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Solutions of the equation fyux 2014 fxuy = g(*)

ELIZABETH F. DA COSTA GOMES(1)

E-mail : beth@mat.ufrgs.br

Annales de la Faculte des Sciences de Toulouse

On etudie le probleme d’existence de solutions de 1’equation
aux dérivées partielles fyux - fyuy = g localement, au voisinage d’un
point singulier isolé, dans le cadre analytique reel. On suppose que la
fonction f a un minimum local a l’origine.

ABSTRACT. - We study locally, on a neighborhood of an isolated
singular point, the existence of solutions of the partial differential equation
fyux - fxuy = g, in the real analytic case. We suppose that the function
f has a minimum at the origin.

0. Introduction

We consider the equation

fyux - fxuy = g ~ (1)

where f , g are real analytic functions in a neighborhood of (0, 0) E R2.
We will suppose that:

i) f (0, 0) = 0 and f > 0 outside the origin, and

ii) the ideal J f generated by fy is of finite codimension as an R-vector
space, in I~8 ~x, y~ .

~*~ Recu le 13 mars 1997, accepte le 30 septembre 1997
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We say that a solution u of (1) is:

a) regular if u is analytic in a neighborhood of the origin.

b) singular if u is analytic in a neighborhood of the origin, but not
necessarily at the origin.

We consider y} an R{t}-module with the definition

Let E be the R-vector space of germs at (0, 0) of those analytic functions g
such that (1) has a singular solution.

Let r be the R-vector space of germs at (0, 0) of those analytic functions
g such that (1) has a regular solution.

Since

r c E are submodules of y}.
The purpose of this article is to study the quotient T = E/r.
We will show that its structure is related to the action of the monodromy

of f at 0 (extending f to an analytic function in a neighborhood of
(0, 0) E C2) over the vanishing cycle y generated by the cycle in R2 defined
by f = e (e > 0 sufficiently small). More precisely, let E be the C-vector
space of these vanishing cycles and let

the Milnor number of f at 0.

Let k be the dimension of the subspace of E generated by y, Ly, L203B3, ...

where L : E -~ ~ is the monodromy. We have the following results.

THEOREM 1. - T is a free of rank v = ~c - k.

THEOREM 2. - lJ = dimR E/(E n J f).



Observation. . - Since

we have that 03B3 ~ 0. Then, 03BD ~  - 1.

Examples

1) f = x2 + y2. In this case p = 1 and v = 0. The existence of regular
solutions is equivalent to that of singular solutions.

2) f = x2 + y4. In this case p = 3. The monodromy is induced by the
map

It follows that L2y = -y. Since the eigenvalues of L are 1, i, -i and
y is an integer cycle, if y were an eigenvector of L, we would have
Ly = y, which is impossible. Then, y and Ly are independent and
k = 2. Then v = 1. (Using the theorem in Section 1, we see that the
class of y is a generator of T . )

1. Solutions to the equation

fy ux - fxuy = 9 (1)

THEOREM 1.1.- The equation (1~ has a singular solution if and only if

First, we are going to define a change of coordinates to simplify the
resolution of the equation (1).

Since the problem is local, we are going to suppose, throughout this work,
that the neighborhoods of the origin are all sufficiently small.

Let U be a neighborhood of the origin where f is analytic and where
there is no critical point of f different from (0,0). Let V C U be a simply
connected neighborhood of the origin such that V c U.



LEMMA 1.1. If E > 0 is small enough, = E is a simple closed curve
CE around the origin.

Consider the composed function

where exp( x) = and 03C3 is an analytic diffeomorphism. The analytic
curve 03B3 = o~ o exp is periodic with period 1 and is a parametrization of the
curve Ce.

Integrating the vector field - grad f, we obtain:

such that

LEMMA 1.2.2014 ~(t, x) _ ~0, 0) .

It is a direct application of the Liapunov criterium.

Consider

defined by ~p(p, 8) = 8), where t > 0 is such that f( (t, 8)) = p, i.e.,
~)) = p.

Since for each (p, 9) E (0, E) x I18, there exists a unique t E {o, oo) such
that 8) = p (Lemma 1.2), ~p is well defined.

Moreover, p is locally one to one, since 9) = 8‘) if and only if
p=p‘and8-8‘E7L.

Using the implicit function theorem we have the two following lemmas.

LEMMA 1.3. - y~ is a real analytic function, periodic with period 1, in

the variable 9.

LEMMA 1.4. - ~p is a local diffeomorphism.



LEMMA 1.5.- The diffeomorphism p transforms the equation duAdf =

g dx A dy into

where J is the Jacobian of the change of coordinates, u = and g = gop.

If we choose f > 0 small enough, we may suppose that h = -’9J is

analytic in (0, f) x ?. Besides, h is periodic, with period 1, in the second
variable.

LEMMA 1.6. - The function u(p, 8) given by:

is analytic in (0, e) x II8 and verifies ~g = h.

Proof. - Integration by parts. 0

LEMMA 1.7. - If

then the function u in Lemma 1.6 is periodic in 9, with period 1.

Proof. - Actually,



Proof of Theorem 1.1

Suppose (1) has a singular solution u.
Choose f > 0 such that the curve f = f is entirely contained inside the

region where u is regular, and satisfies Lemma 1.1.

For 0  $  6,

Hence,

On the other hand, if (2) holds,

And then,

By lemmas 1.6 and 1.7, there exists u analytic in (0,6) x R periodic with
period 1 in 8, that verifies the equation ic~ _ -gJ. The u passes to quotient
and defines u by ic = u o The function u is a singular solution to (1), by
lemmas 1.4 and 1.5.D

Observe that, if (2) holds, then the equation (1) always has a singular
solution that can not be extended to a regular solution. In fact, even though
the equation has a regular solution u, the solution v = u + 1/ f can not be
extended to a regular solution.

2. Considerations on the Gauss-Manin connection

Let f be an analytic function in a neighborhood of (0,0) E ~’ , n > 2,
with an isolated singularity at the origin.



Let  be the Milnor number (cf. [5]) of the germ of the function f at 0.

Denoting 52o the sheaf of germs of the p-forms that are holomorphic in a
neighborhood of the origin in en , we define

The operation o : x G --r G defined by

where [ . indicates the class in G, gives G the structure of a 

THEOREM 2.1.- (Brieskorn, Sebastiani) G is a free of
rank .

Proof (cf. [3, theorem 5.1])
Consider F, the (C{t}-submodule of G given by

G/F is a torsion module.
Define the connection

It is clear that D is well defined, for if d f A a E ~d f A 9~, then there exists
,Q E such that

Thus, by the de Rham’s lemma,

It goes without saying that D is C-linear and that it is a connection.

We are going to show that D is a bijective connection.

First, note that if

then



This is equivalent to d(~ + d f A /?) = 0. Thus, there exists, e ~"~ such
that 9 + d f A /3 = d~, that is,

Hence, D is a 1-1 connection.

Moreover, since every w E is exact, D is surjective.
If t ~ 0 is given, let Xt n (t) be the Milnor fiber of the function

f (cf. [5]), where Be is the ball in (L~ with center in (0,0) and radius { > 0.
Also, let 0  b C E.

If w E S2o and p E Xt, there exists a (n - 1)-form a, holomorphic in a
neighborhood of p, such that w = d f A a, in neighborhood of p, and that

03B1|Xt is well defined. We define w / d f this way. w / d f is a ( n - I)-form over
each fiber.

Let yt C Xt, 0  $, be a (n - 1) vanishing cycle.
If N G G is the set

then N C G as a (C{t}-submodule.
Observe that 03B3~ 03C9/df depends only on the class [03C9] E G.

Let M = D-1 (N). We want to show that if ~d f E M, then B = 0.

First we are going to prove the following lemma. 
’~

LEMMA 2.1

Proof. - Suppose d8 = d f n ~r, where ~r E By 3 § 4.3~

In the general case, if 9 E is given, then there exists an integer J1~ and
r~ E such that = d f A r~.



For 03C9 = fN03B8, we have

By (3),

On the other hand,

Since 0, it follows from the equations above that

This proves the lemma. 0

PROPOSITION 2.1.- M = 
.

Proof. - M C F, by definition. If = 0, then, by the lemma,

In other words, D~d f l18) E N, i.e., ~d f l18) E M.

Suppose ~d,f A 8] E M. There exists w E Qg such that [w] E N and
D-1 ~w) _ A ~]. . Hence, by the definition of N and by the lemma,

It follows that f,~t 8 is constant. Then, f,~t 8 - 0 (cf. [3, § 4.5]). 0



PROPOSITION 2.2.- M = N n F.

Proof. - It follows from Proposition 2.1 that M is a C{t}-submodule of
G and that M C N.

On the other hand, if [w] E N n F, there exists 9 E such that

[(N] = ~d f A B~. From this, it follows that (W~ EM, since

PROPOSITION 2.3.- N/M is a torsion module.

Proof. - Since G/F is a torsion module, there exists an integer m such
that tm o ~W~ E F, whatever ~w~ EN. . From Proposition 2.2 and from the
fact that N is a it follows that t"° o ~w~ e M. 0

PROPOSITION 2.4. - rank M = dimc N/(N n F).

Proof. - We have already seen that

and that N/M is a torsion module (Prop. 2.3). By the Malgrange index
formula [4],

0 = x(D; M, N) = rank M - dime .

Hence, by Proposition 2.2,

v = rank M = dime f1 F ) . D

Observation. - If it is homologous to 0, then ~V - G. Consequently,
M = F and

dime N/(N n F) = dimC03A9n0/df^03A9n-10 = .

In this particular case, we obtain again the formula

rank G = rank F = .



3. The rank of the module T

We may consider f a restriction, to II8 2, of an analytic function in a
neighborhood of 0 ~ C2, that will also be denoted by f. With the hypothesis
on J f, 0 is an isolated critical point of the extension.
We define C{t}-modules G and F as in Section 2. The sub-index 0 will

be suppressed for we are only interested in functions and differential forms
holomorphic in a neighborhood of the origin. We write

where S2~ is the space of germs of analytic functions in 0 E C2 .

(x, y) will denote the coordinates in R2 and (z, w) the coordinates in C2 .
Define A = y} and S = A/r.
It is clear that A and S are R{t}-modules, that r C E C A as 

submodules, and that T C S as R{t}-submodule.
Let

PROPOSITION. - a is and ker a = r .

Proof. - r C ker u trivially.

If g e ker a,
g dz A dw = -d f A du ,

which means that

g = fwuz - fzuw for a certain u E C~~z, w~ .

Considering the restriction of u to  2,

u(x, y) = y) + y)

where uR and uI are real functions,

9 = + .

Since g is a real function, = 0 and g{x, y) = -

that is, g E 



Let S~ = C and T~ = C. It is clear that S~ is a 
and that Tc C Sc as a C{t}-submodule.

THEOREM 3.1.- ~ passes to quotient and defines a iso-

morphism

Proof. - By the definitions of S~ and G, T is a surjective homomorphism
Let g2, ..., gh E A, be R-independent modF, and let [gj] be the class

of 9 j inS‘, j=1,2,..., h.
Suppose

Then,

for a certain u analytic on a neighborhood of 0 E C2. Thus,

Let c3 = a j + ibj, aj, bj E I18 and u I ~2 = uR + iuI where uR and u I are,
respectively, the real and imaginary parts of the function u (~2. Hence,

In other words, , 03A3bjgj E r. Consequently, V j, aj, , bj = 0, i.e.,
c~ = 0. Then, T is an isomorphism. D

COROLLARY 3.1.2014 S is a free of rank where ~c is the

Milnor number of the function f in 0 (cf. j~3, Sect. 3~ and 



COROLLARY 3.2. - If, for some E N,

fyux - fxuy = fN 9

has a regular solution. Then,

fyux - fxuy = 9

has a regular solution.

COROLLARY 3.3. - T is a free and

rankR{t} T = rankC{t} Tc ~ .

To compute the rank of T, we must compute the rank r~ of the (C~t}-free
module T~ .

Let If be the curve f(x, y) = E, that is, 03B3~ = XE n 1I82, where XE is the
Milnor fiber of f over E. If is prolonged to a vanishing cycle (Sect. 2).

Let us recall the definition of the C{t}-submodule N of G, given in
Section 2: 

, _ ,

where yt C Xt, for 0  I small enough, is the vanishing cycle defined
above.

THEOREM 3.2.- T(Tc) = N.

Proof. - Let g E A whose class in S belongs to T. There exists 17 E 01
such that T(g) = [g dz A dw] = [d?y].

by the Theorem 1.1 and r~ is a multiform analytic function of t. Since

the equality above holds for all e > 0 small enough, and 03B3~ = lYE n I182, it

results that = 0 for all 0  small enough.

By Proposition 2.1, ~d f A r~~ E M = Hence, D[df n r~~ = E

N, and then, [g dz A dw~ EN.



On the other side, if [~] C ~V, there exists 0 such that ~ = 

= 0 (Prop. 2.1). Besides, by the definition of D, [03C9] = [d9]. Thus,

/ 03C9 = 03B3~ 03B8 = 0.

Let 03C9 = hdz A ~ 03C9}. Considering the restriction of h to R2, let

~2 = 

Then, we have

Therefore,

Since the classes of hR and h I belong to T (Sect. 1), the class of h belongs
to T~ and r~(h~~ = ~W~. ~

COROLLARY 3.4.- rankTc = dimc N/(N n F).

Proof. - Propositions 2.3 and 2.4.

COROLLARY 3.5. - rank T = dimR03A3/(03A3 n 

Proof. - By theorems 3.1 and 3.2, it is enough to show that

dimR E/(E n Jf) = dimc N/(N n F) . .

If 9 E S, [g(z, w) dz A E N (Theorem 3.2).
We define

A : E 2014 N/(N n F)

A(g) = class of [g(z, w) dz A = class of .



~ is a homomorphism between R-vector spaces whose kernel is J f. In fact,

. if gEE is such that g = a fx + b fy, for certain a, b E 

= + b(z, w)fw(z, w)) dz A dw]
= ~d f A (a(z, w) dw - b(z, w) dz~~ E N n F ;

. on the other side, if g E ker ~, there exists a = al dz + a2 dw E S21
such that

g dz ^ dw = df na=(fzdz+fwdw)n(aldz+a2dw)
= ~.fza2 - dz A dw ;

which means that g(z, w) = (fz03B12 - fw03B11)(z, w).

If we make the restriction to real numbers,

y~ _ (fxa2 - y~
= y) + y)) +
- y) + y)~ ~

where = + i03B1jI and are real functions, j = 1, 2.

Since g(x, y), y) and fy(x, y) are real numbers,

(fx03B12I - y) = 0 .

Consequently,
g = 03B12Rfx - 03B11Rfy E Jf. .

~ passes to quotient and defines a one to one homomorphism

If ~W~ E N, by Theorem 3.2, there exist gl , g2 E ~ such that

Thus,



It remains to show that n n n Jf) = ~0~.

Suppose g, h E ~ and

[g(z, w) dz A dw~ = i[h(z, w) dz A dw] in N/(N n F).

Hence,
[(g(z, w) - ih{z, w)) dz Adz] E F, ,

i.e., g - ih = a fz + b fw for some functions a, b E w}.

Restricting to R2,

g - ih = (ap + iaI)fx + (bR + ibI)fy
= (aRfx + bRfy) "~ i(aIfx+ > aR ~ aI ~ bR ~ bI E ~~x~ 2/} . .

Thus g, h E  n J f .

Then, rank T = dimc N/ ( N n F) = n 

Now, let us prove theorems 1 and 2.

Proof of Theorem 1

Part of it is a corollary of theorems 3.1 and 3.2.

It just remains to show that

rank T = !/ = ~ - ?. .

Since G/N is torsion free, we may write G = N ® P. . Let ~w 1J , ...,

~w~,-1J be a basis of G as a where ~W1J, ... , 
is a

basis of N and ~t,~v-1J, ..., ~w~,-1J is a basis of P as 

Let b1t , ... , b(k-l~t ~, ~ I  f, e > 0 sufhciently small, be a

basis of E, where bs~ = 0  s  k - 1.

If belongs to N, = 0. Hence, t wi 
= 0, for all s,

Thus, if
,

the matrix



has a vanishing k x v minor, with v + k > Which means that

on a neighborhood And this contradicts the fact that (cf. [1], 12):

Suppose now v  ~u - k. Let

By[2],

where A(t) is meromorphic and C is a constant (k x k)-matrix.
Since A(t) is a ((~ - v) x k)-matrix with > k, then there

exist holomorphic functions g"(t), g"+1 (t), ..., , g~_1 (t), not all of them

identically zero in |t|  e, such that

Let a = Then we have E P and, since

also belongs to N. This means that [a] = 0. Thus there exists a
non trivial linear combination of [wo], ..., (w~_1J that vanishes. That is

impossible, since it is a basis of G.

Therefore, v = ~c - ~ . 0

Proof of theorem ,~

Theorem 3.2, Corollary 3.5.
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