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A Picard method without Lipschitz continuity
for some ordinary differential equations(*)

FRANCISCO BERNIS(1) et MAN KAM KWONG(2)

Annales de la Faculté des Sciences de Toulouse Vol. V, n° 4, 1996

On presente un theoreme d’existence et d’unicité pour des
problemes a valeurs initiales pour l’équation y(m) = y), of f(x, y)
peut ne pas satisfaire la condition de Lipschitz usuelle, et meme f peut
être discontinue en y. Dans la preuve on utilise une modification de la
méthode de Picard. Finalement, un résultat de non-existence montre que
les hypotheses du theoreme sont optimales.

ABSTRACT. - An existence and uniqueness theorem is presented for
initial value problems involving the equation = y), where

f(x, y) may not satisfy the usual Lipschitz condition and even may be
noncontinuous in y. A modified Picard method is used for the proof.
Finally, a nonexistence result shows that the hypotheses of the theorem
are sharp.

AMS Classification : 34A12 (1991) ) ,

KEY-WORDS : : Existence, uniqueness, nonexistence, Picard method,
ordinary differential equation

1. Introduction and statement of results

We present the main ideas of this note by means of the following
illustrative example of initial value problem: .
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Consider first the case a > 0 and 0  p  1. Since y(0) = 0, the usual
Lipschitz condition does not hold and no general uniqueness theorems seem
to be applicable (see more details below). Then we found a uniqueness
proof if p > -(a ~-1)/2. Hence, negative values of p and a are also allowed.
It turns out that under the same hypotheses (Theorem 1.1 below) we also
obtain an existence proof. The main idea is to observe that a solution
must behave as x2/2.as x -~ 0 and exploit the fact that the equation is of
higher order. Actually, the solution can be obtained by appropriate Picard
iterations, since we perform the proof by means of the contraction mapping
theorem.

We also give a nonexistence result (Theorem 3.1) which shows that the
hypotheses of Theorem 1.1 are sharp. For the above example Theorem 3.1
states that no solution exists if p  -(a -~-1)/2, i.e. either we have existence
and uniqueness or we have nonexistence.

All the above remains true if we replace the equation y"’ = by the
equation y"’ = .

We proceed to the full statement of our result on existence and unique-
ness. In the sequel:

I) a, p and hi are real numbers;

II) m, i and j are integers; and

III) 8, Mo and M are positive constants.

All these quantities are given data, while the positive number ~ will be
chosen along the proof and will depend on these data.

We consider the initial value problem

We introduce the following hypotheses on the real-valued function f

f(x, y) is continuous in ~0, &#x26;) x (0 , 6) (1.4)



Notice that a sufficient condition for (1.6)-(1.7) is

Simple examples of functions satisfying ( 1.4)-( 1.7~ are

A more complicated example is

This example shows that functions satisfying (1.4)-(1.7) may change sign
infinitely many times both near x = 0 and near y = 0.

The following theorem will be proved in Section 2.

THEOREM 1.1.2014 Let m ~ 2, 1  j  m - 1,

Assume that f satisfies (1.,~~-(1.7~ and that

Then there exists ~ > 0 such that Problem (1.1)-(1.3) has a unique solution.

This result seems to be different from the existence and uniqueness crite-
ria given in the literature; cf. Hartman [H], and Agarwal and Lakshmikan-
tham [AL]. A group of uniqueness theorems (those of Kamke, Nagumo,
Osgood, etc.) improve the usual Lipschitz condition, but they do not allow
a behaviour as yp near y = 0 if p  1, while in Theorem 1.1 p may be
less than 1 and even negative. Furthermore, Theorem 1.1 is not a Wend

type theorem (see [AL]), since it is not based on monotonicity hypotheses
on f and even f may change sign infinitely many times. It is also clear that



our hypotheses have nothing to do with the dissipative hypotheses of Peano
type theorems. The fact that (1.1) is a higher order differential equation is
an important aspect, as in the uniqueness result of [BM, Theorem 2.1].

In a different spirit, [KK1], [KK2] and references therein obtain unique-
ness results for first order problems such us

with 0  p  1. In these problems the zero solution is excluded by the term
q(x) of the equation.
We come back to Theorem 1.1 to add some comments. Although f may

not have constant sign, the solution must be positive near x = 0 because
of (1.9). Hence f tx, y) may not be defined for y  0. Notice also that the
data hj+1, ... , bm-i may be negative. The condition hj > 0 is essential: if
all the b2 are zero and p  1 it is well-known that uniqueness does not hold.
For example,

has power solutions in addition to the zero solution.

. If j = 0 the methods of this paper do not give any new result. This is

why m = 1 and j = 0 are excluded in Theorem 1.1.

Finally, let us remark that entirely similar theorems hold when x  0

and/or bj  0.

In this section we assume the hypotheses of Theorem 1.1 and ~  6.

The integral equation associated to the initial value problem ( 1.1 )-( 1.3)
is

where



For simplicity of notation we set

and write ~ (~ ) in the form

where Q(x) is a polynomial which satisfies Q(O) = 0.
Now we consider the new unknown function

By (1.3) and (1.9) the function z(x) is continuous up to x = 0 if we set

z(0) = h. Hence our initial value problem is reduced to find a function
z E C[0, 6*] such that z(0) = b and z satisfies the integral equation

where T is defined by

Notice that the function ~ f {t, y(t)) I = I f {t, ( is integrable in (0, ~) for
ê small enough, because by (1.5)

and > 0 by (1.10). This assures that the integral equation problem
for z is indeed equivalent to Problem (1.1~-(1.3~.

Next we consider the metric space

with the usual distance:



For simplicity we assume that 6;  1. Therefore

Recall that 6;  6. We also assume .that

in order to assure that xj z(x)  6 for all x E ~ 0 , ~ ~ . Hence (1.5)-(1.7) can
be applied for all x E ~ 0 , ~ ~ if we set y = and y = with

z, z E E. In particular, (2.8) holds for all t E ~ 0 , ~ ~ if z E E.

LEMMA 2.1.2014 There exists ~ > 0 such that T maps E into E.

Proof. - Let z E E. Consider the integral term of (2.7), namely

From (2.8) and (2.9) it follows that the integral (2.10) is absolutely conver-
gent and (Jz)(x) is continuous for all x E ~0, ~~. Observing that

we obtain that for all x E ~ 0 , ~ ~ ]

where Co is a positive constant depending only on j, p and o. Hence we
may choose ~ so that

Since Q(O) = 0 we may also choose E such that



From (2.11), (2.12) and (2.7) we obtain that

and hence T’z E E. This completes the proof of Lemma 2.1. .

LEMMA 2.2. - There exists ~ > 0 such that T is a contraction mapping
from E into E.

Proof. - Let z, z E E. Observe that if p > 1

while if p  1

Hence, from (1.6) and (1.7) it follows that for all t E ~ 0 , ~ ~ ,

where C is a positive constant depending only on j, p and a. This and (2.9)
imply that

with

Recalling that a + > 0 by (1.10), this inequality implies Lemma 2.2.

By Picard-Banach fixed point theorem, it follows that the integral
equation (2.6)-(2.7) has a unique solution z E ~’~ 0 , ~ ~ with z(0) = b. This
completes the proof of Theorem 1.1.



3. Nonexistence theorem

THEOREM 3.1. - Let m I > 2, 1  j  m - 1. Assume that the .numbers
b~ satisfy (1.9), while f satisfies (1.,~~ and .

where Ml is a positive constant. Then Problem (1.1~-(1.3~ has no solution if

Example. . - Under the above hypotheses on m, j and the b2, let

Then Problem (1.1)-(1.3) has a (local) solution if and only if p > -(a-~l)/j.
This solution is unique.

Proof of Theorem 3.1. . - Assume for contradiction that there exists a
solution y defined in some interval 0 , ~ J . From (1.3) and (1.9) it follows
that near x = 0

where Ci and C2 are positive constants. Using the lower bound for y if
p > 0 and the upper bound if p  0 we obtain that near x = 0

Since a + 1 + pj  0 this implies that is unbounded, which
contradicts (1.3).
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