Vincent Caselles

Charbel Klaiany

Existence, uniqueness and regularity for Kruzkov's solutions of the Burger-Carleman's system

Annales de la faculté des sciences de Toulouse 5^{e} série, tome 10, $\mathrm{n}^{\circ} 1$ (1989), p. 93-104
http://www.numdam.org/item?id=AFST_1989_5_10_1_93_0

© Université Paul Sabatier, 1989, tous droits réservés.
L'accès aux archives de la revue «Annales de la faculté des sciences de Toulouse » (http://picard.ups-tlse.fr/~annales/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

Existence, uniqueness and regularity for Kruzkov's solutions of the Burger-Carleman's system

Vincent Caselles*(1) and Charbel Klaiany ${ }^{(2)}$

Abstract

Resume. - Nous montrons l'existence et l'unicité d'une solution $(u(t), v(t))$ au sens kruzkov du système de Burger-Carleman avec condition initiale $\left(u_{0}, v_{0}\right) \in \mathbf{L}^{1}(\mathbf{R})_{+} \times \mathbf{L}^{1}(\mathbf{R})_{+}$. Nous montrons que pour tout $t>$ $0, u(t), v(t) \in \mathbf{L}^{\infty}(\mathbf{R})$. Cet effet régularisant est lié à la possibilité de définir la solution au sens Kruzkov du système de Burger - Carleman.

Abstract. - We prove existence and uniqueness of a Kruzkov solution $\left(u(t), v(t)\right.$) of the Burger-Carleman's system with initial data (u_{0}, v_{0}) \in $\mathbf{L}^{1}(\mathbf{R})_{+} \times \mathbf{L}^{1}(\mathbf{R})_{+}$. Moreover, we show that for any $t>0, u(t), v(t) \in \mathbf{L}^{\infty}(\mathbf{R})$ with precise estimates. In fact, this regularizing effect is related to the possibility of defining Kruzkov's solutions for the Burger-Carleman's system.

We consider the following first order system which will be called the Burger-Carleman's system :
$(B C)$

$$
\begin{array}{cc}
u_{t}+\left(\frac{u^{2}}{2}\right)_{x}+u^{2}-v^{2}=0 & \text { on }[0,+\infty) \times \mathbf{R} \\
v_{t}-\left(\frac{v^{2}}{2}\right)_{x}+v^{2}-u^{2}=0 & \text { on }[0,+\infty) \times \mathbf{R} \\
u(0, x)=u_{0}(x), v(0, x)=v_{0}(x)
\end{array}
$$

with initial data $u_{0}, v_{0} \in \mathbf{L}^{1}(\mathbf{R})_{+}$. We prove the existence and uniqueness of a Kruzkov's solution of $(B C)$ (see definition 1 below) using the theory of nonlinear semigroups generated by accretive operators. We notice that

[^0]the possibility of defining Kruzkov's solutions for ($B C$) when the initial data $\left(u_{0}, v_{0}\right) \in \mathbf{L}^{1}(\mathbf{R})_{+}^{2}$ depends on the $\mathbf{L}^{1}-\mathbf{L}^{\infty}$ regularizing effect for homogeneous equations proved in [2]. In fact, the estimates proved in [2] imply that for any $\left(u_{0}, v_{0}\right) \in \mathbf{L}^{1}(\mathbf{R})_{+}^{2}$ and any $t>0, u(t), v(t) \in \mathbf{L}^{\infty}(\mathbf{R})_{+}$ with precise estimates given below. Before stating the precise result, let us define the notion of Kruzkov's solution for (BC) :

Definition 1.- Let $T>0$. The pair of functions $(u, v) \in \mathbf{L}^{\infty}([0, T]$, $\left.\mathbf{L}^{1}(\mathbf{R})_{+}\right)^{2} \cap \mathbf{L}^{\infty}([\tau, T] \times \mathbf{R})^{2}$ for any $\tau>0$ will be called a kruzkov's solution of $(B C)$ in $[0, T] \times \mathbf{R}$ with initial data $\left(u_{0}, v_{0}\right) \in \mathbf{L}^{1}(\mathbf{R})_{+}^{2}$ if $(u(t), v(t)) \rightarrow\left(u_{0}, v_{0}\right) \in \mathbf{L}^{1}(\mathbf{R})^{2}$ as $t \rightarrow 0$ and

$$
\begin{gathered}
\int_{0}^{T} \int_{\mathbf{R}}|u-k| \xi_{t}+\operatorname{sign}_{0}(u-k)\left[\left(\frac{u^{2}}{2}-\frac{k^{2}}{2}\right) \xi_{x}+\left(v^{2}-u^{2}\right) \xi\right] \mathrm{d} x \mathrm{~d} t \geq 0 \\
\int_{0}^{T} \int_{\mathbf{R}}\left|v-k^{\prime}\right| \eta_{t}+\operatorname{sign}_{0}\left(v-k^{\prime}\right)\left[\left(\frac{k^{\prime 2}}{2}-\frac{v^{2}}{2}\right) \eta_{x}+\left(u^{2}-v^{2}\right) \eta\right] \mathrm{d} x \mathrm{~d} t \geq 0
\end{gathered}
$$

holds for all $\xi, \eta \in C_{0}^{\infty}((0, T) \times \mathbf{R}), \xi, \eta \geq 0$ and all $k, k^{\prime} \in \mathbf{R}$.
As it is costumary
$\operatorname{sign}_{0}(r)=+1$ if $r>0,0$ if $r<0$
$\operatorname{sign}(r)=+1$ if $r>0,[-1,1]$ if $r=0,-1$ if $r<0$
$\operatorname{sign}^{+}(r)=+1$ if $r>0,[0,1]$ if $r=0,0$ if $r<0$
Similarly one defines $\operatorname{sign}_{0}^{+}(r)$.
Then, our result says :
Theorem 1.- For any $\left(u_{0}, v_{0}\right) \in \mathbf{L}^{1}(\mathbf{R})_{+}^{2}$, there exists a unique Kruzkov's solution $(u, v) \in C\left([0, T], \mathbf{L}^{1}(\mathbf{R})_{+}^{2}\right)$ of $(B C)$ in $[0, T] \times \mathbf{R}$ for any $T>0$ with initial data $\left(u_{0}, v_{0}\right)$ such that for any $t>0$:
$(\mathbf{R} E) \quad\|u(t)\|_{\mathbf{L}^{\infty}(\mathbf{R})} \leq\left(\frac{2}{t}\left\|u_{0}+v_{0}\right\|_{\mathbf{L}^{1}(\mathbf{R})}+\frac{2 \sqrt{2}}{\sqrt{t}}\left(\left\|u_{0}+v_{0}\right\|_{\mathbf{L}^{1}(\mathbf{R})}\right)^{3 / 2}\right)^{1 / 2}$
The same estimate holds for $\|v(t)\|_{\mathbf{L}^{\infty}(\mathbf{R})}$. Moreover, if $(u, v),(\widehat{u}, \widehat{v})$ are two Kruzkov's solutions of $(B C)$ in $[0, T] \times \mathbf{R}, T>0$, corresponding to the initial data $\left(u_{0}, v_{0}\right),\left(\widehat{u}_{0}, \widehat{v}_{0}\right) \in \mathbf{L}^{1}(\mathbf{R})_{+}^{2}$ respectively, then for all $t \in[0, T]$.

$$
\begin{array}{r}
\left\|(u(t)-\widehat{u}(t))^{+}\right\|_{\mathbf{L}^{1}(\mathbf{R})}+\left\|(v(t)-\widehat{v}(t))^{+}\right\|_{\mathbf{L}^{1}(\mathbf{R})} \\
\quad \leq\left\|\left(u_{0}-\widehat{u}_{0}\right)^{+}\right\|_{\mathbf{L}^{1}(\mathbf{R})}+\left\|\left(v_{0}-\widehat{v}_{0}\right)^{+}\right\|_{\mathbf{L}^{1}(\mathbf{R})}
\end{array}
$$

To begin with the proof, let us introduce the following operators A, B :

$$
\begin{aligned}
& D(A):=\left\{(u, v) \in \mathbf{L}^{1}(\mathbf{R})_{+}^{2}: u^{2}, v^{2} \in A C(\mathbf{R})\right\} \\
& D(B):=\left\{(u, v) \in \mathbf{L}^{1}(\mathbf{R})_{+}^{2}: u^{2}, v^{2} \in \mathbf{L}^{1}(\mathbf{R})\right\}
\end{aligned}
$$

where $A C(\mathbf{R})$ is the set of absolutely continuous functions on \mathbf{R},

$$
A(u, v)=\left(\left(\frac{u^{2}}{2}\right)_{x},-\left(\frac{v^{2}}{2}\right)_{x}\right), B(u, v)=\left(u^{2}-v^{2}, v^{2}-u^{2}\right)
$$

for $(u, v) \in D(A),(u, v) \in D(B)$ respectively. Notice that $D(A) \subset D(B)$. Thus $D(A+B)=D(A)$ and $(B C)$ can be written in the abstract form: let $U=(u, v)$

$$
\begin{array}{ll}
(B C)_{a} & \frac{d U}{d t}+(A+B) U=0 \\
& U(0)=\left(u_{0}, v_{0}\right) \in \mathbf{L}^{1}(\mathbf{R})_{+}^{2}
\end{array}
$$

We show that one can use the Grandall-Liggett's theorem to solve $(B C)_{a}$. This is the purpose of the next two lemmas. Before stating them, let us recall the definition of T-accretivity. Let E be a Banach lattice. A (in general, multivalued) operator B on E called T-accretive if
$\left\|(x-\widehat{x})^{+}\right\|_{E} \leq\left\|(x-\widehat{x}+\lambda y-\lambda \widehat{y})^{+}\right\|_{E}$ holds for all $[x, y],[\widehat{x}, \widehat{y}] \in B$ and all $\lambda>0$.

If $E=\mathbf{L}^{1}(\mathbf{R}) \times \mathbf{L}^{1}(\mathbf{R})$ endowed with the norm
$\|(u, v)\|_{E}=\int_{\mathbf{R}}|u|+\int_{\mathbf{R}}|v|,(u, v) \in E$, then this is equivalent to say that for all $\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right],\left[\left(\widehat{x}_{1} \widehat{x}_{2}\right),\left(\widehat{y}_{1} \widehat{y}_{2}\right)\right] \in B$ there exists some $\alpha_{1} \in$ $\operatorname{sign}^{+}\left(x_{1}-\widehat{x}_{1}\right), \alpha_{2} \in \operatorname{sign}^{+}\left(x_{2}-\widehat{x}_{2}\right)$ such that
$\int_{\mathbf{R}} \alpha_{1}\left(y_{1}-\widehat{y}_{1}\right)+\alpha_{2}\left(y_{2}-\widehat{y}_{2}\right) d x \geq 0$. Then :
Lemma 1.- $A+B$ is T-accretive in $\mathbf{L}^{1}(\mathbf{R})^{2}$. Moreover, for any $p \in$ $W^{1, \infty}(\mathbf{R})$ such that $p^{\prime} \geq 0$ has compact support :

$$
\begin{equation*}
\int_{\mathbf{R}} p(u) w+p(v) h d x \geq 0 \tag{1}
\end{equation*}
$$

holds for any $(u, v) \in D(A)$ where $(w, h)=(A+B)(u, v)$.
Lemma 2.- For all $\lambda>0, \operatorname{Ran}(I+\lambda(A+B))=\mathbf{L}^{1}(\mathbf{R})_{+}^{2}$.
Proof of lemma 1.- Let $U=(u, v), \widehat{U}=(\widehat{u}, \widehat{v}) \in D(A)$. One easily checks that

$$
\begin{aligned}
\int_{\mathbf{R}}\left[\left(\frac{u^{2}}{2}\right)_{x}\left(\frac{\widehat{u}^{2}}{2}\right)_{x}\right]_{\operatorname{sign}_{0}^{+}(u-\widehat{u}) \mathrm{d} x} & =\int_{\mathbf{R}}\left[\left(\frac{v^{2}}{2}\right)_{x}-\left(\frac{\widehat{v}^{2}}{2}\right)_{x}\right] \operatorname{sign}_{0}^{+}(v-\widehat{v}) \mathrm{d} x \\
& =0
\end{aligned}
$$

V. Caselles and Ch. Klaiany

since $u, \widehat{u}, v, \widehat{v} \geq 0$ and $\operatorname{sign}_{0}^{+}$is an increasing function, then

$$
\begin{aligned}
& \int_{\mathbf{R}} B(u, v)\left(\operatorname{sign}_{0}^{+}(u-\widehat{u}), \operatorname{sign}_{0}^{+}(v-\widehat{v})\right) \mathrm{d} x= \\
& \int_{\mathbf{R}}\left[\operatorname{sign}_{0}^{+}(u-\widehat{u})-\operatorname{sign}_{0}^{+}(v-\widehat{v})\right]\left[\left(u^{2}-\widehat{u}^{2}\right)-\left(v^{2}-\widehat{v}^{2}\right)\right] \mathrm{d} x= \\
& \int_{\mathbf{R}}\left[\operatorname{sign}_{0}^{+}\left(u^{2}-\widehat{u}^{2}\right)-\operatorname{sign}_{0}^{+}\left(v^{2}-\widehat{v}^{2}\right)\right]\left[\left(u^{2}-\widehat{u}^{2}\right)-\left(v^{2}-\widehat{v}^{2}\right)\right] \mathrm{d} x \geq 0
\end{aligned}
$$

Both remarks imply that $A+B$ is T accretive in $\mathbf{L}^{1}(\mathbf{R})_{+}^{2}$.
Let $\beta(r):=r^{1 / 2}, r \geq 0$. Let $p \in W^{1, \infty}(\mathbf{R})$ be such that $p^{\prime} \geq 0$ has compact support.

Let $j: \mathbf{R}_{+} \rightarrow \mathbf{R}$ be $j(r)=\int_{0}^{r}(p \circ \beta)(s) \mathrm{ds}$. Then, if $z=u^{2}$

$$
\int_{\mathbf{R}}\left(\frac{u^{2}}{2}\right)_{x} p(u) \mathrm{d} x=\int_{\mathbf{R}}\left(\frac{z}{2}\right)_{x}(p \circ \beta)(z) \mathrm{d} x=\frac{1}{2} \int_{\mathbf{R}} j(z)_{x} \mathrm{~d} x=0 .
$$

Similarly $\int_{\mathbf{R}}\left(\frac{v^{2}}{2}\right)_{x} p(x) \mathrm{d} x=0$ and

$$
\int_{\mathbf{R}}\left(u^{2}-v^{2}\right) p(u)+\left(v^{2}-u^{2}\right) p(v) \mathrm{d} x=\int_{\mathbf{R}}\left(u^{2}-v^{2}\right)(p(u)-p(v)) \mathrm{d} x \geq 0
$$

since p is increasing and $u, v \geq 0$. Putting this things together we get the inequality (1).

Proof of lemma 2.-Since the proof below is independent of the value of $\lambda>0$ we take $\lambda=1$. We have to solve the following equations : let $f, g \in \mathbf{L}^{\mathbf{1}}(\mathbf{R})_{+}$.

$$
\begin{equation*}
u+\left(\frac{u^{2}}{2}\right)_{x}+u^{2}-v^{2}=f \tag{2.1}
\end{equation*}
$$

$(S P)_{f, g}$

$$
\begin{equation*}
v-\left(\frac{v^{2}}{2}\right)_{x}+v^{2}-u^{2}=g \tag{2.2}
\end{equation*}
$$

$1^{\text {st }}$ step : We work in a \mathbf{L}^{2} - framework. Let $I_{n}=[-n, n]$. Let us solve the equations $(S P)_{f, g}$ for $f, g \in \mathbf{L}^{2}\left(I_{n}\right)_{+}$. Let β be as above. Then $(S P)_{f, g}$ is equivalent to

$$
\beta(w)+\left(\frac{w}{2}\right)_{x}+w-h=f
$$

Existence, uniqueness and regularity for Kruzkov's solutions of the Burger-Carleman's system
$(S P)_{\beta, f, g}$

$$
\beta(h)-\left(\frac{h}{2}\right)_{x}+h-w=g
$$

through the change of variable $w=u^{2}, h=v^{2}$. Let $\bar{\beta}(r)=\sqrt{r}$ if $r \geq 0$, $-\sqrt{|r|}$ if $r<0$. Let us first consider the system :

$$
\bar{\beta}(w)+\left(\frac{w}{2}\right)_{x}+w-h=f
$$

$(S P)_{\bar{\beta}, f, g}$

$$
\bar{\beta}(h)-\left(\frac{h}{2}\right)_{x}+h-w=g
$$

where $f, g \in \mathbf{L}^{2}\left(I_{n}\right)$. The existence of a solution of $(S P)_{\bar{\beta}, f, g}$ is a consequence of standard perturbation results for maximal monotome operators ([5]). Let $T_{\bar{\beta}}: \mathbf{L}^{2}\left(I_{n}\right)^{2} \rightarrow \mathbf{L}^{2}\left(I_{n}\right)^{2}$ be given by $T_{\bar{\beta}}(w, h)=(\bar{\beta}(w), \bar{\beta}(h))$. Let $T: \mathbf{L}^{2}\left(I_{n}\right)^{2} \rightarrow \mathbf{L}^{2}\left(I_{n}\right)^{2}$ with domain.
$\operatorname{Dom}(T)=\left\{(w, h) \in H^{1}\left(I_{n}\right) \times H^{1}\left(I_{n}\right): w(-n)=h(-n), w(n)=h(n)\right\}$ be given by $T(w, h)=\left(\frac{w_{x}}{2}+w-h,-\frac{h_{x}}{2}+h-w\right)$. Since $T_{\bar{\beta}}, T$ are maximal monotone and $\operatorname{Dom}\left(T_{\bar{\beta}}\right)=\mathbf{L}^{2}\left(I_{n}\right)^{2}, T_{\bar{\beta}}+T$ is maximal monotone ([4], Corol. 2.7). Moreover, since $\bar{\beta}$ is the subgradient of a convex function, by [5], thm. 4, Int $\operatorname{Ran}\left(T_{\bar{\beta}}+T\right)=\operatorname{Int}\left(\operatorname{Ran} T_{\bar{\beta}}+\operatorname{Ran} T\right)$. But it is an exercise to see that $\operatorname{Ran} T=\mathbf{L}^{2}\left(I_{n}\right)^{2}$. Therefore, $\operatorname{Ran}\left(T_{\bar{\beta}}+T\right)=\mathbf{L}^{2}\left(I_{n}\right)^{2}$. Therefore, for $f, g \in \mathbf{L}^{2}\left(I_{n}\right),(S P)_{\bar{\beta}, f, g}$ has a solution $(w, h) \in H^{1}\left(I_{n}\right) \times H^{1}\left(I_{n}\right)$ with $w(-n)=h(-n), w(n)=h(n)$. To go back to problem $(S P)_{\beta, f, g}$ it suffices to remark that $w, h \geq 0$ if $f, g \geq 0$. For that we multiply the first equation in $(S P)_{\bar{\beta}, f, g}$ by w^{-}and the second by h^{-}. Adding both equations and integrating over \mathbf{R}, one gets :

$$
\int_{\mathbf{R}} g h^{-}+f w^{-}+\left(w^{-}\right)^{3 / 2}+\left(h^{-}\right)^{3 / 2}+\left(w^{-}-h^{-}\right)^{2}+2 w^{+} h^{-} \mathrm{d} x=0
$$

Since each term in the integrand is positive, $w^{-}=h^{-}=0$, i.e., $w, h \geq 0$. Thus, given $f, g \in \mathbf{L}^{2}\left(I_{n}\right)_{+}$, there exists $w, h \in H^{1}\left(I_{n}\right)$ with $w(-n)=$ $h(-n), w(n)=h(n), w, h \geq 0$ which solve $(S P)_{\beta, f, g}$. Then $u=\sqrt{w}$ on $I_{n}, 0$ in $\mathbf{R}-I_{n}, v=\sqrt{h}$ on $I_{n}, 0$ in $\mathbf{R}-I_{n}$ solve $(S P)_{f, g}$.
$2^{\text {nd }}$ step : Let $f, g \in \mathbf{L}^{1}(\mathbf{R})_{+}$. Let $f_{n}, g_{n} \in \mathbf{L}^{2}\left(I_{n}\right)_{+}$be such that $f_{n} \uparrow f, g_{n} \uparrow g$. Let $\left(u_{n}, v_{n}\right)$ be the solutions of $(S P)_{f n, g n}$ found in step 1.

Notice that the accretivity of $A+B$ implies that u_{n}, v_{n} are Cauchy sequences in $\mathbf{L}^{1}(\mathbf{R})$. Let $u, v \in \mathbf{L}^{1}(\mathbf{R})_{+}$be the limits of u_{n}, v_{n} in $\mathbf{L}^{1}(\mathbf{R})$. Now adding the corresponding equations to (2.1), (2.2) for ($S P)_{f n, g n}$ and using that $u_{n}, v_{n} \geq 0$ we get;

$$
\begin{equation*}
\left(\frac{u_{n}^{2}-v_{n}^{2}}{2}\right)_{x} \leq f_{n}+g_{n} \tag{3}
\end{equation*}
$$

Since $u_{n}(-n)=v_{n}(-n), u_{n}(n)=v_{n}(n)$, integrating from $-\infty$ to x and from x to ∞ we get $\left\|u_{n}^{2}-v_{n}^{2}\right\|_{\infty} \leq 2\left\|f_{n}+g_{n}\right\| \mathbf{L}^{1}(\mathbf{R})$. Since, for $a, b \geq 0$, $|a-b| \leq\left|a^{2}-b^{2}\right|^{1 / 2}$, the sequence $u_{n}-v_{n}$ is bounded in $\mathbf{L}^{\infty}(\mathbf{R})$. Then, $u_{n}^{2}-v_{n}^{2}=\left(u_{n}-v_{n}\right)\left(u_{n}+v_{n}\right)$ is bounded in $\mathbf{L}^{1}(\mathbf{R})$. From (SP $)_{f n, g n}$ it follows that $\left(\frac{u_{n}^{2}}{2}\right)_{x},\left(\frac{v_{n}^{2}}{2}\right)_{x}$ are bounded in $\mathbf{L}^{1}(\mathbf{R})$. This, together with $u_{n} \rightarrow u, v_{n} \rightarrow v$ in $\mathbf{L}^{1}(\mathbf{R})$ implies that u_{n}, v_{n} are bounded in $\mathbf{L}^{\infty}(\mathbf{R})$ and $u_{n}^{2} \rightarrow u^{2}, v_{n}^{2} \rightarrow v^{2}$ in $\mathbf{L}^{1}(\mathbf{R})$. Thus

$$
\left(\frac{u_{n}^{2}}{2}\right)_{x} \rightarrow\left(\frac{u^{2}}{2}\right)_{x},\left(\frac{v_{n}^{2}}{2}\right)_{x} \rightarrow\left(\frac{v^{2}}{2}\right)_{x} \text { in } \mathbf{L}^{1}(\mathbf{R}),(u, v) \in D(A)
$$

and letting $n \rightarrow \infty$ in $(S P)_{f n, g n}$ we get a solution $(u, v) \in D(A)$ for $(S P)_{f, g}$.

Using the Crandall - Ligget's theorem in combination with lemmas 1 and 2 above, one gets :

Proposition 1.- For any $\left(u_{0}, v_{0}\right) \in \mathbf{L}^{1}(\mathbf{R})_{+}^{2}$ and any $t>0$, there exists a unique mild (or semigroup) solution $(u, v) \in C\left([0, T], \mathbf{L}^{1}(\mathbf{R})_{+}^{2}\right.$ of (BC) with initial data $u(0)=u_{0}, v(0)=v_{0}$. If $(u, v),(\widehat{u}, \widehat{v})$ are two mild solutions of $(B C)$ with initial data $\left(u_{0}, v_{0}\right),\left(\widehat{u}_{0}, \widehat{v}_{0}\right) \in \mathbf{L}^{1}(\mathbf{R})_{+}^{2}$ respectively, then:

$$
\left\|(u(t)-\widehat{u}(t))^{+}\right\|_{\mathbf{L}^{1}(\mathbf{R})}+\left\|(v(t)-\widehat{v}(t))^{+}\right\|_{\mathbf{L}^{1}(\mathbf{R})} \leq\left\|\left(u_{0} \widehat{u}_{0}\right)^{+}\right\|_{\mathbf{L}^{1}(\mathbf{R})}+
$$ $\left\|\left(\omega_{0} \widehat{v}_{0}\right)^{+}\right\|_{\mathbf{L}^{1}(\mathbf{R})}$

Moreover, if $\left.u_{0}, v_{0}\right) \in \mathbf{L}^{1}(\mathbf{R})_{+}^{2} \cap \mathbf{L}^{p}(\mathbf{R})_{+}^{2}, 1 \leq \infty$, then $(u(t), v(t)) \in$ $\mathbf{L}^{1}(\mathbf{R})_{+}^{2} \cap \mathbf{L}^{p}(\mathbf{R})_{+}^{2}$ and for any $t \geq 0$

$$
\|u(t)\|_{\mathbf{L}^{p}(\mathbf{R})}+\|v(t)\|_{\mathbf{L}^{p}(\mathbf{R})} \leq\left\|u_{0}\right\|_{\mathbf{L}^{p}(\mathbf{R})}+\left\|v_{0}\right\|_{\mathbf{L}^{p}(\mathbf{R})} .
$$

Proof.—Just remark that the last assertion is a consequence of the inequalities (1) in Lemma 1 ([1], section 2).

Before proving the regularizing estimate (RE) let us prove that the semigroup solution (u, v) of $(B C)$ with initial data $\left(u_{0}, v_{0}\right) \in \mathbf{L}^{\mathbf{1}}(\mathbf{R})_{+}^{2} \cap$ $\mathbf{L}^{\infty}(\mathbf{R})_{+}^{2}$ obtained via the Crandal-Ligget's theorem is a Kruzkov's solution. This is a consequence of two facts : first, if $(u(t), v(t))$ is the mild solution of $(B C)$ with initial data $\left(u_{0}, v_{0}\right) \in \mathbf{L}^{1}(\mathbf{R})_{+}^{2} \cap \mathbf{L}^{\infty}(\mathbf{R})_{+}^{2}$ then $u(t)$ and $v(t)$ are, respectively, the mild solutions of

$$
\begin{equation*}
u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=\Psi(t) \tag{*}
\end{equation*}
$$

$$
\begin{equation*}
v_{t}-\left(\frac{v^{2}}{2}\right)_{x}=-\Psi(t) \tag{**}
\end{equation*}
$$

where $\Psi(t) \equiv v^{2}(t)-u^{2}(t)([10]$, Lemma 1.7) and second, the well known fact that mild or semigroup solutions of $\left(^{*}\right)$ and ($\left.{ }^{* *}\right)$ are in fact Kruzkov's solutions of $\left(^{*}\right),\left({ }^{* *}\right)$ respectively ([1], Prop. 2.11). Writing what means that $u(t), v(t)$ are Kruzkov's solutions of $\left(^{*}\right),\left({ }^{* *}\right)$ respectively we get that $(u(t), v(t))$ is a Kruzkov solution of $(B C)$ in the sense of definition 1. One can argue directly using only [1], Prop. 2.11. Recall that (u, v) is obtained in the following way : let $\mathcal{P}_{n}=\left\{0=a_{0}^{n}<\ldots<a_{n}^{n}=T\right\}$ where $a_{k}^{n}=\frac{k T}{n}$. Let $u_{n}(t), v_{n}(t)$ be the step functions given by $u_{n}(0)=0, v_{n}(0)=0, u_{n}(t)=$ $u_{k}^{n}, v_{n}(t)=v_{k}^{n}$ in $\left.] a_{k-1}^{n}, a_{k}^{n}\right]$, where $\left(u_{k}^{n}, v_{k}^{n}\right)$ are constructed as solutions of the difference scheme :

$$
\frac{u_{k}^{n}-u_{k-1}^{n}}{a_{k}^{n}-a_{k-1}^{n}}+\left(\frac{\left(u_{k}^{n}\right)^{2}}{2}\right)_{x}+\left(u_{k}^{n}\right)^{2}-\left(v_{k}^{n}\right)^{2}=0
$$

$$
\begin{equation*}
\frac{v_{k}^{n}-v_{k-1}^{n}}{a_{k}^{n}-a_{k-1}^{n}}-\left(\frac{\left(v_{k}^{n}\right)^{2}}{2}\right)_{x}+\left(v_{k}^{n}\right)^{2}-\left(u_{k}^{n}\right)^{2}=0 \tag{DS}
\end{equation*}
$$

with $u_{0}^{n}=u_{0}, v_{0}^{n}=v_{0}$. Then $u_{n}(t), v_{n}(t) \rightarrow u(t), v(t)$ in $\mathbf{L}^{1}(\mathbf{R})$ uniformly on $[0, T]$. Let $\Psi_{n}(t)=\left(v_{k}^{n}\right)^{2}-\left(u_{k}^{n}\right)^{2}$ on $\left.] a_{k-1}^{n}, a_{k}^{n}\right]$. Since $\left(u_{0}, v_{0}\right) \in \mathbf{L}^{1}(\mathbf{R})_{+}^{2} \cap$ $\mathbf{L}^{\infty}(\mathbf{R})_{+}^{2}$ then $\Psi_{n}(t) \rightarrow \Psi(t):=v(t)^{2}-u(t)^{2}$ in $\mathbf{L}^{1}\left([0, T], \mathbf{L}^{1}(\mathbf{R})\right)$ as $n \rightarrow \infty$. Thus $u(t), v(t)$ are mild solutions of

$$
\left\{\begin{array} { l }
{ u _ { t } + (\frac { u ^ { 2 } } { 2 }) _ { x } = \Psi (t) } \\
{ u (0) = u _ { 0 } }
\end{array} \quad \left\{\begin{array}{l}
v_{t}-\left(\frac{v^{2}}{2}\right)_{x}=\Psi(t) \\
v(0)=v_{0}
\end{array}\right.\right.
$$

respectively therefore $(u(t), v(t))$ is the Kruzkov's solution of (BC) in $[0, T] \times \mathbf{R}$ with initial data (u_{0}, v_{0}) in the sense of Definition 1 ([1], Prop. 2.11).

Since $\left(u_{0}, v_{0}\right) \in \mathbf{L}^{\infty}(\mathbf{R})^{2}$, then $u, v \in \mathbf{L}^{\infty}([0,1] \times \mathbf{R})$.
Taking $k>\|u(., .)\|_{\infty}, k^{\prime}>\|v(., .)\|_{\infty}$ and then $k<-\|u(., .)\|_{\infty}, k^{\prime}<$ $-\|v(., .)\|_{\infty}$ we see that u, v are distributional solutions of (BC). We can now easily show the regularizing estimate $(R E)$ of theorem 1. Let $\left(u_{0}, v_{0}\right) \in$ $\mathbf{L}^{1}(\mathbf{R})_{+}$. Let $\left(u_{0 n}, v_{0 n}\right) \in \mathbf{L}^{1}(\mathbf{R})_{+}^{2} \cap \mathbf{L}^{\infty}(\mathbf{R})_{+}^{2}$ be such that $u_{0 n} \uparrow u_{0}, v_{0 n} \uparrow v_{0}$. Let $u_{n}(t), v_{n}(t)$ be the solutions of ($B C$) given by proposition 1. Using [2], Theorem 2, it follows that

$$
\begin{aligned}
& \frac{u_{n}(t+h)-u_{n}(t)}{h} \geq-\frac{1}{t+h} u_{n}(t) \\
& \frac{v_{n}(t+h)-v_{n}(t)}{h} \geq-\frac{1}{t+h} v_{n}(t)
\end{aligned}
$$

for $t, h>0$. This implies that for any $t>0$ and any $t \in] 0, T] u_{n t} \geq$ $-\frac{u_{n}}{t}, v_{n t} \geq-\frac{v_{n}}{t}$ in $\mathcal{D}^{\prime}((0, T) \times \mathbf{R})$. It follows that

$$
\left(\frac{u_{n}^{2}-v_{n}^{2}}{2}\right)_{x} \leq \frac{u_{n}+v_{n}}{t}
$$

in $\mathcal{D}^{\prime}((0, T) \times \mathbf{R})$. Thus, for any $\varphi \in C_{0}^{\infty}(\mathbf{R})$ with $\|\varphi\|_{\infty} \leq 1, \varphi \geq 0$:

$$
\begin{equation*}
\int_{\mathbf{R}} \frac{u_{n}^{2}(t, x)-v_{n}^{2}(t, x)}{2} \varphi^{\prime}(x) \mathrm{d} x \leq \frac{\left\|u_{n}(t)+v_{n}(t)\right\|_{\mathbf{L}^{1}(\mathbf{R})}}{t} \leq \frac{\left\|u_{0}+v_{0}\right\|_{\mathbf{L}^{1}(\mathbf{R})}}{t} \tag{4}
\end{equation*}
$$

holds $a . e$. with respect to t. Since $u_{n}, v_{n} \in C\left([0, T], \mathbf{L}^{1}(\mathbf{R})_{+}\right)$it holds for all $t \in] 0, T]$. As we remarked above, since $\left(u_{o n}, v_{o n}\right) \in \mathbf{L}^{\infty}(\mathbf{R})^{2},\left(u_{n}(t), v_{n}(t) \in\right.$ $\mathbf{L}^{\infty}(\mathbf{R})^{2}$. Then, $u_{n}(t)^{2}-v_{n}(t)^{2} \in \mathbf{L}^{1}(\mathbf{R})$. Now the following argument can be justified : let x_{0} be a Lebesgue point of $u_{n}(t)^{2}-v_{n}(t)^{2}$. For each $k \in \mathbf{N}$, take $\varphi_{k}(x)=0$ if $x<x_{0}, k\left(x-x_{0}\right)$ if $\left.\left.x \in\right] x_{0}, x_{0}+1 / k\right], 1$ if $x \geq x_{0}+1 / k$. Plug φ_{k} into (4) to get :

$$
-k \int_{x}^{x+1 / k} \frac{u_{n}^{2}(t, x)-v_{n}^{2}(t, x)}{2} d x \leq \frac{\left\|u_{n}(t)+v_{n}(t)\right\|_{\mathbf{L}^{1}(\mathbf{R})}}{t}
$$

Since x_{0} is a Lebesgue point of $u_{n}^{2}(t)-v_{n}^{2}(t)$, letting $k \rightarrow \infty$ we get :

$$
-\left(u_{n}^{2}\left(t, x_{0}\right)-v_{n}^{2}\left(t, x_{0}\right)\right) \leq \frac{2}{t}\left\|u_{n}(t)+v_{n}(t)\right\|_{\mathbf{L}^{1}(\mathbf{R})}
$$

Taking now $\varphi_{k}(x)=1$ if $x \leq x_{0}, 1-k\left(x-x_{0}\right)$ if $\left.\left.x \in\right] x_{0}, x_{0}+1 / k\right], 0$ if $x \geq x_{0}$ and repeating the argument above, one gets :

$$
\left(u_{n}^{2}\left(t, x_{0}\right)-v_{n}^{2}\left(t, x_{0}\right)\right) \leq \frac{2}{t}\left\|u_{n}(t)+v_{n}(t)\right\|_{\mathbf{L}^{1}(\mathbf{R})}
$$

Therefore, $u_{n}^{2}(t)-v_{n}^{2}(t) \in \mathbf{L}^{\infty}([0, T] \times \mathbf{R})$ and

$$
\left\|u_{n}^{2}(t)-v_{n}^{2}(t)\right\|_{\infty} \leq \frac{2}{t}\left\|u_{n}(t)+v_{n}(t)\right\|_{\mathbf{L}^{1}(\mathbf{R})}
$$

for all $t \in] 0, T]$. Since for $a, b \geq 0,|a-b| \leq\left|a^{2}-b^{2}\right|^{1 / 2}$, it follows that

$$
\left\|u(t)-v_{n}(t)\right\|_{\infty} \leq \frac{\sqrt{2}}{t^{1 / 2}}\left(\left\|u_{0}+v_{0}\right\|_{\mathbf{L}^{1}(\mathbf{R})}\right)^{1 / 2}
$$

and

$$
\left\|u_{n}^{2}(t)-v_{n}^{2}(t)\right\|_{\mathbf{L}^{1}(\mathbf{R})} \leq \frac{\sqrt{2}}{t^{1 / 2}}\left(\left\|u_{0}+v_{0}\right\|_{\mathbf{L}^{1}(\mathbf{R})}\right)^{3 / 2}
$$

Since $u_{n t}+\left(\frac{u_{n}^{2}}{2}\right)_{x}+u_{n}^{2}-v_{n}^{2}=0$ holds in $\mathcal{D}^{\prime}((0, T) \times \mathbf{R})$ then :
$\left(\frac{u_{n}^{2}}{2}\right)_{x} \leq v_{n}^{2}-u_{n}^{2}+\frac{u_{n}}{t}$. As before, this implies that $u_{n} \in \mathbf{L}^{\infty}([0, T] \times \mathbf{R})$ and $\left\|u_{n}(t)\right\|_{\infty} \leq\left\{\frac{2}{t}\left\|u_{0}+v_{0}\right\|_{\mathbf{L}^{1}(\mathbf{R})}+\frac{2 \sqrt{2}}{t^{1 / 2}}\left(\left\|u_{0}+v_{0}\right\|_{\mathbf{L}^{1}(\mathbf{R})}\right)^{3 / 2}\right\}^{1 / 2}$
for all $n \in \mathbf{N}$ and $t>0$, Letting $n \rightarrow \infty$ we get $(R E)$ for $u(t)$. Similarly, $(R E)$ holds for $v(t)$.

Now, it is easy to show that for any $\left(u_{0}, v_{0}\right) \in \mathbf{L}^{1}(\mathbf{R})_{+}^{2}$, the semigroup solution of $(B C)$ given by proposition 1 is in fact a Kruzkov's solution of $(B C) .(R E)$ implies that $(u, v) \in \mathbf{L}^{\infty}\left([0, T], \mathbf{L}^{1}(\mathbf{R})\right)^{2} \cap \mathbf{L}^{\infty}([\tau, T] \times \mathbf{R})^{2}$ for any $\tau>0$. Let $u_{0 n}, v_{0 n} \in \mathbf{L}^{1}(\mathbf{R})_{+} \cap \mathbf{L}^{\infty}(\mathbf{R})_{+}$be such that $u_{0 n} \uparrow u_{0}, v_{0 n} \uparrow v_{0}$. As has been proved above, the semigroup solutions u_{n}, v_{n} of $(B C)$ in $[0, T]$ with initial data $u_{0 n}, v_{0 n}$ satisfy :

$$
\int_{0}^{T} \int_{\mathbf{R}}\left|u_{n}-k\right| \zeta_{t}+\operatorname{sign}_{0}\left(u_{n}-k\right)\left[\left(\frac{u_{n}^{2}}{2}-\frac{k^{2}}{2}\right) \zeta_{x}+\left(v_{n}^{2}-u_{n}^{2}\right) \zeta\right] \mathrm{d} x \mathrm{~d} t \geq 0
$$

$$
\begin{align*}
\int_{0}^{T} \int_{\mathbf{R}}\left|v_{n}-k^{\prime}\right| \eta_{t}+\operatorname{sign}_{0}\left(v_{n}-k^{\prime}\right) & {\left[\left(\frac{k^{\prime 2}}{2}-\frac{v_{n}^{2}}{2}\right) \eta_{x}+\left(u_{n}^{2}-v_{n}^{2}\right) \eta\right] \mathrm{d} x \mathrm{~d} t \geq 0 } \tag{5}\\
& -101-
\end{align*}
$$

for all $\zeta, \eta \in C_{0}^{\infty}((0, T) \times \mathbf{R}), \zeta, \eta \geq 0$, all $k, k^{\prime} \in \mathbf{R}$ and all $n \in \mathbf{N}$.
Since u_{n}, v_{n} satisfy the estimate $(R E), u_{n}^{2}-v_{n}^{2} \rightarrow u^{2}-v^{2}$ in $\mathbf{L}^{1}([\tau, T] \times \mathbf{R})$ for any $\tau \in[0, T]$ and one can let $n \rightarrow \infty$ in (5) to get

$$
\begin{aligned}
& \int_{0}^{T} \int_{\mathbf{R}} \alpha(t, x, k)\left[(u-k) \zeta_{t}+\left(\frac{u^{2}}{2}-\frac{k^{2}}{2}\right) \zeta_{x}+\left(v^{2}-u^{2}\right) \zeta\right] \mathrm{d} x \mathrm{~d} t \geq 0 \\
& \int_{0}^{T} \int_{\mathbf{R}} \beta\left(t, x, k^{\prime}\right)\left[\left(v-k^{\prime}\right) \eta_{t}+\left(\frac{k^{\prime 2}}{2}-\frac{v^{2}}{2}\right) \eta_{x}+\left(u^{2}-v^{2}\right) \eta\right] \mathrm{d} x \mathrm{~d} t \geq 0
\end{aligned}
$$

for all $\zeta, \eta \in C_{0}^{\infty}((0, T) \times \mathbf{R}), \zeta, \eta \geq 0$ and all $k, k^{\prime} \in \mathbf{R}$ where $\alpha(t, x, k) \in$ $\operatorname{sign}(u(t, x)-k), \beta\left(t, x, k^{\prime}\right) \in \operatorname{sign}\left(v(t, x)-k^{\prime}\right)$.

Using [1], Lemme 2.2, we see that (u, v) is a Kruzkov's solution of $(B C)$ on $[0, T] \times \mathbf{R}$ with initial data $\left(u_{0}, v_{0}\right)$.

The uniqueness of Kruzkov's solutions of $(B C)$ follows easily adaptating the arguments of [1], Sect. II. Firts of all we observe that if $(u, v),(\widehat{u}, \widehat{v})$ are Kruzkov's solutions of $(B C)$ on $[0, T] \times \mathbf{R}$ with respective initial data $\left(u_{0}, v_{0}\right),\left(\widehat{u}_{0} \widehat{v}_{0}\right) \in \mathbf{L}^{1}(\mathbf{R})_{+}^{2}$ then ([1], Prop. 2.7) there exists some $\alpha(t, x) \in$ $\operatorname{sign}(u(t, x)-\widehat{u}(t, x)), \beta(t, x) \in \operatorname{sign}(v(t, x)-\widehat{v}(t, x))$ such that
$\int_{0}^{T} \int_{\mathbf{R}}|u-\widehat{u}| \zeta_{t}+\alpha(t, x)\left[\left(\frac{u^{2}-\widehat{u}^{2}}{2}\right) \zeta_{x}+\left(\left(v^{2}-u^{2}\right)-\left(\widehat{v}^{2}-\widehat{u}^{2}\right)\right) \zeta\right] \mathrm{d} x \mathrm{~d} t \geq 0$
$\int_{0}^{T} \int_{\mathbf{R}}|v-\widehat{v}| \eta_{t}+\beta(t, x)\left[\left(\frac{\widehat{v}^{2}-v^{2}}{2}\right) \eta_{x}+\left(\left(u^{2}-v^{2}\right)-\left(\widehat{u}^{2}-\widehat{v}^{2}\right)\right) \eta\right] \mathrm{d} x \mathrm{~d} t \geq 0$
holds for all $\zeta, \eta \in C_{0}^{\infty}((0, T) \times \mathbf{R}), \zeta, \eta \geq 0$. Take $\zeta, \eta \in C_{0}^{\infty}((0, T) \times \mathbf{R}), \zeta \geq$ 0 in both inequalities and add them. Then, observing that

$$
\begin{aligned}
& {\left[\left(u^{2}-\widehat{u}^{2}\right)-\left(v^{2}-\widehat{v}^{2}\right)\right](\beta(t, x)-\alpha(t, x)) \zeta \leq 0 \text { a.e. one gets : }} \\
& \int_{0}^{T} \int_{\mathbf{R}}(|u-\widehat{u}|+|v-\widehat{v}|) \zeta_{x}+\left[\left(\frac{u^{2}}{2}-\frac{\widehat{u}^{2}}{2}\right) \alpha+\left(\frac{v^{2}}{2}-\frac{\widehat{v}^{2}}{2}\right) \beta\right] \zeta_{x} \mathrm{~d} x \mathrm{~d} t \geq 0
\end{aligned}
$$

As in [1], Lemme 2.5, one obtains : for any $\tau \in] 0, T]$ fixed

$$
\begin{gathered}
\int_{|x| \leq R-C t}|u(t, x)-\widehat{u}(t, x)|+|v(t, x)-\widehat{v}(t, x)| \mathrm{d} x \\
\leq \int_{|x| \leq R-C s}|u(s, x)-\widehat{u}(s, x)|+|v(s, x)-\widehat{v}(s, x)| \mathrm{d} x \\
-102-
\end{gathered}
$$

for $0<\tau \leq s \leq t \leq T$, where C is the Lipschitz constant of the function $r \rightarrow \frac{r^{2}}{2}$ on $\{|r| \leq \max (|u(t, x)|,|\widehat{u}(t, x)|,|v(t, x)|,|\widehat{v}(t, x)|): t \in[\tau, T], x \in$ $\mathbf{R}\}$ and $R>C t$. Thus :

$$
\begin{align*}
\int_{|x| \leq C t} & |u(t, x)-\widehat{u}(t, x)|+|v(t, x)-\widehat{v}(t, x)| \mathrm{d} x \tag{6}\\
& \leq \int_{\mathbf{R}}|u(s, x)-\widehat{u}(s, x)|+|v(s, x)-\widehat{v}(s, x)| \mathrm{d} x
\end{align*}
$$

for any $0<\tau \leq s \leq t \leq T$. Since $(u(s), v(s)) \rightarrow\left(u_{0}, v_{0}\right)$ on $\mathbf{L}^{\mathbf{1}}(\mathbf{R})$ as $s \rightarrow 0$, letting $R \rightarrow \infty$ on (6) and then $\tau, s \rightarrow 0$ we get :

$$
\int_{\mathbf{R}}|u(t, x)-\widehat{u}(t, x)|+|v(t, x)-\widehat{v}(t, x)| \mathrm{d} x \leq \int_{\mathbf{R}}\left|u_{0}-\widehat{u}_{0}\right|+\left|v_{0}-\widehat{v}_{0}\right| \mathrm{d} x
$$

for any $t>0$. From this estimate, the uniqueness of Kruzkov's solutions of $(B C)$ follows. This finishes the proof of theorem 1.

ACKNOWLEDGEMENT

We would like to thank Philippe Bénilan for his interesting suggestions.

Références

[1] Benilan (Ph.). - Equations d'évolution dans un espace de Banach quelconque et applications.. - Thesis, Univ. Paris XI, Orsay, 1972.
[2] Benilan (Ph.), Crandall (M, G).-Regularizing effects for homogeneous evolution equations. Amer. J. Math. Supplement dedicated to P. HARTMAN 1981, p. 23-29.
[3] Benilan (Ph.), Crandall (M, G), PaZY (A.). - Revolution equations governed accretive operators. - (forthcoming book).
[4] Brezis (H.). - Operateurs maximaux monotones. - North Holland. Math. Studies 5, 1973.
[5] Brezis (H.), Haraux (A.).- Image d'une somme d'opérateurs monotones et applications., Israel J. Math., t. 23, 1976, p. 165-186.
[6] Crandall (M.G). - The semigroup approach to first order quasilinear equations in several space variables, Israel J. Math., t. 12, 1972, p. 108-132.
[7] Crandall (M.G), LigGett (T.M.). - Generation of semigroups of nonlinear transformations on general Banach spaces, Amer. J. Math., t. 93, 1971, p. $265-$
298. 298.
[8] Kruzkov (S.N.).- First order quasillinear equations in several space variables.,
Math. USSR - 56 , t. 10 Math. USSR - 56, t. 10, 1970, p. 217-243.

V. Caselles and Ch. Klaiany

[9] Liu (T.P.), Pierre (M.).- Source solutions and assymptotic behavior in conservation laws, J. Diff. Eq., t. 51, 1984, p. 419-441.
[10] Pierre (M.). - Generation et perturbations de semigroupes de contractions non lineaires. These 3° cycle, Univ. Paris VI, 1976 .
(Manuscrit reçu le 1er juillet 1988)

[^0]: * Supported by a grant from the "Ministerio de Educacion y Ciencia de España".
 (1) Equipe de Mathématiques de Besançon, U.A. CNRS 741, 25030 Besançon Cedex, France, and Facultad de Matemáticas, C/Dr. Moliner, 50. Burjassot (Valencia), Spain.
 (2) Equipe de Mathématiques de Besançon, U.A. CNRS 741, 25030 Besançon Cedex, France.

