@article{AFST_1992_6_1_2_237_0, author = {Mu\~noz Rivera, Jaime E.}, title = {Smoothness effect and decay on a class of non linear evolution equation}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {237--260}, publisher = {Universit\'e Paul Sabatier}, address = {Toulouse}, volume = {Ser. 6, 1}, number = {2}, year = {1992}, mrnumber = {1202073}, zbl = {0783.47074}, language = {en}, url = {http://archive.numdam.org/item/AFST_1992_6_1_2_237_0/} }
TY - JOUR AU - Muñoz Rivera, Jaime E. TI - Smoothness effect and decay on a class of non linear evolution equation JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1992 SP - 237 EP - 260 VL - 1 IS - 2 PB - Université Paul Sabatier PP - Toulouse UR - http://archive.numdam.org/item/AFST_1992_6_1_2_237_0/ LA - en ID - AFST_1992_6_1_2_237_0 ER -
%0 Journal Article %A Muñoz Rivera, Jaime E. %T Smoothness effect and decay on a class of non linear evolution equation %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1992 %P 237-260 %V 1 %N 2 %I Université Paul Sabatier %C Toulouse %U http://archive.numdam.org/item/AFST_1992_6_1_2_237_0/ %G en %F AFST_1992_6_1_2_237_0
Muñoz Rivera, Jaime E. Smoothness effect and decay on a class of non linear evolution equation. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 1 (1992) no. 2, pp. 237-260. http://archive.numdam.org/item/AFST_1992_6_1_2_237_0/
[1] Global solution of the Cauchy problem for a nonlinear hyperbolic equation. Non linear partial diferential equation and their applications, College de France Seminar, Vol 6. Edited by H. Brezis & J. L. Lions, Pitman-London (1984) pp. 1-26. | Zbl
) and ) . -[2] Sur une classe d'équations fonctionnelles aux dérivées partielles, Izv. Akad. Nauk SSSR, Ser. Mat. 4 (1940) pp. 17-26 (Math. Rev. 2 n° 102). | JFM | Zbl
) .-[3] Yosida approximation and nonlinear hyperbolic equation, Nonlinear Analysis, Theory, Method and Application, Vol. 15, 5 (1990) pp. 479-495. | Zbl
) and ) .-[4] Quelques Méthodes de résolution de problèmes aux limites non linéaires, Dunod Gauthier Villars, Paris (1969). | Zbl
) .-[5] Non Homogeneous Boundary Value Problems and aplications, Springer-Verlag New-York (1972). | Zbl
) and ) . -[6] On a nonlinear wave equation with strong damping, Funkcial Ekvac., 34 (1991) pp. 303-311. | MR | Zbl
) and ) .-[7] On a non linear wave equation with damping, Revista de Matematica de la Universidad Complutense de Madrid, Vol. 3, 2 (1990). | MR | Zbl
) and ) .-[8] On global classical solutions of a non linear wave equation, Applicable analysis, 10 (1980) pp. 179-195. | MR | Zbl
) .-[9] Degenerate quasilinear hyperbolic equation with strong damping, Funkcialaj Ekvacioj, 27 (1984) pp. 125-145. | MR | Zbl
) .-[10] Decay properties of solutions of some quasilinear hyperbolic equation with strong damping, To appear. | MR | Zbl
) . -[11] On a class of quasilinear hyperbolic equation, Math. USSR-Sb., 25-1 (1975) pp. 145-158. | MR | Zbl
) .-[12] Stability and Decay for a class of non linear hyperbolic problems, Asymptotic Analysis 1 (1988) pp. 161-185. | MR | Zbl
) .-