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Structure of perfect Lie algebras without
center and outer derivations(*)

SAÏD BENAYADI(1)

Annales de la Faculté des Sciences de Toulouse Vol. V, n° 2, 1996

RÉSUMÉ. 2014 On montre que certaines propriétés classiques des algebres
de Lie semi-simples restent vraies pour les algebres de Lie g qui vérifient
[ g , g ~ ] = g, Der(g) = ad(g), Z(g) = ~0~, que nous appellerons les algebres
de Lie sympathiques.

On construit une algebre de Lie sympathique non semi-simple de dimen-
sion 25. Cette algebre de Lie est la plus petite algebre de Lie sympathique
non semi-simple connue a ce jour.

Si g est une algebre de Lie, on montre que g contient un plus grand
ideal sympathique M, et qu’il existe un ideal résoluble de g note P(g)
qui est le plus grand ideal résoluble I de g tel que I n M = ~0~. Et

on montre l’existence d’une sous-algebre de Lie sympathique m telle que
g = m EB P(g), et g est sympathique si et seulement si P(g) = ~0~.
On etudie les ideaux I d’une algebre de Lie g tel que g/I est sympathique.

ABSTRACT. - We show that some classical properties of semi-simple
Lie algebras are still valid for pertect Lie algebras 9 without center and
outer derivations satisfies [ g , g ~ = g, Der(g) = ad(g), Z(g) = ~0~).
Let us call them sympathetic Lie algebras.
We construct the smallest non semi-simple Lie algebra (of dimension 25)
known until now.

If g a Lie algebra, then we show that g contains a greatest sympathetic
ideal M, and there exists a solvable ideal of g denoted P(g) which is
the greatest among the solvable ideals I of g for which I n M = ~0~.
And we show that there exists a sympathetic sub algebra m of g such that
g = and g is a sympathetic Lie algebra if and only if P(g) = ~0~.
We study the ideals I of a Lie algebra 9 such that 9 / I is a sympathetic
Lie algebra.

(*) } Recule 2 mars 1994
This work has been taken from my doctoral dissertation (fevrier 1993)

~ Laboratoire de Physique Mathematique, Université de Bourgogne, B.P. 138,
F-21004 Dijon Cedex (France)
and current address : Departement de Mathématiques, Université de Metz, URA
CNRS 399, lle-de-Saulcy, F-57045 Metz Cedex (France)



Notations and definitions

Let g be a finite dimensional Lie algebra over K = R or C. Let Der(g),
ad(g), Z(g), R(g), denote respectively the algebra
of derivations of g, the ideal of inner derivations of g, the center of g, the
radical of g, the derived series of g, the descending central series of g.

(i) A Lie algebra g is perfect if g = ~ g , g ~ .

(ii) A Lie algebra g is sympathetic if g = ~ g , g ~, Der(g) = ad(g) and
Z(g) = ~0~.

(iii) Let g a Lie algebra, and let I an ideal of g.
I is a direct factor of g if there exists an ideal J of g such that

(iv) A Lie algebra is irreducible if it has no non-zero direct factor.

Introduction and principal results

Let us give a brief survey of sympathetic Lie algebras story. In the

seventies, M. Flato asked the following question: "Any semi-simple Lie
algebra g satisfies ~ g , g ~ = g, Der(g) = ad(g), Z(g) = ~0~; are these three
properties characteristic of semi-simple Lie algebras ?".
A negative answer was given about twenty years later by E. Angelopoulos

[An], who constructed a class of Lie algebras satisfying these three proper-
ties, but which are not semi-simple, the counter-example of minimal dimen-
sion being a Lie algebra of dimension 35 and Levi subalgebra isomorphic to
sl(2). We call the Lie algebras g which satisfy ~ g , g ~ = g, Z(g) = ~0~ and
Der(g) = ad(g) the sympathetic Lie algebras.

In [ABBP], we showed that this sympathetic Lie algebra g of dimension
35 satisfies ~2(g, g) _ ~0~, which implies that it is (a) rigid (Lie algebra).
Therefore the sympathetic structure isn’t a direct degeneration of semi-
simple structure (e.g., by contraction). Moreover, for fixed dimension,
sympathetic Lie algebras provide an open set in the variety of Lie algebras.
So we started a general study of this structure.



In [Bel], we showed that several classical properties of semi-simple Lie
algebras are still valid for the class of sympathetic Lie algebras. For instance:

(i) Let g be a sympathetic Lie algebra, I an ideal of g. Then, I is

sympathetic if and only if I is a direct factor of g [Bel, corollary 2
of proposition 4].

(ii) Every extension of two sympathetic Lie algebras is sympathetic and
trivial [Bel, corollary 3 of proposition 4].

(iii) A Lie algebra is sympathetic if and only if it is a direct sum of

irreducible sympathetic ideals [Bel, theorem 1].

In [Be2], we give an example of a non semi-simple sympathetic Lie algebra
of dimension 48 which is non rigid by deformations. And in [AnBe], we
give the first examples of non semi-simple sympathetic Lie algebras with
invariant scalar products (i.e. symmetric, non-degenerate and invariant
bilinear forms).

In the present paper, we continue the study initiated in [Bel]. Actually,
several results can be started for perfect Lie algebras, and then restricted
to sympathetic ones.

In the first section of this paper, we recall Angelopoulos method of
construction of non semi-simple sympathetic Lie algebras [An]. In the

second section, we construct a non semi-simple sympathetic Lie algebra of
dimension 25. This Lie algebra is the smallest non semi-simple sympathetic
Lie algebra known until now.

In the third section, we show that several classical properties of semi-
simple Lie algebras are still valid for the class of perfect Lie algebras. In

this section, we obtain the following principal results:

(i) Let g be a perfect Lie algebra.

Then g = /~i (B ... where each hi is an irreducible perfect
ideal of g. Furthermore, this decomposition is unique.

This result generalizes theorem 1 of [Bel], and shows that the de-
composition of a sympathetic Lie algebra into irreducible sympathetic
ideals is unique.

(ii) Let g be a sympathetic Lie algebra, and g = /~i (B ... be its

unique decomposition into irreducible sympathetic ideals.

Then /~i..., hn are the only irreducible sympathetic ideals of g.



These results are classical if we replace perfect or sympathetic by
semi-simple, but the semi-simplicity isn’t a necessary condition to
obtain them.

It is known that every Lie algebra g has a greatest semi-simple ideal S,
and that its radical R(g) satisfies the following properties:

(i) S = 

(ii) is the smallest among the ideals I of g for which is semi-

simple.

Then we ask the following questions:

Question 1 Does there exist a greatest sympathetic ideal N~ of g ?

Question 2 Does there exist a solvable ideal P(g) of g which is the greatest
among solvable ideals I of g for which I n lt~ _ ~ 0 ~ ? .

Question 3 Does there exist an ideal T(g) of g which is the smallest among
ideals I of g for which 9 / I is a sympathetic Lie algebra?
Question 4 If P(g) and T(g) exist, do they coincide?

In the fourth section of this work, we answer to questions 1 and 2, and
in the fifth section we study the ideals I of g such that 9 / I is a sympathetic
Lie algebra. We obtain the following principal results:

(i) Let g be a Lie algebra, I and J be two sympathetic ideals of g.
Then I n J and I + J are sympathetic ideals of g.

(ii) Every Lie algebra contains a greatest sympathetic ideal.

(iii) Let g be a Lie algebra, M its greatest sympathetic ideal. There
exists a solvable ideal of g denoted P(g) which is the greatest among
the solvable ideals I of g for which In M = ~ 0 ~ .

(iv) g is a sympathetic Lie algebra if and only if P(g) = ~0~. If we

replace sympathetic by semi-simple and P(g) by R(g), we obtain
the characterization of semi-simple Lie algebras : g is semi-simple if
and only if R(g) = ~0~. We call P(g) the sympathetic radical of g.

(v) Let g be a Lie algebra, P(g) its sympathetic radical.
Then there exists a sympathetic subalgebra m of g such that

g = 

If we replace sympathetic by semi-simple and P(g) by R(g), we
obtain the Levi-Malcev decomposition of g.



(vi) Let g be a Lie algebra, H be an ideal of g, be the union of

the ascending central series of g. If H is minimal among the ideals

I of g for which g/I is a sympathetic Lie algebra, then:

(1) H is a solvable ideal of g,

In the sixth section, we give negative answers to questions 3 and 4, giving
examples of the following situation:

(i) Let g be a Lie algebra, I and J be ideals of g such that 9 / I and g/J
are sympathetic Lie algebras. It can happen that g/I n J is not a
sympathetic Lie algebra.

(ii) There exists Lie algebras g which have an infinite number of minimal
ideals among the ideals I of g for which g/I is a sympathetic Lie
algebra.

Therefore, the answer to question 3 is no.

(iii) There exists Lie algebras g such that P(g) and T(g) do exist as
defined in questions 2 and 3, but do not coincide.

Therefore, the answer to question 4 is no. Moreover:

(iv) There exists irreducible sympathetic Lie algebras with (non trivial)
sympathetic non semi-simple quotients.

This last example shows that (contrarily to the semi-simple case) irre-

ducibility, in the sympathetic case, is not really a minimal condition. One
should introduce a smaller class of irreducible sympathetic Lie algebras
without (non trivial) sympathetic non semi-siinple quotients. For instance
Angelopoulos’s examples belong to this class.

In our opinion, these examples show how flabby the sympathetic struc-
ture is (compared e.g., to semi-simple), and that classification is probably
impossible, even if the Levi subalgebra s is specified, and even if s is specified
to be sl(2).

The Lie algebras envisaged in this work are of finite dimension over
K = R or C.



1. Angelopoulos’s theorem and construction
of non semi-simple sympathetic Lie algebras [An]

In this section K = C.

1.1 E. Angelopoulos’s theorem

THEOREM [An].- Let g be a Lie algebra, g = S ® R(g) be its Levi

decomposition, and S = ~~=1 Sj be the decomposition of S into simple
ideals. If g satisfies the following assertions:

~i~ R(g) is nilpotent and R(g) = where thegi, 1  i  4,
are non zero simple S-modules such that:

g~ is a non trivial S-module,

(iii) any two modules of S-modules gi, g2, g3, g4~ sl ~ ... SN are non
isomorphic,

then g is a non semi-simple sympathetic Lie algebra.

1.2 Method of construction of non semi-simple sympathetic Lie
algebras

Let S = go be a simple Lie algebra and let ~gi~ 1_i_4 be four S-modules.
If there exist non trivial morphisms of S’-modules:

and if:

(i) 91 A 91 A gl doesn’t contain any 5’-module isomorphic to g4,

(ii) the S-module g4 is non trivial,

(iii) the modules 0 ~ i ~ 4, are simple and any two of them are non
isomorphic,

then there exists a product [ . , . ] on g = such that g equipped with
[ . , . ] is a non semi-simple sympathetic Lie algebra.



1.3 Construction in case where s = sl(2)

We designate by D(n) the sl(2)-module of dimension 2n -E-1, n E (1/2)N.

Let gj ~ D( ij), 1  j  4, be four non trivial sl(2)-modules such that:

(2) g1 ^ g1 (resp. g2 A g2) contains a sl(2)-submodule isomorphic to g3
(resp. g4); gi ® g2 and contain some sl(2)-modules isomorphic
to g4;

(3) g~ A gi A gi has no sl(2)-submodule isomorphic to g4, then there exists
a product [’, ’ I On g = sl{2) ® 9j) such that:

1)~91~9’1~=93~~91~92~=~92~92~=~9’1~93~=94~~9’4~9’i~=~~~
for all i E ~ l, 2, 3, 4~, ~ s , s~ ~ _ ~ s , s~ ~ Sl(2) for all s, s’ E sl(2),

ii) 9 equipped with [’, ’ ] is a non semi-simple sympathetic Lie

algebra.

REMARK AND DEFINITION . .2014 Let g = sl(2) ~ the Lie

algebra above. sl(2) is a Levi component of g, and _ ~1~_i_4 gi- We
call g a Lie-Angelopoulos algebra. 

~ ~

Examples [An]



2. A non semi-simple sympathetic Lie algebra
of dimension 25

In this section K = C. Recall the method of calculation of Clebsch-

Gordan coefficients of [ABBP].
Let s = C~~ p , , q ~ with the Poisson bracket :

and let ,S~ be the space of homogeneous polynomials of degree k. S2 is

invariant by the Poisson bracket, isomorphic to sl(2), and n E (1/2)~1
is a sl(2)-module for the adjoint action isomorphic to D(n).

The Moyal *-produit defined by:

is an associative product, and for ~ in ,5’2 = sl(2), we have ~~, ~ ~ _ ~ ~ , ~ ~ *.
We identify D(n) and D(p) and the map u ® v ~ u * v of

D(n) ® D(p) in D(n) * D(p) is an isomorphism of sl(2)-modules. Using
the development of u * v, we get directly the reduction D(n) ® D(p) =

which gives the coefficients of Clebsch-Gordan.

PROPOSITION 2.1. - There exists a Lie algebra g = gi such that:

(i~ go is isomorphic to sl(2);
(it) the only (non zero) commutators between g2 and gj, i, j > 1 are:

D(3), 92 ^-r D(2), 93 ’~ D(3), g4 ^-’ D(1) as 

Proof. - By the reduction D(n) 0 D(p) = D(i~, there exist
non trivial morphisms of go-modules:



These morphisms and the action of go on each g2 define a skew-symmetric
product [’, -] on g such that the assertion (ii) is verified.

It’s easy to see that the Jacobi identity is verified on

Since D(3) A D(3) A D(3) = D(6) C D(4) C D(3) e D(2) C D(0), then
doesn’t contain a go-submodule isomorphic to g4, which implies

that the Jacobi identity is verified on [~i , , ~g1 , gl~~ .
We conclude that g with the product [ -, - ] is a Lie algebra which verifies

(i), (ii), and (iii).

Realizations of g. - We can realize g as the space of homogeneous
polynomials of even degree ~ 6 without constant terms. The bracket [-, -] ]
on g is defined by:

(a) g1 = ~ (za, 0) } and g3 = ~ (0, v) } where v e D(3). Let v, w E D(3),
i) ~(v, 0) , (w, 0)~ - (0, P3(v, w)) , we recall that P3(v, w) =
- P3(w, v) because P3 is skew-symmetric.

ii) ~(v, 0) , (0, w)~ - P5(z~, w)
[(0, v) ~ (w~ 0)] = - 0) (0, ~)] = ~) = -P5(~ ~)

because Ps is skew-symmetric. So ~(v, 0) (0 , w)~ = ~(o, v), (w, 0)~ .
(b) Let X, Y E D(2),

(c) Let X E D(2) and v E D(3),

We recall that P4 is symmetric.

(d) Let i E ~ 1, 2, 3, 4 } , ~ E gi , s E go,

(e) ~ s , s~ ] = ~s , s~ ~ s for all s, s’ E go = S, where [ -, - ] ~ is the bracket
on S = sl(2).



THEOREM a non semi-simple sympathetic Lie algebra of
dimension ~5.

Proof. - It’s easy to see that R = g2 is the radical of g, which

implies that g isn’t semi-simple. Since R doesn’t contain any go-submodule
isomorphic to D(0), then Z(g) = {0}. . ~ g , g ~ = g because each gi is a non

trivial simple go-module.
Let D be a derivation of g, then there exists y E g such that (D -

ad y)/go = 0, which implies that T = D - ad(y) is a morphism of go-
modules.

Therefore

Since [R, R] ~ is a characteristic ideal of g and [R, R] ~ = g3 ~ g4, then
~’~g3 ) C g3 and T(g4) C 94 ~

By Schur’s Lemma, we have

and T ((v, 0)) = a(v, 0) + b(0, v) for all v E D(3),where y, a, b E C. So
we obtain:

This implies that a - b - a - ~3 = ~y~ = 0, therefore T = 0. So
D = ad(y) E ad(g).
We conclude that g is a non semi-simple sympathetic Lie algebra.

Remark. . - This Lie algebra is the smallest non semi-simple sympathetic
Lie algebra known until now. Recall that 25 is the dimension of this Lie

algebra.

Question 1. . - J. Simon [Si] showed that there doesn’t exist any non
semi-simple sympathetic Lie algebra g such that dim g  10. Does exist a
non semi-simple sympathetic Lie algebra g such that 11  dim g  24 ?



3. Decomposition of perfect Lie algebras

PROPOSITION 3.1.2014 Let g be a perfect Lie algebra and let I be an ideal
of g. If I is a direct factor of g, then I is perfect.

Proof. - I is a direct factor of g, then there exists J an ideal of g such
that g = . Since ~ I , J ~ _ ~ 0 ~ , then we have ~ g , g ~ = ~ I , I ~ ® [ J , J ~
consequently 7 == [7, , I].

LEMMA 3.1.2014 Let g be a Lie algebra. Then g = I1 ® ~ ~ ~ ® ~~, where each
Ii is an irreducible ideal of g.

Proof. - We will prove the Lemma by induction on the dimension of g.
If dim g = 0 or 1, then the lemma is true.

We assume that the lemma is true if dim g  n. Let g be a Lie algebra
such that dimg = n. If g isn’t irreducible, then there exist two proper ideals
of g such that g = J.

By our inductive hypothesis, we have I = Ii where each Ii is an
irreducible ideal of I and J = J1 ~ ... (B Jm where each Ji is an irreducible
ideal of J.

To conclude, it is sufficient to see that every ideal of I (resp. J) is an

ideal of g.

LEMMA 3.2.2014 Let g be a Lie algebra and let I be a perfect ideal of g. If
g = 7i In where each I2 is an ideal of g, then

Proof. - Given that I is perfect, then ~ ~ , g ~ = I, consequently I =
[ I , h ] ~ ... ® [I , In]. . Which proves that I = I ~ I1 ® ... ® I n In .

THEOREM 3.1. . - Let g be perfect algebra. Then g = hi ® ~ ~ ~ ® hn where
each hZ is an irreducible perfect ideal of g. Furthermore, this decomposition
is unique.



Proof. - The existence of the decomposition results from Proposition
3.1 and Lemma 3.1. Let

be two decomposition of g into irreducible perfect ideals.

Let i E ~ 1, ... , n) , by Lemma 3.2, we have

therefore there exist E ~ 1, ... , m} such that hi = hi n h~,ti} , which
implies that hi C h~~2~ . By Lemma 3.2,

then there exists j E {1, ... , , m~ such that hj n h~{i) ~ ~0~, consequently
i = j and hi = h~{2) .

Thus n = m and there exists a permutation cr of {1, ..., n~ such that
hi = for all i E ~ l, ... , , n~, so that the decomposition of g into
irreducible perfect ideals is unique.

COROLLARY . Let g be a perfect Lie algebra, I be a proper ideal of g
and let 9 = hi 0 -’ - ~ ® hn be the unique decomposition of g into irreducible
perfect ideal.

(i) I is an irreducible direct factor of g if and only if there exists

i E ~ 1, ... , n~ such that I = hi. .

(ii) I is a direct factor of g if and only if there exists ... a

subset of ~ 1, ... , n~ such that I = hil ~ ~ ~ ~ ® him. .

Proof

(i) Assume that I is an irreducible direct factor of g, by Proposition 3.1
and Lemma 3.2 there exists i E ~ 1, ..., , n~ such that I = I n hi, so that
I C hi. . Since I is a direct factor of g, then there exists an ideal J of g such
that g = I ® J, and by Lemma 3.2, hi = hi n I, which implies that I = hi. .

(ii) Assume that I is a direct factor of g, by Proposition 3.1, I is a perfect
ideal of g, and by Theorem 3.1, there exist 7i, ..., irreducible perfect
ideals of I such that I = Ii ® ... ~ ~ .



To conclude, it is sufficient to see that every ideal of I is an ideal of g
and to apply (i). The converse is evident.

LEMMA 3.3.2014 Let g be a Lie algebra and I be a direct factor of g.

Proof. - I is a direct factor of g, then there exists J an ideal of g such
that g = J. The assertion (i) is true because

(ii) Let d E Der(7), we consider the endomorphism of g defined by: D/I = d
and D/J = 0, it is easy to check that D is a derivation of g, therefore there
exist x E g such that D = adg(x).

Since g = I ® J, then ~ = where x I E I and ~~ E J, consequently
d = We get that Der(I) = ad(I).

PROPOSITION 3.2

(i) Let g be a perfect Lie algebra such that Der(g) = ad(g) (resp.
Z(g) = ~0~~. Then

where each hi is an irreducible perfect ideal of g such that

Furthermore, this decomposition is unique.

(ii) Let g be a sympathetic Lie algebra. Then

where each hi is an irreducible sympathetic ideal of g.

Furthermore, this decomposition is unique.

From [Bel, corollary 2 of the proposition 1~, corollary of Theorem 3.1
and Proposition 3.2 results the following corollary.



COROLLARY . - ~et g be a sympathetic Lie algebra.

(i~ g has a finite number of irreducible sympathetic ideals hi, ... , hn
and 

(ii) An ideal I of g is sympathetic if and only if I = hil ~...~ him where
~21, ... , C ~l, ..., 72~. .

PROPOSITION 3.3. Let g be a perfect Lie algebra and let S be its

greatest semi-simple ideal. Then there exists a perfect ideal I of g such
that g = S ~ I and I has no non-zero semi-simple ideal.

Proof. - Since S is a semi-simple ideal of g, there exists .~ an ideal of g
such that g = S ® I. By Proposition 3.1, I is a perfect ideal of g.

Let J be a semi-simple ideal of I then J is a semi-simple ideal of g so

Remark. - Proposition 3.3 reduces the study of perfect Lie algebras to
those which have no non-zero semi-simple ideal. Combining with Theorem
3 .1, we see that such a Lie algebra is reduced to a direct sum of non-simple
irreducible perfect ideals.

4. The greatest sympathetic ideal
and the sympathetic radical of Lie algebra

THEOREM 4.1. Let g be a Lie algebra. If I and J are two ideals

satisf ying:

(i~ I is a sympathetic ideal of g,

there exists a vector subspace V of g such that g = J ® V and
~ I , V] C V. Then I fl J is a sympathetic ideal of g.

Proof. - Since .I = ~ I , I J, we have I = ~ I , g J, consequently I =
~ ~ , J J ® ~ I , ~ J . Then ~ 1, J J is a direct factor of I because ~ I , ~ J is
an ideal of I.

By [Bel corollary 2 of proposition 4J, [I , J ] and [I, V ] are ideals of g,
therefore Z ~.~/ ~ I J J ~ _ ~ 0 ~ .



We consider the canonical surjection 03C6 : I ~ I/[ I , J]. Let x E I n J
and let y E I,

Thus I n J = ~ ~ , J ~, consequently I n J is a sympathetic ideal of g.

COROLLARY 1. - Let g be a Lie algebra, I and J be two ideals of g.

(i~ If I is a sympathetic ideal of g and J is a direct factor of g, then
I n J is a. sympathetic ideal of g.

(ii) If I and J are sympathetic ideals of g, then I fl J and I + J are
sympathetic ideals of g.

Proof. - The assertion (i) results directly from Theorem 4.1.

(ii) By ~Bel, corollary 1 of the proposition 4~, we have J is a factor direct
of g, consequently I n J is a sympathetic ideal of g. The following sequence
is exact :

defined by = .r for all .r ~ I and + .cj) = jV(.cj) for all ~ C I
and all xJ E J where N : J --~ J/I n J is the canonical surjection.

Thus I + J is an extension of sympathetic Lie algebras, so I + J is a
sympathetic ideal of g by [Bel, corollary 3 of the proposition 4]. .

COROLLARY 2.2014 Every Lie algebra contains a greatest sympathetic
ideal.

Proof. - Let g be a Lie algebra.

A = ~dim I , I is a sympathetic ideal of g~

is a non-empty subset ofN bounded above by dim g, then it has a greatest
element p, consequently there exists a sympathetic ideal M of g such that
dim m = p.

Let I be a sympathetic ideal of g; by corollary 1 of Theorem 4.1, M + I
is a sympathetic ideal of g. Thus M = M + I, so I ç M.

We conclude that M is the greatest sympathetic ideal of g.



LEMMA 4.1. - Let g be a Lie algebra and let I be an ideal of g. ~f there
exist an ideal J of g satisfying:

(i) [ J J]=J andZ(J)= ~o~,

(ii)g=I®J.

Then I is a characteristic ideal of g.

Proof. - Let x E I and let D E Der(g). D(x) = y + z where y E I and
z E J. Let z ’ E J, then [ z , z’ ~ = - [ x , Dz’ ~ . By Lemma 1 of J

is a characteristic ideal of g, then [ z , z’ ~ ] = 0. Which proves that z = 0,
consequently D(x) E I. We conclude that D(I ) C I.

PROPOSITION 4.1. Let g be a Lie algebra and M be its greatest
, 
sympathetic ideal. Then there exists a characteristic ideal L of g satisfying:

(i) g = ~~l ® L .

(ii) L is the greatest among the ideals of g which are direct factors of g
and do not have any non-zero sympathetic ideal.

Proof. - By [Bel, corollary 2 of the proposition 4~ , there exists an ideal
L of g such that g = M E~9 L, and by Lemma 4.1, L is a characteristic ideal
of g.

Let I be a sympathetic ideal of L, then I is a sympathetic ideal of g,
consequently I C ~ n L = ~ 0 ~ .

Let J be an ideal of g which is a direct factor of g and doesn’t have

any non-zero sympathetic ideal, then there exists an ideal H of g such that

Let M’ be the greatest sympathetic ideal of ~, then there exists an ideal
L’ of H such that H = M’ ® L’ and L’ is a characteristic ideal of H which
doesn’t have any non-zero sympathetic ideal.

Therefore, g = M’ ® L’ ® J where M’ is a sympathetic ideal of g and
where L’ and J are ideals of g which don’t have any non-zero sympathetic
ideal. By [Bel, corollary 2 of proposition 4] and by Lemma 3.2, we get
M = M’. .

Let x E J, then x = y + z where y E M and z E L. Since = ~0~
and [M, Then J CL.



DEFINITION 4.1. - Let g be a Lie algebra. Call sympathetic decomposi-
tion of g, the decomposition of the Proposition (i. e. the decomposition
g = ® L where is the greatest sympathetic ideal of g and where L is
the greatest among the ideals of g which are direct factors of g and don’t
have any non-zero sympathetic ideal).

PROPOSITION 4.2. - Let g be a Lie algebra, M be its greatest sympathetic
ideal and g = M ® L be its sympathetic decomposition. Then the following
assertions are equivalent:

(i) g is a sympathetic Lie algebra;

(ii) L = ~0~;
(iii) R(L) = ~o~.

Proof

(i)~(ii) By [Bel, corollary 2 of proposition 4], L is a sympathetic Lie
algebra, so L = ~0~.
(ii)~(iii) It’s clear.

R(L) = ~0~ implies that L is semi-simple, consequently L = ~0~.
Then g = N~ .

DEFINITION 4.2. - Let g be a Lie algebra, M be its greatest sympathetic
ideal and g = M ® L be its sympathetic decomposition.

We call R(L) the sympathetic radical of g which will be denoted P(g).

Remark. - This terminology is justified by Proposition 4.2.

PROPOSITION 4.3. - Let g be a Lie algebra, M be its greatest sympathetic
ideal and P(g) be its sympathetic radical.

(i~ P(g) is a characteristic ideal of g.

(ii) P(g) is the greatest among the solvable ideals I of g for which

(iii) There exists a sympathetic subalgebra m of g such that g = m®P(g).

Proof. - Let g = M ® L be the sympathetic decomposition of g. The
. assertion (i) is clear.



(ii) Let I be a solvable ideal of g such that I n M = ~0~, then

consequently M n (I + P(g)) = ~0~ This implies that R(M) n (I + P(g)) =
~ 0 ~ , therefore I C P(~). .

(iii) Let S be a Levi component of L. By [Bel, corollary 3 of the

proposition 4], m = M C 5 is a sympathetic Lie subalgebra of g. So that

g = m EB P(g) where m is a sympathetic subalgebra of g.

PROPOSITION 4.4.2014 Let g be a Lie algebra, P(g) be its sympathetic
radical and M be its greatest sympathetic ideal. If m is a sympathetic
subalgebra of g such that g = m ® P(g), then the following assertions are

equivalent:

~i~ M C m; ;

[M, m] C m;

(iii) R(m) is an ideal of g.

Proof. - Let g = M (B L be the sympathetic decomposition of g.

(i)=~(iii) R(g) = R(m) C P(g) implies that R(m) = R(M).

(iii)=~(i) Let 5 be a Levi component of m, then S is a Levi component of

g and S’ = S’1 0 52 where S1 and 52 are two ideals of ,S such that 51 (resp.
52) is a Levi component of M (resp. L). . Thus S1 C R(m) is an ideal of g
such that g = ,Sl C R(m) C L, so that M = 9i C R(m). Which proves that
M C m.

(ii)=~(i) M = [M, M] implies that M , g = M, therefore M = ~ m , M ~,
which implies that M C m.

(i)==~(ii) It’s clear.

Question 2. . Let g be a Lie algebra. We know that if ,S and 5’ are two

Levi components of g, then there exists a special automorphism 03C6 of g such
that ~(9) == S’ [Bo, Levi theorem]. So, if m and m’ are two sympathetic
Lie subalgebras of g satisfying

does there exist an automorphism p of g such that = m’?



The following proposition gives an answer in case where m and m’ contain
the greatest sympathetic ideal of g.

PROPOSITION 4.5. - Let g be a Lie algebra, its sympathetic radical,
M be its greatest sympathetic ideal and

be its sympathetic decomposition. If m and m’ are two sympathetic Lie
subalgebra.s 03C8 of g such that

then there exists a special automorphism of g such that y(m) = mm’.

Precisely, ~ = where a is an element of the nilpotent radical of L.

Proof. - By [Bel, corollary 2 of the proposition 4], m = M ~ ,S’ and
m’ = M EB S’‘ where ,S’ (resp. 5’) is a semi-simple ideal of m (resp. m’).

By the Proposition 4.1, L = S’ ® P(g) = 5’ 0 P(g) and, by [Bo, theorem
5 of sect. 6], there exists a special automorphism of L where a is an

element of nilpotent radical of L such that eadL t~~ (,S’) = S’. Consequently,
~ = is a special automorphism of g such that = m’.

Question 3 . Let g be a Lie algebra, M be its greatest sympa,thetic
ideal, and let m be a sympathetic Lie subalgebra of g such that g = m~P{g).
Does m contain M ?

If the answer is affirmative, then the question 2 has the affirmative answer

(prop. 4.5).

LEMMA 4.2 [Bo].2014 Let g be a Lie algebra and D E Der(g). If D(R(g)) =
~0~, then D is an inner derivation of g.

Proof. - Let C be the centralizer of R(g) in g. We consider the map

defined by = ~ ~ , y J for all x E g and all y E C where

N : g -~ is the canonical surjection, this map is well defined and it’s
a representation of 9 / R(g ).



Let D E Der(g) such that D (R(g)) = ~0~, then the map B : g/R(g) -~ C
defined by B ( N { ~ ) ) = for all x Egis well defined and it’s an element
of Zl {g/R(g) , C) .

Since g/R(g) is semi-simple, then B E ~1 (g/R(g) , C), consequently
there exists v E C such that = for all x E g. Thus

D == 

PROPOSITION 4.6.- Let g be a Lie algebra, P(g) be its sympathetic
radical and let D E Der(g).

If D(P(g)) = ~0~, then D is an inner derivation of g.

Proof. - Let M be the greatest sympathetic ideal of g and g = M EB L
the sympathetic decomposition of g.

- By [Bel, lemma I], M is a characteristic ideal of g, and by Proposition
4.1, L is a characteristic ideal of g, which implies that D/M (resp..D/.L) is
a derivation of M (resp. L).

Then there exists x E M such that D/M = and by Lemma 4.2,
there exists y E L such that D/ L = . So D = adg(x + y) . .

Remark. . - The Proposition 4.6 is an improvenent of Lemma 4.2 because
C R(g) .

PROPOSITION 4.7. - Let g be a Lie algebra, I and J be two ideals of g,
P(I) and P(J) be their sympathetic radicals.

If I n J = ~0~, then P(I) ® P(J) is the sympathetic radical of I ~ J.

Proof. - Let Ml (resp. M2 ) be the greatest sympathetic ideal of I
(resp. J), and let I = Mi 0 Li (resp. J = L2) be the sympathetic
decomposition of I (resp. J), then

Let M be the greatest sympathetic ideal of J and 

the sympathetic decomposition of I (B J.

[M, M] ~ = M implies that M = [M, Mi 0 M2 ~ by [Bel, proposition 3]
and by Proposition 4.1, we have

which proves that P ~I ~ J) = P(I) s3 P(J).



COROLLARY . Let g, ... , gn be Lie algebras, and let P(g1), ... , P(gn)
theirs sympathetic radicals. Then P(g1 ) x ~ ~ ~ x P(gn) is .the sympathetic
radical of gl x ~ ~ ~ x gn.

Remark. - Let g be a Lie algebra, I be an ideal of g. We know that
R(I) = In R(g) (cf. 

In the following proposition, we give a sufficient and necessary condition
so that P(I) = In P(g).

PROPOSITION 4.8 . - Let g be a Lie algebra, M be its greatest sympa-
thetic ideal, g = M ® L be its sympathetic decomposition, and let I be an
ideal of g.

P(I) = In P(g) if and only if M n I is a sympathetic ideal of g.

Proof. - Let M’ be the greatest sympathetic ideal of I and let I =
® L’ be the sympathetic decomposition of I.

M’ = [ M , M’ ] implies that M’ is a characteristic ideal of I (by [Bel,
lemma 1~), therefore M’ is a sympathetic ideal of g, which implies that
M’ c MnI.

Assume that P(I) = I n P(g) and show that M n I is a sympathetic ideal
ofg. Let x ~ M ~ I, x = z + y where z ~ M’ and y ~ L’, then

Let S be a Levi component of L’, then

consequently M n L’ = M n S. Then M n L’ is a semi-simple ideal of L’,
therefore M n L’ = ~0~. Thus x = z We conclude that M n I = M’.

Conversely, we assume that M n I is a sympathetic ideal of g and we
show that

M n I is a sympathetic ideal of I implies that M n I C M’, consequently

Then [M, Z+L~] = {0}, therefore MU (Z+Z/) = {0}, which implies that
L’ C L. Thus P(I) = P(g) n L’. We conclude that P(I) = P(g) n I because
M’ G M and L’ C L.



COROLLARY . - ~et g be a ~ie algebra, M be its greatest sympathetic
ideal and let I be an ideal.of g.

(i) If I is a direct factor of g, then P(I) = I n P(g).

(ii) If M C I, then P(I) = In P(g).
(iii) and are the decreasing sequences of

solvable ideals of g. 
~

~iv) contains for all n 

Proof

{i) Results from corollary 1 of Theorem 4.1 and Proposition 4.8.

{ii~ Is a clear assertion.

To show (iii) and (iv~, it is sufficient to see that and contain

M for all n E N and to apply {ii) .

5. Ideals I such that 9 / I is a sympathetic Lie algebra

LEMMA 5.1. - ~et g be a ~ie algebra and I be an ideal of g such that
Z{g/I) = ~0~. Then:

(i) Z(g) C I;

(ii) if g = hl ® ~ ~ ~ ® hn where each hi is an ideal of g, then I =

I nhl ®...®I nhn.

Proof. - We consider ~o : g --~ 9 / I the canonical surjection.

(i~ Let x E Z(g) and y E g,

then E Z(g/I) = ~0~, which implies that x E I. Hence Z(g) C I.

(ii) Let 

where yi are the elements of hi for all i E ~ 1, ... , n) .



Let i E ~ l, ... , n~,

which implies that E Z(g/I) = ~0~, therefore x2 E ~ n hi.
We conclude that I = I n hi ® ~ ~ ~ n hn .

LEMMA 5.2. - Let g be a Lie algebra, I and J be ideals of g such that
g = I ® J, I’ (resp. J’) be an ideal of I (resp. J). The following assertions
are equivalent:

~i~ g/(I’ ® J’) is a sympathetic Lie algebra;
1/1’ and J/J’ are sympathetic Lie algebras.

Proof. - Since I and J are direct factors of g, then I’ and J’ are ideals
of g, so I’ ® J’ is an ideal of g and g/ (I’ ® J’) is isomorphic to ® J/J’.
Thus by ~Bel, propositions 2 and 3~, the assertions (i) and (it) are equivalent. .

PROPOSITION 5.1. Let g be a Lie algebra, I and J be two ideals of g
such that g = I ® J and let H be an ideal of g. The following assertions are
equivalent:

~i~ g/H is a sympathetic Lie algebra;
I/I n Hand J/J n H are sympathetic Lie algebras.

Proo f

(i)~(ii) By Lemma 5.1, H = H n I ® H n J, and by Lemma 5.2, we have
I/I n Hand J/J n H are sympathetic Lie algebras.
(ii)~(i) Let us show that

Indeed, let x E H, then x = y + z where y E I and z E J. We consider the
canonical surjections ~p : g --~ : I -~ I/I n H. Let y’ e I,
then ~ ~p( y) , ~p( y’ ) ~ = 0 which implies that ~ y y’ ~ E H n I , therefore

~ ~(y) , ~(y’) ~ - 0.
Thus ~(~/) E Z (I/InH) = ~0~, so that y E InH. By the same reasoning,

we show that z E J n H. We conclude that

So g /H is a sympathetic Lie algebra by Lemma 5.2.



PROPOSITION 5.2..Let g be a Lie algebra, I and J be two ideals of g
such that g = I ~ J, and let H be an ideal of g. The following assertions
are equivalent:

~i~ H is minimal among the ideals A of g for which g/A is a sympathetic
Lie algebra;
H n I (resp. H fl J~ is minimal among the ideals A of I (resp. J~
for which ~/A (resp. J/A ) is a sympathetic Lie algebra.

Proof

(i)~(ii) By the Proposition 5.1, I/I ~ Hand J/J n H are sympathetic Lie
algebras. Let I’ (resp. J’) be an ideal of I (resp. J) such that I’ C I n H
(resp. J’ C J n H) and (resp. J/J’) is a sympathetic Lie algebra.

By Lemma 5.2, we have g I (I’ ® J’) is a sympathetic Lie algebra,
consequently H = I’ ® J’, and by Lemma 5.1, we conclude that I’ = In H
and J’ = J n H. .

(ii)~(i) Let H’ an ideal of g such that H’ C Hand g/H’ is a sympathetic
Lie algebra. By Proposition 5.1, ~/I n H’ and J/J n H’ are sympathetic
Lie algebras. Since I n H’ C ~ n Hand J n H’ C J n H, then we have
I n H’ = ~ n Hand J n H’ = J n H and by Lemma 5 .1, H = H’ .

LEMMA 5.3. - Let g be a ~ie algebra, be the ascending central
series of g, and let Coo (g) be the union of the ascending central series of g.

Then, is the smallest among the ideals I of g for which Z(g/I) =
{0}.

Proof. - There exists a positive integer n such that Coo(g) = Cn(g),
then

Let J be an ideal of g such that Z(g/J) = ~0~, by Lemma 5.1, Z(g) C J,
i.e. C1(g) C J. Assume that C~{g) C J, and show that CZ+1(g) C J.

Indeed, H = is an ideal of A = gICi(g), and Aj H is isomorphic
to g/J, which implies that = ~0~. Thus by Lemma 5.1, we have
Z(A) C H.

Consider the canonical surjection f : g --~ A, then J = f ‘1 (H) contain
C2+1 {9) = .f ~ {2(~)) .



We conclude that Ci(9) C J for all positive interger i, consequently
Coo(g) C ~~

THEOREM 5.1. - Let g be a Lie algebra, P(g) be its sympathetic radical
and let H be an ideal of g. If H is minimal among the ideals I of g for
which g/I is a sympathetic Lie algebra, then:

~i~ H is solvable ideal of g,
C H C P(g). .

Proof. - H = S ® R(H) where S is a Levi component of H.

(i) We consider the canonical surjections ~o : g -~ : g --~ 9 / H.
The following sequence is exact:

for all x E g.

Thus by ~Bel, corollary 3 of the proposition 4~, g/R(H) is a sympathetic
Lie algebra, so R( H ) = H .

(ii) Let M be the greatest sympathetic ideal of g and g = M ® L be the
sympathetic decomposition of g.

By Proposition 5.2, M n H is minimal among the ideals A of M for which
M/A is a sympathetic Lie algebra, which implies that M n H = ~0~. Thus
by Lemma 5.1, we have H = ~ n L, so that ~ C P(g). .

PROPOSITION 5.3. - Let g be a Lie algebra, M be its greatest sympathetic
ideal, g = M ~ L be its sympathetic decomposition.

If L is solvable (i, e. L = P(g)~, then L is the smallest among the ideals
I of g for which is a sympathetic Lie algebra.

Proof. - Let H be an ideal of g such that g/H is a sympathetic Lie
algebra, then there exists H’ an ideal of g such that H’ C H and H’ is
minimal among the ideals I of g for which g I I is a sympathetic Lie algebra.
9 / H’ is isomorphic to M ® L/H’, which implies that L /H’ is a sympathetic
and solvable Lie algebra, consequently we have L = H’.

PROPOSITION 5.4. - Let g be a Lie algebra, M be its greatest sympathetic
ideal, P(g) be its sympathetic radical, g = M ® L be its sympathetic
decomposition and let S be a Levi component of L.



If J is an ideal of g such that:

(i) g/J is a sympathetic Lie algebra,

(it) [ s , P(g) ] C J C 

then J = P(g).

Proof . 5 is a Levi component ofL, then g = where 7 = 

We consider the canonical surjection ~o : g -~ 9 / J, then we have =

EB ~p(I ) . Furthermore, [ ,S , P(g) ] C J implies that is a semi-

simple ideal of ’P(g).
Since is sympathetic, is a sympathetic ideal of ~o(g), conse-

quently I/J is a sympathetic Lie algebra.
Thus by Proposition 5.3, P(g) C J, so that P(g) = J.

PROPOSITION 5.5 .2014 Let g be a Lie algebra such that [ g , g ~ is a

sympathetic Lie ideal of g, and let P(g) be the sympathetic radical of g.
Then:

9’=Z(9)®[g~9~~ >

(ii) [ g g] is the greatest sympathetic ideal of g,

(iii) C~ (g) = Z(g) = P(g).

Proof

(i) The corollary 2 of the proposition 4 of [Bel] implies the existence of an
ideal I of g such that g = [ 7 , g ] ® I.

[ I , g = ~0~ implies that Z(g) contains I, which yields Z(g) = I because

(ii) Let M be the greatest sympathetic ideal of g. M = [M, M] implies
that M C [ g , , g ~ , therefore M = [ g , , g ~ .

(iii) By Lemma 5.1 and by Lemma 5.3, = Z(g), and by (i),
~(9) ~ Z(g).



Remarks

(1) The assertions (i) of Proposition 5.5 is an amelioration of the known
result: if g is a reductive Lie algebra (i.e. ~ g , g ~ is semi-simple), then
9=z(9)®~g~9~.

(2) If we replace sympathetic by semi-simple and P(g) by R(g) in the
Proposition 5.5, the assertions (ii) and (iii) are classical when g is reductive.

Question ,~ . Let g be a Lie algebra, I and J be ideals of g. If 9 / I and
9 / J are sympathetic Lie algebras, is 9 / I n J a sympathetic Lie algebra?

6. Counter-examples

In this section K = C.

First counter-example

Let

be two Angelopoulos-Lie algebras. We assume that gi is not isomorphic to

g3 for all i, j E {1, 2, 3, ~4~. Let II = S/R(g’) where S = ad / sl(2). II is

a representation of sl(2) in R(g’) and II(s) is a derivation of R(g’) for all
s E sl(2).

Let -~ gl (R(g’)) defined by: for all s E sl(2) and

II(r) = 0 for all r E R(g). Then, II is a representation of g in R(g’), and
II(x) E Der (R(g’)).
We consider the semi-direct product

Since ] = g2 and [ sl{2) , 9i ~ - 9i for all i E ~ 1, 2, 3, 4~, then
[/~]=~. .

Z(h) = {0} because gi  D(0) and g’i  D(0) for all i E {1, ..., 4}. Let
D E Der(h). We may assume D/ sl(2) = 0, then D is a sl(2)-morphism.
Which implies that = ~i and D/gi = ai where ~i , ai E C,

. consequently D/g E Der(g) (resp. D/g’ E Der(g’)).



Since g and g’ satisfy (i) of Theorem 1 (E. Angelopoulos), D = 0.

Therefore h is a sympathetic Lie algebra.
Since sl(2) is a Levi component of h, then by Theorem 1, h is irreducible.

We consider R(g) (or R(g’)) which is an ideal of h, we have h/R(g) ^_~ g’
sympathetic Lie algebra.
We conclude that there exists an irreducible sympathetic Lie algebra

which has (non trivial) non semi-simple sympathetic quotients.

Second counter-example
Let

be an Angelopoulos-Lie algebra, V ~ D(i) such that i ~ 0, 1 and g3 ~ D(i)
for all j E ~ 1, 2, 3, 4~ .

Let II : sl(2) -~ gl(V) the representation of sl(2) which is associated to
the sl(2)-module V.

We consider --~ gl(V) defined by: = II(s) for all s E sl(2), and
II(r) = 0 for all r E I-~(g), then II is a representation of g in ~.

We consider the semi-direct product commutative

Lie algebra). Since [sl(2), 9i] ] = gi and [sl(2), ~ ~ - V, then [h, h] = h.
Moreover, Z(g) = ~0~ because gi  D(0) for all i e {1, 2, 3, 4} and
v ~ D(0).

Let D : : h --> h defined by D/ sl(2) = 0, D/R(g) = 0, id(V),

It’s easy to check that D E Der(h), and D ~ ad(h). So h isn’t a

sympathetic Lie algebra.

sl(2) is a Levi component of h and .F~(h) - ~- is an
ideal of h, then I = h or I is solvable. Thus h has no sympathetic ideal,
therefore P(h) = R(h).

Since V is a commutative ideal of g and ~/V ~ g is a sympathetic
Lie algebra, T (h) = V. Consequently T (h) ~ P(h). We conclude that
there exists a Lie algebra g such that P(g) and T(g) do exist as defined in
questions 2 and 3 of introduction, but do not coincide.

Therefore, the answer to question 4 of introduction is no.
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Third counter example
We can improve the second counter-example by taking V = g4.
Every sl(2)-submodule is an ideal of g (because ~l~i4 g1 ~

94 ~ ~ ~ _ ~~~). 
_ _

Let T~~ be a proper sl(2)-submodule of g4 0 V, then h/W is sympathetic
(choose W such that = ~0~, which is possible in infinitely many ways)
and W is minimal among the ideals I of g for which g/I is a sympathetic
Lie algebra.

Then, usually there doesn’t exist a smallest ideal such that the quotient
is a sympathetic Lie algebra.

Therefore, the answer to question 3 of introduction is no.

Taking W1 and W2 satisfying the hypothesis above, W2 then h/W1
and h/W2 are sympathetic Lie algebras and W1 n W2 = {0}. Which proves
that h/Wi and h/ W2 are sympathetic Lie algebras, and h/W1 n W2 = h
isn’t a sympathetic Lie algebra.

Which answers to question 4 (p. 229).
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