~ C A~ with > t - E. Take v so large that supK u~  E and

choose j with supE 1 log ( > log m. Then m e~E  
 Mp(t - E). Hence m  ,~t~ ~ (t). By the arbitrariness of m we

get M(t)  ~~(t). The inequality Mp(t)  M(t) is obvious.

PROPOSITION 2.5. If E is nonplp compact set in then =

limn~~ B1/nn(t) = supn>1 B1/nn(t), where

Proof. - Given m > 1 and c with 0  c’n  B,n(t), let A be a compact
subset of E with ~(~4.) ~ ~ and let /m be a polynomial of degree ~ m such

= 1 Every natural number n > m can be
written in the form n = km + r with 0  r  m. Observe that

Hence lim infn~~ B1/nn(t) > c, which implies that  lim infn~~
and consequently we get the required result.

THEOREM 2.6. - Let A C CP, B C Cq be bounded Borrel sets and let ~, v
be probability measures on A and B, respectively. Put MA(t) := M(t; A, p),
M B(t) := M(t; B, v) and M Ax B(t) := M(t; A x B, ~) with ~ := ~u ® v.

Then

(Z~  MA(I) 

~A(1) 

Proof.-(i) Let E C A x B with ~(E) - 1 and put Bx :_. ~ w E
B ; (z, w) E E}. Then = 1 p-a.e. on A. Let u E £(CP x u ~ 0 on
E. Then u ( z, w )  + LB(W) for all z E Ao and w E where
Ao C A and p(Ao) = 1. Hence

u(z, w)  log + LB(w) + + LA(z), (z, w) E Cn x Cq.



Hence by (2.2) one gets (i).
(ii) Let m be a fixed number with m  There is a

sequence En of Borel subsets of A x B such that > 1 - 2-n and
supA B LEn > m. Define

We claim that (An~) ~ 1 as n ~ ~. Indeed,

Hence 1, which implies the claim. Fix n > 1 and let
u be a function of the class £(CP x C~) with u  0 on En. Then for every
fixed z in A we have u(z, w)  0 on Bn. Therefore

u(z,u’)  + LB(w)

which implies

u(z, w)  E) + LB(w) for z E An~, z,v E Cq.

Hence

u~z~ w)  logMB(1 - EI -.~ LB(w) + + LA(z)

for all (z, w) E C~ x Cq. By the arbitrariness of u we can replace u by
Then we get

After passing to the limits, first with n to 0o and next with E to 0, we get
m  + By the arbitrariness of m we get (ii ).

The following corollary is important for applications of the function M. .

COROLLARY 2.7.-If = 1, = 1, = 1,
= 1~ = 1 = 1).



Exemple 2.8 . Let I = {a, b} be an interval of the real line R with end
points a, b such that -~  a  b  +00. Then

Ai denoting the Lebesgue measure on R.

Proof. - Without loss of generality we may assume that I = ~a, b~ is

closed. By [4] for every polynomial f of degree  n,  Bn (t ~, if
A CC I and Ai(A) > t(b - a), where

Moreover, if A is a subinterval of I with a common end point, this bound
is best possible. Therefore by Proposition 2.5 we have

By Proposition 2.4..Jt~I ~ = M.

Remark 2.9. - If S2 is a bounded open set in (resp. in then for

every determining measure  for 03A9 one has = 1. Indeed, it is
known [12] that L*03A9 = So if F ~ 03A9 and = 1, then LF = Lo which
implies that M(1;03A9, ) = 1. As an example of such  one can take the
Lebesgue measure A N in RN (resp. 03BB2N in CN ).

If  is a probability measure on S2 such that M*(1; 03A9, ) = 1, then
the closure E of S~, is an £-regular compact. Indeed, let Kn
be an increasing sequence of £-regular compact subsets of H such that

= lim p(Kn ) and S2 = Then

which implies that LE = 0 on E, is £-regular.
Example 2.10 . .- We shall now construct a bounded open subset {} of C

with the following progerties.

1) E :=== ~ is £-regular.
2) For every probability measure p .J~ * ( 1; ~, ~ ~ > 1.

3) There exists no finite positive Borel mesure p on Q such that the pair
~~, ~c~ satisfies the (£* )-condition.



Indeed, let be a discrete sequence in the upper half plan ~ I m z > 0 ~
such that ea.ch point of I = [0,1] is a limit of a subsequence of (an ) and the
sequence has no other limit points. There exists a sequence of positive
real numbers {rn} such that

with ûn := a~!  r~ ~. Namely, it is clear that > 5 - 2-1
on I, if ri > 0 is sufficiently small. Suppose r~ , ... , rn are already chosen so
that (*) is satisfied. Put := 03A9n U {|z - an+i  r}. Then L03A9n
in as r T 0. By Dini’s argument the convergence is uniform on I.
Hence (*) is satisfied for n + 1 with r = sufficiently small. The open
set S2 := U~103A9n has the required properties. It is clear that E := SZ is £-
regular. If ju is a finite positive Borel measure on Q, then 
sup03A9 L03A9n = supE L03A9n > 4 (n > 1). Hence M*(1;03A9, ) >_ 4. The set
G := {z 6 E : : > 0 } contains the interval 1, so G is not plp. By
Lemma 1.1 the pair (SZ, ~c) does not satisfy (~C* ) (see also theorem 3.1 ).

PROPOSITION 2.11. If ~ is determining for a nonpluripolar bounded
Borel set in eN, p vanishes on plp sets and M*(I; E, p) = 1 then (E, p)
satisfies (~C*).

Proof . - Given a polynomial family ~ bounded p-a.e. on E, let E~ be
the sequence of subsets of E defined by (1.2). Then Ej t F with ~(F) = 1.
Therefore LE~ ~, Lp = LE = LE (see Remark 2.3). Given b > 1 the set
Ob _ ~ L ~,,  is an open neighborhood of E. By (1.2) and (2.4)

If j is sufficiently large the family ~’b is bounded by j uniformly on Qb .
Pro blem 2.12 . Let d  1 ~ be the unit disk on the complex plane

C.9 Let 03B8 denote the lenghth measure on the boundary 8A of A and let 03BB2
be the Lebesgue measure on C - R2 . Compute the functions M(t; 80, 8)
and M(t; d, ~12 ), 0  t  1.

3 - Determining measures for bounded Borel sets
with £-regular closure

The main result of this section is given by the following.



THEOREM 3.1. Let ~ be a probability measure on a bounded Borel
set E in C~ such that E is £-regular. Then the following conditions are
equivalent.

(1~ The pair satisfies (£*)-condition;
(~~ If u E ,C and u  0 on E then u  0 on E ;

(3) .~*(1) = E, I~) = 1 and LE = LE;
(,~~ = E, ~) = 1 and LE = LE;
(5) If A C E and = 1, then LA = LE ;
(6) For every b > 1 there exists a neighforhood SZ of E srch that for

every polynomial family .~ bounded on E the family (given
by (0.2)) is uniformly bounded on SZ;

(7) If F is a polynomial family bounded on E then for every
number b > 1 the family is bounded q. a. e. on E.

Proof. - (1) ~ (2). Let u be a function of the class .~’ with u  0 
on E. The function ~, can be written in the form

where fj is a polynomial of degree ~ j . Given any fixed number b > 1 the
polynomial fa,mily .~’ a = ~ b-~ f~ ; j > 1 ~ is bounded on E. By ( 1 ) there
are a constant M > 0 and a neighborhood n of E such that

which implies M b2~ (~ > 1). Hence by the definition of LE we
obtain 1 j log |fj(z)|  in C N ( j > 1 ) . Therefore
u(z)  210gb on E. By the arbitrariness of b > 1 we get u  0 on E.

(2) ==~ (3). If (2) is satisfied, then LE  LE, so that LE = LE.
It remains to show that limt~1 M(t) = 1. Suppose there exists b > 1 with
M(t) > b for all t with 0  t  1. Let An be Borel subsets of E such that

Put En := An n An+1 n ... and observe that D En, En C An and



which implies that 1. Put F := UEn. Then L) and
= 1. By (2) Lp  Lg and since L-~  Lp, we get LF = LE. By

Dini’s argument L ~~  10gb on E, if n > n o = no(b). This however
contradicts the second inequality of (*). Therefore = limtil M (t) =
1.

(3) ==~ (4) obvious.

(5) =~ (6) If b > 1, then the set S2b :_ ~ z E LE(z)  ~~ is by (5) an
open neighborhood of E. be a polynomial family bounded p,-a.e. on
E. Put Ek := {z e E; ~  ~, Then Ek C and p,(Ek) T 1.
Hence by (5) LEk ~, LA = LE with A := the convergence being
uniform on E. Hence log b on E if k > ko. It is clear that

(6) =-~~ (7) is obvious.

(7) =~ ( 1 ) follows from lemma 1.2.

4 - Determining ineasures for compact
sets in CN

THEOREM 4.1. If  is a probability measure on a compact set E in CN
vanishing on plp subsets of E, then the following conditions are equivalent.

(i) The pair (E, ) satisfies (,C* ) ;
onE, thenu0 on E;

(iii) .~*(1, .~r, ~~ = 1 ~
(iv) .~I ( 1; = 1 ~

(v~ ~c si determining for E and E is £-regular.

Proof. -- First observe that each of the conditions (i), (ii), (iii), (iv)
implies £-regularity of E, and next apply Theorem 3.1.

Example 4.2 (most likely well known to the reader). Let E be a
compact subset in the complex plane. Assume E has a positive logarithmic



capacity c(E~. By the classical potential theory there exists a unique
probability measure A with support on E such that

the supremum being taken over all probability measures p on E. The
measure A is called the equilibrium measure of E. We shall show that ~
is determining for E. Indeed, if F is a Borel subset of E with A(.F) == 1
there is (by Choquet capacitability theorem) a sequence Fn of compact
subsets of F with c(Fn) / c(F). Without loss of generality we may assume
E is contained in the disk z  1 /2. Then

Therefore c(E) = c(F). For all suficiently large n the function
un(z) := LE(z), un(oo) := is harmonic in C~E,

Un and 1 0. By Harnack’s theorem un ~ 0 locally uniformly
in The function u := lim LFn is subharmonic on C, u > LE on C, and
u = LE in C~E as well as at each regular point of aE. By the generalized
maximum principle for subharmonic function, u  0 on E except at most
the polar set of irregular points of aE. On the other hand u > 0 on C.
Therefore u = LE. Observe that LE  LF  LFn (n > 1). Hence LE = LF.
It follows that ~ is determining for E. Hence by theorem 3.1, if E is an

£-regular subset of C and A is the equilibrium measure of E, then the pair
(E, A) satisfies each of the equivalent conditions of theorem 4.1.

Remark 4.3. Given a norm N on CN the logarithmic capacity c(E) ~
c(E, N) of a bounded subset E of CN is defined by the formula

If E is a probability measure on E with .llil ( 1; E, p) = 1, then for every
F G E with = p(E) one has c(F) = c(E).
On the plane, if E is bounded and F C E, then : c(F) = c(E) 4=~ LF =

LE, which implies that p is determining for E iff F G E, p(F) = 1 ==~

c(F) = c(E) (i.e. ; iff p is determining in the sense of ULLMAN [14]).



If N > 2 and F C E, it is clear that L~ = L~ =~ tlNc(F, .Ilr) = c(E, N).
But we do not know whether the inverse implication is true.

The aim of the following example is to illustrate an application of theorem
2.6.

Example 4.4 . - Let SZ be a bounded open set in RN (resp. in Then
it is know that ~~ (resp. ~Z~) is determining for H. We can propose the
following proof of this result.

It is sufficient to consider the case of l~~ (because by (1.1) for every
u E there is ic E such that u(x1, yl, ... , xN, yN) =

for (x1 + iy1,... , xN+iyN) E Hence,
if u E and u  0 03BB2N - a.e. on 03A9 c CN then u  0 on H.). Let
u E and let u  0 ~~ - a.e. on S2. Given a point a = (al, ... an) in
S2, let Q := - ( j = 1, ... , N ) ~ be a closed cube with center a
contained in H. Since by Theorem 4.1 (via example 2.8) Ai is determining
for ~a~ - r, a3 + r], so by theorem 2.6 the measure ~N is determining for
the cube Q. Therefore u  0 on Q. By the arbitrariness of Q we get u  0

on SZ. Hence Ln = LF for every F ~ 03A9 with = 

Let I N = be the unit cube in RN. If A is a nonsingular
affine mapping of RN onto itself, then the set P := A(IN) is called a

parallelepiped.
Let H be a bounded open subset of RN such that for each point b E ~

there exists a parallelepiped P such that P ~ 03A9 U {b} and b E P. Then n is
£-regular and the pair (~, satisfies each of the equivalent conditions of
theorem 3.1.

Indeed, it is easy to see that each parallelepiped P is £-regular. Therefore
S2 is £-regular, because L~  L p. We already know that the pair (IN, ~N)
satisfies (,C* ). Hence for every parallelepiped P the pair (P, 03BBN) satisfies
(£*). Therefore the pair (Q, satisfies (,C* ) at each point of Q, which
implies that (SZ, À N) satisfies (6) of Theorem 3.1. .

5 - Polynomial inequality of Bernstein-Markov type
and pairs (E, p) atisfying the (£*)-condition

DEFINITION 5.1. Let p be a positive number, E a bounded Borel set
in C~ and p a probability measure on E. We say that the triple (p, E, 
has Bernstein-Markov Property, if for every b > 1 there exist a positive
constant ~.l and a neighborhood G of E such that for every polynomial f of



N complex variables one has

It was shown in [11] that if (E, satisfies (£*) and ~c satisfies some

density condition, then the triple (p, E, has BMP for every p > 0. Due

to a remark by A:ZERIAHI the density condition may be dropped and one
gets the following.

THEOREM ~.1. Let E be a Borel subset of CN and let ~ be a positive
measure on E such that (E, p) satisfies (,C*). . Then for every p > 0 the triple
(p, E, has the Bernstein-Markov Property (BM~P~.

Proof . Let s( f ) denote the degree of f It is sufficient to prove that for
every p > 0 and for every b > 1 there exists a constant M > 0 such that for

every polynomial f

Suppose the statement is not true. Then we can find p > 0, b > 1 and a
sequence of polynomials f k such that

It follows that > 0 and 0   (k > 1 ) . We claim
that for every q > 1 and > 1 the sequence of polynomials
gk := is bounded p-a.e. on E. Indeed, following
NGUYEN THANH VAN [8], put Enk := {z E E; | ~ n }, En := U~k=1 Enk
and observe that

whence it follow that ~g~ } is bounded p,-a.e. on E. Now by the assuption
(E, p) satisfies (£*), so that we can find G D E and M > 0 such that
~gk|G C M k >_ 1. Hence



Put q = b1~2. Then (5.1) and (5.2) imply

which is an absurd.

THEOREM 5.2. - If M*(1; E, ) = 1 and there is p > 0 such that the

triple (p, E, ~c) has the BMP, then (E, p) satisfies (£*).

Proof . Take b > 1 and let ~’ be a polynomial family bounded p-a.e.
on E. Define E~ by formula ( 1.2). Then ~ l and

Hence by BMP

which implies the required result.

COROLLARY . - If ,It~I * ( 1; E, ~u) = 1, then the pair (E, p) satisfies (,C* )
if and only if for every p > 0 (for some p > 0~ the triple (p, E, p) has the
BMP.
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