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A Viterbo-Hofer-Zehnder Type Result
for Hamiltonian Inclusions

XIANLING FAN(1)

Annales de la Faculté des Sciences de Toulouse XII, nO 3, 1991

On obtient un resultat de type de Viterbo-Hofer-Zehnder

pour les inclusions hamiltoniennes. Soit H : - IR une fonction locale

lipschitzienne et c E IR. Supposons que E :=== {a? E H(~) = c} soit
un ensemble partiel compact et non vide de IR2N et 0 g pour
x E E. Donc, pour aucun 03B4 > 0 l’inclusion hamiltonienne x E 
a une solution conservatrice et periodique de facon que 
c~ E (c 2014 ~ , c + ~~ pour tout t. .

ABSTRACT. - We obtain a Viterbo-Hofer-Zehnder type result for

Hamiltonian inclusions. Let H : : IR2N -~ IR be a locally Lipschitz function
and c E IR. Suppose that E := {a- E IR2~ ~ ~(a-) = c} is a nonempty

compact subset of IR2N and 0 ~ ~H(x) for x E E. Then for any 03B4 > 0 the
Hamiltonian inclusion x E has a conservative periodic solution

x(t) such that H (~(t)~ = c’ E (c - ~ , c + 8) for all t.

1. Introduction and Main Result

Hofer and Zehnder [1] extended the result of Viterbo [2]. The aim of

the present paper is to extend the result of [1] to the case of Hamiltonian
inclusions.

Let H : locally Lipschitz continuous, which is written as
H E Consider the Hamiltonian inclusion.

where 8H is Clarke’s generalized gradient of If and J is the standard

2N x 2N symplectic matrix (see [3]). By a solution of (1) we mean an
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absolutely continuous function x(t) satisfying (1) for almost all t. It is

well-known that, if H is regular, then any solution of (1) is conservative,
i.e. H (x(~)) - constant. However, in general, if H is not regular, then a
solution of (1) need not be conservative.

Our main result is the following

THEOREM 1.2014 Let H E and c E IR. Suppose that

Ec = nonempty compact subset of IR2N and

Then for any bounded neighborhood S~ of E~, there are positive constants ,Q
and d such that for any 03B4 > 0, (1) has a T = T(03B4)-periodic conservative
solution in ~ such that - c’ E (c - b , c -~ b} and

The following results obtained by the author [4] will be used in the proof
of theorem 1.

PROPOSITION 1 ([4]). - Let 03A9 be an open subset o,f IRk and H E

C1-~(S~, IR). Then for any continuous function E : SZ --~ (0, there

is a C°° - function g : S~ -~ IR such that

i~ I g(x) - H(x) I  E(x) for x E ~,
it) V x E 03A9, ~ y ~ 03A9 and 03BE E 8H(y) such that y| ~ E(x) and

I g~(x) - ~ ~  E(x) .

A C1-function g : 03A9 ~ IR satisfying the condition i) and it) in proposi-
tion 1 is called an ~(x)-admissible approximation for H on 03A9. In particular,
when E(x) - E, g is called an E-admissible approximation for H on ~.

PROPOSITION 2 (~4~). Let SZ be an open subset of H E

and En -~ 0 (n -~ oo) with En > 0. Suppose that for each

n, Hn E IR) is an En-admissible approzimation for H on 03A9 and xn is
a Tn-periodic solution of the Hamiltonian system



If

i~ ~Tn ~ n = 1, 2, ...~ is bounded,

ii~ ~ t E IR , , n = 1, 2, ... ~ is contained in a compact subset of ~,
then has a subsequence which converges uniformly to a
T-periodic solution x of ~~~ with T = lim TnK and

In section 2 we give the proof of theorem 1. In section 3 we extend

the a priori bound criterion of Benci-Hofer-Rabinowitz [5] to the case of
Hamiltonian inclusions.

2. . Proof of theorem 1

Without loss of generality we may assume that c = 1 and E1 is connected.

Let SZ, a bounded neighborhood of ~1, , be given. By the upper semi-
continuity of H, the compactness of Ei and the condition (2), we may
choose a bounded neighborhood V of Ei such that V C SZ and 0 ~ for
z E V. . Then there are positive constants m and M such that m  ~~ ~  M
for ~ E 8H(V). Using the pseudo-gradient flow (see ~6~ ) we can construct a
Lipschitz such that

We fix positive numbers r, b, such that

Take a sequence E~, -~ 0 such that 0  En  min~ s~3 , ~~3~ for all ~. By
proposition 1, for each n, there is an ~n-admissible approximation Hn for
H on U and Hn E C°°(U, Then we have



For each n let ~n be the flow in U generated by

Set E1,n = Hn 1 (1). It is easy to see that -s/2 , s/2~ x ~1,~~ C U
and 

LEMMA 1. - For each n, 03A31,n is a connected compact hypersurface in U .

Proof. - It suffices to prove the connectedness of El,n. For fixed n let
zi ~ ~2 E Then there are -ti  0 and -t2  0 such that

Note that F1+~~2 is connected since ~1+~~2 is homeomorphic to E1. Let p
be a path in E1+$~2 joining yi to y2. It is easy to see that along the descent
flow lines of p can be deformed to a path in joining ~1 to ac2. So

l,n is connected and the proof of lemma 1 is complete.
Set Un = ~n ~ { -s/2 ~ ~/2) X ~1,~~ . Then ~ : (-~/2, ~/2) X E1,~ -.,

Un C U is a diffeomorphism. We denote by An and Bn the unbounded
and bounded component of IR2~ ~ Un respectively and by B the bounded
component of IR2~ ~ U. We may assume that 0 E B, then 0 E Bn since
B ~ Bn for all n.

Let 03B4 > 0 be given. We may assume 6  s/2 .

Following [1], we pick a C°°-function / : : ~ -s/2 , s/2~ ~ IR satisfying

Choose a C"-function g (0, oo) --~ IR such that



For each n define a C~-function Gn IR2N ~ IR by

Then, by [1], for each n the Hamiltonian system

has a 1-periodic solution ~n in Un such that

where ,Q and d = 16 03C0-D2 are positive constants independent of n and 03B4.

By the definition of Gn we have

Set zn (t) = 1 )~~ . Then z~ is a Tn-periodic solution in U~ of
the Hamiltonian system

with Tn = 1) and

From the fact that 1 ~  5 and I’ is bounded on (2014~ ~ , ~) it follows
that {Tn ( n = 1, 2, ...} is bounded. Noting that

from proposition 2 it follows that ~zn~ has a subsequence which

converges uniformly to a conservative T-periodic solution z of (1) such that

T=limTnK, H(z(t)) =c=limcnK ~ [1-03B4 , 1+03B4] and , ‘d t. .

(3) follows from (7). The proof of theorem 1 is complete. D



3. A criterion for a priori bounds

For x E = IRN x set ae _ (p , q) _ . Note that in

general neither of the sets apH(x) x and need be contained

in the other, but both of them are contained in x (see
[3]). The following theorem is an extension of the result of Benci-Hofer-
Rabinowitz [5].

THEOREM 2. - Under the assumptions of theorem 1, if there is a

function IR~ and constants a, b > 0 with a -~ b > 0 such

that

has a periodic solution on .

Proof. - We use the notations used in the proof of theorem 1 and assume
c = 1. By the upper semicontinuity of 8H and the compactness of Ec, for
s > 0 small, there is a constant 1 > 0 such that

where U = s) x ~1) .
Let z be a conservative T-periodic solution of (1) in U. Setting ~(t) _

- Ji(t), then ~(t) E aH(z(t)) a.e. and

integrating for (9) over [0, T] gives



We now take a sequence 5n --~ 0 with 0  ~n  s~2. By theorem
1, for each n, (1) has a conservative Tn-periodic solution zn in U such
that A(zn)  d and IH(zn(t)) - ll  bn. From (10) it follows that

{Tn ~ n = 1, 2, 3, ...~ is bounded. It is easy to see that ~zn~ has a
subsequence which converges uniformly to a conservative T-periodic solution
z of (1) and z(t) V t.

The proof is complete.

COROLLARY 1. - Suppose that H E IR), c E IR and E~ _

H-1(c) is compact. If

then ~~~ has a periodic solution on .

Proof. - Note that ( 11 ) implies (2) . Hence all assumptions of theorem 1
are satisfied. Taking a = b = 1 and K = 0 gives (8). Corollary 1 follows
from theorem 2.

COROLLARY 2. - Suppose that H E c E IR and ~~ _

H-1 (c~ is compact. If

then (1 ) has a periodic solution on ~~ .

Proof. - It is clear that (pl) and (p2) imply (2). By the upper
semicontinuity of 8H and the compactness of Ec there is a bounded

neighborhood U of ~~ such that (pl ) and (p2 ) are also true if ~~ is replaced
by U. Applying the acute angle approximation theorem (see e.g. [7]) for
the multivalued map 1r28H : it is not difficult to construct a

map W E C1 (IR2N , lRN) such that

Set K(x) = -W(x), 03C01x~ for x E Then K E and

for x ~IR2N and £ E 
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It is easy to see that there are constants r, ~ > 0 such that

for a* e U with  r, and ( ~ Let

Set a = ( M + ’Y) /m and b = 0. Then for ~c E U and £ E we have

Thus (8) holds and corollary 2 follows from theorem 2.

Remark. - When H ~ C1, (2) and (pi) imply (p2 ) (see [5]), but such
conclusion is not true when H E C1-a.
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