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Covariant star-products

MOHSEN MASMOUDI(1)

Annales de la Faculté des Sciences de Toulouse Vol. IV, nO 1, 1995

R.ESUME. - On donne une demonstration elementaire du théorème
d’existence de produits-star sur les variétés symplectiques.
On montre 1’existence de produit-star covariant sur les orbites coadjointes
admettant une polarisation reelle.

ABSTRACT. - We give a direct and elementary proof of the well known
existence theorem of *-products on a symplectic manifold.

Looking for covariant *-product on coadjoint orbits, we prove the exis-
tence of such a deformation when the orbit admits a real polarization.

1. Introduction

*-products were defined in [1] by Flato, Fronsdal, Lichnerowicz as a tool
for quantizing a classical system, described with a symplectic manifold
( M, cv ) . Roughly speaking, a *-product is a (formal) deformation of
the associative algebra C’°° (M) provided with usual (pointwise) product
starting with the Poisson bracket. The quantum structure is then the
deformed structure on the unchanged space of observables.

Each quantization procedure, when applied on a coadjoint orbit M of a
Lie group G, gives some way to build up unitary irreducible representations
of G. To use *-products for such a purpose, we need in fact a particular
property, the covariance of the *-product:

(*) Reçu le 16 mars 1993
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if X is, for each X in the Lie algebra g of G, the function on M defined by

(See [2] for a discussion on invariance and covariance properties for *-
products on a coadjoint orbit.)

In this paper, we recall first the theorem of existence of *-products
on a sympletic manifold. This theorem is due to P. Lecomte and M. de

Wilde [3]. Some recent new proofs were given by Maeda, Omori and
Yoshioka [4] and Lecomte and de Wilde [5]. We expose here that last

proof in a slighty different way, which is direct and totally elementary: we
build a *-product by gluing together local *-products defined on domains
of a chart of M. That proof follows the idea of Vey, Lichnerowicz,
Neroslavsky and Vlassov ([6], [7]) and, of course, Maeda, Onori and

Yoshioka. In these approaches, the obstruction to construct *-product lies
in the third cohomology group H3 ~M~) of the manifold M. Lecomte and
de Wilde defined formal deformation of the Lie algebra (M), ~ ~ , ~ ~), ,
for such a deformation, the obstruction is in the group H3 (M)) for
the adjoint action, which contains strictly H3~M). Let us finally mention
the construction of Maslov and Karasev [8] who found an obstruction in
HZ (M) to construct simultaneously a deformation and a representation of
the deformed structure on Lecomte and de Wilde proved that
all these obstructions can be surrounded, with the use of local conformal
vector fields on M. We follow here that classical proof, using only local
computations and Cech calculus.

Then we use this proof in the case of a coadjoint orbit in the dual g* of
a Lie algebra g. More precisely, we consider a point a~o in g* and suppose
there exists in zo a real polarization. Under this assumption, we prove the
existence of a covariant *-product on the coadjoint orbit of xQ, endowed
with its canonical symplectic structure.

2. Existence of *-products on a symplectic manifold

Let be a symplectic manifold. We denote by {’, ’} the Poisson
bracket defined on C°° {M) by the usual relations:



A *-praduct is by definition a formal deformation in the sense of Ger-
stenhaber [9] of the associative algebra i.e. a bilinear map:

where ~w~~ is the space of formal power series in the variable v with
coefficients in such that each C,. is a bidifferential operator and:

With these properties, * defines an associative structure on C°° (M) ~w~~ ,
of whom unity is 1 and:

is a Lie bracket (it satisfies Jacobi identity) and a formal deformation of the
Poisson bracket.

On a symplectic vector space R2n and thus on any domain U of a
canonical chart in M; there exists *-products, for instance the Moyal *-
product [1].

THEOREM [3]. - On each simplectic manifold (M,03C9), there ezists a *-
product.

Proof. - Let us first choose a locally finite covering of the
manifold such that each Ua is the domain of a canonical chart on M and
all the intersections:

are contractible. We fix a total ordering ~ on A and a partition of the unity
03C803B1 subordinated to is a *-product on tIa and the
space of derivation there exists a canonical linear mapping:



Let us denote by Conf(Ua) the space of (conformal) vector fields ~a on
Ua such that:

is an affine space on F(Ua).
Now we suppose, by induction on k, to have, on each Ua, a *-product

*a:

with Cr,a = on for all r  2k and an affine mapping Da form
Conf(Ua) into -~ X f ~~ = + ~« ~ ~.~~ ~ such that:

the Da’’ (~a ) being differential operators, vanishing on constants. Of course,
these assumptions hold for k = 1.

Now it is well known ([6], [7]) that for each a  /3, we can find a
differential operator vanishing on constants Ha{3 such that, up to order
2k -E- 2,

coincide with v. Thus:

here ~ f a~~ in do not depend of ~a~ while:

For each a  /3, we choose a vector field in Con a C°° function

and put for any ( f in :



Now, on ~a  f3  I)’ (= + + Hy«) can be written
as ~ ~ ~h«~,y~ ) . The problem is to choose simultaneously the C°° functions

As in ~3~, we choose the unique C°° solution of all the equations:

for each in Con . is totally antisymmetric in a, ~3, ~y and
- ~«,~~ + ~«~y~ - ~~3~yb vanishes on U«~,y~. . We define then:

vanishes on Ka is well defined and, for each a,

satisfy the induction hypothesis at order 2k + 2.
If the second Cech cohomology group of M vanishes, there exists a global

conformal vector field ~ on M and a global derivation D~~~) of the *-product
therefore we refind here the proof of [11]. In the general case, our proof by
building directly a *-product does not need the theorem of [6] which allows
to construct *-product, starting with particular deformation of the Poisson
bracket.

3. . Parametrization of coadjoint orbits

Let G be a connected and simply connected Lie group, g its Lie algebra
and g* the dual of g. G acts on g* by the coadjoint action, denoted here
by:

Let xo be a point of g* and M its coadjoint orbit G ~ xo, endowed with the
canonical 2-form:



here X - is the vector field defined on M by:

From now on, we suppose there exists a real polarization ~ in zo. This
means h is a maximal isotropic subspace in g for the bilinear form 
is a subalgebra of g and, if G(zo) is the stabiliz er of zo, Ad C I).

If Ho is the analytic subgroup of G, with Lie algebra f), we denote by H
the subgroup G(zo)Ho of G. Then M becomes a fibre bundle over G/H: :

In this part, we recall the results of Pedersen ~10~ . ..
Let ~~ be the subspace . It is an abelian subalgebra of

(C°° (M~, ~ ~ , ~ ~~ . . Let ~1 be the algebra:

For each open subset V in G/H, we define ~~(~) as and 

as 
, ,

The space ~1 is sometimes called the space of quantizable functions. It

is easy to verify that the functions X, for X in g are in ~1. . Now let m be a

supplementary space of ~ in g and V be a sufhciently small neighborhood
in G/H such that m is a supplementary space of Ad g~ for each g in G such
that g . xo belongs to V. Pedersen proved that, if (Xl, ... X k) is a basis
of m, then, on ~r ‘ 1 (V), we can write each function u of ~1 ( V ~ in the form:

where the aZ are in Moreover, the ai are uniquely determined on
~r~ 1 (V) by that relation. Now we define a "local" induced representation.
First there exists a local character x of H: let V be a neighborhood of 0 in
~ such that exp is a diffeormorphism on V, we put:



Then, if U is a neighborhood of 0 in m and V, U sufficiently small, the
neighborhood ~ = exp(U) exp(V) of unity in G is diffeomorphic to U x V,
we choose V to be exp(U)H and define the local representation (E, p) by:

Of course, we can identify E with by putting, for each f in C°° (Y),

Generally, p cannot be extended to a representation of G. But infinitesi-
. mally,

is a representation of g on the space C°° ( V ~. Moreover, by construction,
the dp~X ) are differential operators of order 1 on ~, we write:

Finally, we call U the set ~-1 ( V ) and define a map 6 from E1(V) to 
by:

THEOREM [10]. 2014 b is an isomorphism of Lie algebras between ~1(V)
and .

The proof of this in ~10~, indeed, it is a direct consequence of the fact
that dp is a representation. Now, we define. canonical coordinates on U: let

, ... be a coordinate system on V in G/H, we define:

(pi, qz) is a canonical system of coordinates on U, the qz belong to 
and the p2 to Then by construction, we have the following theorem.



THEOREM. - On the intersection of two such chart U and U’, the

coordinates satisfy:

Endowed with that atlas, M is an open subset of an affine bundle Lover
G/H, whose transition functions are defined by the relations ~*). .

Remarks

The functions X being in ~1, they have the following form in our
coordinate system:

If ~ satisfies the Pukanszky condition, then M is exactly the bundle L.

4. Construction of covariant *-product

We consider now our orbit M as an open submanifold of the fibre bundle

L - G/H. L is canonically polarized with the tangent spaces TxLx of its
fibres Then we build up a *-product on L as in the second part. We still
denote by ~~ (resp. eO(V)) the space (resp. 
Moreover, we choose our canonical charts with domain where Va is
one of the local domains of chart defined in the third part and the partition
of unity 1/Ja subordinated to Ua in ~~. Finally, we add to our induction
hypothesis that, for each a, Cr,a is vanishes on e1(Va) for r > 2 and

C 

If we choose the (p, q) coordinates of the preceeding part on our neigh-
borhood Ua and begin with Moyal product with these coordinates, then for
k = 1, the induction hypothesis holds.

Now, it is not very difficult to choose Ha/3 such that Ha/3 vanishes on
(we choose first such that vanishes on ~1 ( Va~ ), then we

prove the existence of a Coo function such that = + 

vanishes . With that choice, a Hamiltonian vector field

vanishing on ~1 (Va~y ) so it is identically zero. Hence we can construct

directly the family 
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Now, because I~a vanishes on ~1 ( V«~ ), our induction hypothesis is still
true for *a . . In this way, we obtain a *-product on L, after restriction to M,
we have a covariant *-product on M, since each X is in ~1. .

THEOREM . - Let xo be an element in the dual g* of a Lie algebra g
such that there exists in xo a real polarization ~. Then on the coadjoint
orbit M of xp, there exists a covariant *-product.

Let us recall ~2~ that for each covariant a-product on M, there exists a
representation of G into the group of automorphisms of ~w~~ , *), ,
which is a deformation of the geometric action of G on M and 
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