@article{AFST_1993_6_2_1_97_0, author = {Dimitrov Voulov, Hristo and Dimitrov Bainov, Drumi}, title = {Asymptotic stability for a homogeneous singularly perturbed system of differential equations with unbounded delay}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {97--116}, publisher = {Universit\'e Paul Sabatier}, address = {Toulouse}, volume = {Ser. 6, 2}, number = {1}, year = {1993}, mrnumber = {1230707}, zbl = {0772.34054}, language = {en}, url = {http://archive.numdam.org/item/AFST_1993_6_2_1_97_0/} }
TY - JOUR AU - Dimitrov Voulov, Hristo AU - Dimitrov Bainov, Drumi TI - Asymptotic stability for a homogeneous singularly perturbed system of differential equations with unbounded delay JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1993 SP - 97 EP - 116 VL - 2 IS - 1 PB - Université Paul Sabatier PP - Toulouse UR - http://archive.numdam.org/item/AFST_1993_6_2_1_97_0/ LA - en ID - AFST_1993_6_2_1_97_0 ER -
%0 Journal Article %A Dimitrov Voulov, Hristo %A Dimitrov Bainov, Drumi %T Asymptotic stability for a homogeneous singularly perturbed system of differential equations with unbounded delay %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1993 %P 97-116 %V 2 %N 1 %I Université Paul Sabatier %C Toulouse %U http://archive.numdam.org/item/AFST_1993_6_2_1_97_0/ %G en %F AFST_1993_6_2_1_97_0
Dimitrov Voulov, Hristo; Dimitrov Bainov, Drumi. Asymptotic stability for a homogeneous singularly perturbed system of differential equations with unbounded delay. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 2 (1993) no. 1, pp. 97-116. http://archive.numdam.org/item/AFST_1993_6_2_1_97_0/
[1] A method and new results for stability and instability of autonomous functional differential equations, SIAM J. Appl. Math. 17 (1969), pp. 681-697. | MR | Zbl
) .-[2] The condition of regular degeneration for singularly perturbed linear differential-difference equations, J. Differential Equations 1 (1965), pp. 39-94. | MR | Zbl
) .-[3] The condition of regular degeneration for singularly perturbed systems of linear differential-difference equations, J. Math. Anal. Appl. 14 (1966), pp. 83-106. | MR | Zbl
) and ) .-[4] Existence and stability of solutions of a delay-differential system, Arch. Rat Mech. Anal. 10 (1962), pp. 401-426. | MR | Zbl
) .-[5] Singular perturbations of systems with retarded argument, Rev. Math. Pures Appl. 7 (1962). | MR | Zbl
) .-[6] Phase space for retarded differential equations with infinite delay, Funk. Ekvac. 21 (1978), pp. 11-41. | MR | Zbl
) and ) .-[7] Singular perturbations on the infinite interval, Trans. Amer. Math. Soc. 123 (1966), pp. 521-525. | MR | Zbl
) .-[8] Stability problem in functional differential equations with infinite delay, Funk. Ekvac. 21 (1978), pp. 63-80. | MR | Zbl
) .-[9] On asymptotic stability of systems with after-effect containing a small parameter as coefficient of the derivative, Prikl. Mat. Meh. 26 (1962), pp. 52-61. Translated as J. Appl. Math. Mech. 26 (1962), pp. 68-81. | MR | Zbl
) .-[10] Some problems in the theory of stability of motion, Moscow, 1959. English translation by J. Brenner, Stanford, California, 1962.
) .-[11] A unified approach to stability theory for differential equations with infinite delay, J. Int. Eqns 10 (1985), pp. 147-156. | MR | Zbl
) and ) .-[12] Convergence and boundary layers in singularly perturbed linear functional differential equations, J. Diff. Eqns 54 (1984), pp. 295-309. | MR | Zbl
) .-[13] Exponential estimates for singularly perturbed functional differential equations, J. Math. Anal. Appl. 103 (1984), pp. 443-460. | MR | Zbl
) . -[14] The asymptotics of solutions of singularly perturbed functional differential equations : distributed and concentrated delays are different, J. Math. Anal. Appl. 105 (1985), pp. 250-257. | MR | Zbl
) . -[15] Application of Lyapunov's method to problems in the stability of systems with a delay, Automat. and Remote Control 21 (1960), pp. 515-520. | MR | Zbl
) .-[16] Stability theory by Liapunov's direct method, Springer Verlag, 1977. | MR | Zbl
), ) and ) .-[17] Exponentially asymptotic stability for functional differential equations with infinite retardations, Tohoku Math. J. 31 (1979), pp. 363-382. | MR | Zbl
) .-[18] Asymptotic stability of singularly perturbed linear system with unbounded delay, Differential Equations : Qualitative Theory, Vol. I, II (Szeged, 1984), pp. 1097-1124. Colloq. Maht. Soc. Janos Bolyai, North Holland, 47 (1987). | MR | Zbl
) and ) .-[19] On the asymptotic stability of differential equations with "maxima", Rend. Circ. Mat. Palermo, Serie II, Tomo XL (1991), pp. 385-420. | MR | Zbl
) and ) .-