Spectral study of a self-adjoint operator on L 2 (Ω) related with a Poincaré type constant
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 5 (1996) no. 1, p. 105-123
@article{AFST_1996_6_5_1_105_0,
     author = {Gaultier, Maurice and Lezaun, Mikel},
     title = {Spectral study of a self-adjoint operator on $L^2 (\Omega )$ related with a Poincar\'e type constant},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier},
     address = {Toulouse},
     volume = {Ser. 6, 5},
     number = {1},
     year = {1996},
     pages = {105-123},
     zbl = {0869.35066},
     language = {en},
     url = {http://www.numdam.org/item/AFST_1996_6_5_1_105_0}
}
Gaultier, Maurice; Lezaun, Mikel. Spectral study of a self-adjoint operator on $L^2 (\Omega )$ related with a Poincaré type constant. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 5 (1996) no. 1, pp. 105-123. http://www.numdam.org/item/AFST_1996_6_5_1_105_0/

[1] Brézis (H.) .- Analyse fonctionnelle, Théorie et Applications. Masson, Paris (1983). | MR 697382 | Zbl 0511.46001

[2] Carnhan (B.), Luther (H.A.) and Wilker (J.O.) .- Applied Numerical Methods, John Wiley & Sons (1969). | Zbl 0195.44701

[3] Dautrey (R.) and Lions (J.-L.) .- Analyse Mathématiques et Calcul Numérique pour les Sciences et les Techniques, Masson, Paris (1984). | MR 792484 | Zbl 0708.35001

[4] Gaultier (M.) and Lezaun (M.) .- An existence and uniqueness theorem for the transfer of mass and heat in a rectangular cavity, I.M.A. J. Appl. Math. 48 (1992), pp. 125-148. | MR 1159835 | Zbl 0762.35084

[5] Grisvard (P.) .- Elliptic Problems in Nonsmooth Domains, Pitman, London (1985). | MR 775683 | Zbl 0695.35060

[6] Necas (J.) .- Les méthodes directes en théories des équations elliptiques, Masson, Paris (1967). | MR 227584

[7] Teman (R.) .- Navier-Stokes Equations, North-Holland, Amsterdam (1977). | MR 609732 | Zbl 0383.35057

[8] Wang (Z.X.) and Guo (D.R.) .- Special functions, World Scientific Publishing Co., Singapore (1989). | MR 1034956 | Zbl 0724.33001

[9] Watson (G.N.) .- A treatise on the theory of Bessel functions, 2nd ed., Cambridge University Press, London (1944). | MR 10746 | Zbl 0063.08184