A Viterbo-Hofer-Zehnder type result for hamiltonian inclusions
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 5, Volume 12 (1991) no. 3, pp. 365-372.
@article{AFST_1991_5_12_3_365_0,
     author = {Fan, Xianling},
     title = {A {Viterbo-Hofer-Zehnder} type result for hamiltonian inclusions},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {365--372},
     publisher = {Universit\'e Paul Sabatier},
     address = {Toulouse},
     volume = {Ser. 5, 12},
     number = {3},
     year = {1991},
     zbl = {0761.34017},
     mrnumber = {1189446},
     language = {en},
     url = {http://archive.numdam.org/item/AFST_1991_5_12_3_365_0/}
}
TY  - JOUR
AU  - Fan, Xianling
TI  - A Viterbo-Hofer-Zehnder type result for hamiltonian inclusions
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 1991
DA  - 1991///
SP  - 365
EP  - 372
VL  - Ser. 5, 12
IS  - 3
PB  - Université Paul Sabatier
PP  - Toulouse
UR  - http://archive.numdam.org/item/AFST_1991_5_12_3_365_0/
UR  - https://zbmath.org/?q=an%3A0761.34017
UR  - https://www.ams.org/mathscinet-getitem?mr=1189446
LA  - en
ID  - AFST_1991_5_12_3_365_0
ER  - 
%0 Journal Article
%A Fan, Xianling
%T A Viterbo-Hofer-Zehnder type result for hamiltonian inclusions
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 1991
%P 365-372
%V Ser. 5, 12
%N 3
%I Université Paul Sabatier
%C Toulouse
%G en
%F AFST_1991_5_12_3_365_0
Fan, Xianling. A Viterbo-Hofer-Zehnder type result for hamiltonian inclusions. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 5, Volume 12 (1991) no. 3, pp. 365-372. http://archive.numdam.org/item/AFST_1991_5_12_3_365_0/

[1] Hofer (H.) and Zehnder (E.) .- Periodic solutions on hypersurfaces and a result by C. Viterbo, Invent. Math. 90 (1987) pp. 1-9. | Zbl

[2] Viterbo (C.) .- A proof of the Weinstein conjecture in IR2n, Ann. Inst. H. Poincaré, Anal. non linéaire 4 (1987) pp. 337-356. | Numdam | Zbl

[3] Clarke (F.) . - Optimization and Nonsmooth Analysis John Wiley & Sons (1983). | Zbl

[4] Fan (X.) .- The C1-admissible approximation for Lipschitz functions and the Hamiltonian inclusions, Adv. Math. China, 20:1 (1991) pp. 177-178. | Zbl

[5] Benci (V.), Hofer (H.) and Rabinowitz (P.) . - A remark on a priori bounds and existence for periodic solutions of Hamiltonian systems, In Periodic Solutions of Hamiltonian Systems and Related Topics (R. Rabinowitz) et al, Eds D. Reidel Publishing Company (1987) pp. 85-88. | Zbl

[6] Chang (K.) .- Variational methods for non-differentiable functionals and its applications to partial differential equations, J. Math. Anal. Appl. 80 (1981) pp. 102-129. | Zbl

[7] Borisovich (Yu.), Gelman (B.), Muschkis (A.) and Obuhovskii (V.) .- Topological methods in the fixed point theory of multivalued mappings, Usp. Mat. Nauk. Russian, 35 (1980) pp. 59-126. | Zbl