@article{AFST_1999_6_8_1_173_0, author = {Vasconcellos, Carlos Frederico and Teixeira, Lucia Maria}, title = {Existence, uniqueness and stabilization for a nonlinear plate system with nonlinear damping}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {173--193}, publisher = {Universit\'e Paul Sabatier. Facult\'e des sciences}, address = {Toulouse}, volume = {Ser. 6, 8}, number = {1}, year = {1999}, mrnumber = {1721550}, zbl = {0955.35055}, language = {en}, url = {http://archive.numdam.org/item/AFST_1999_6_8_1_173_0/} }
TY - JOUR AU - Vasconcellos, Carlos Frederico AU - Teixeira, Lucia Maria TI - Existence, uniqueness and stabilization for a nonlinear plate system with nonlinear damping JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1999 SP - 173 EP - 193 VL - 8 IS - 1 PB - Université Paul Sabatier. Faculté des sciences PP - Toulouse UR - http://archive.numdam.org/item/AFST_1999_6_8_1_173_0/ LA - en ID - AFST_1999_6_8_1_173_0 ER -
%0 Journal Article %A Vasconcellos, Carlos Frederico %A Teixeira, Lucia Maria %T Existence, uniqueness and stabilization for a nonlinear plate system with nonlinear damping %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1999 %P 173-193 %V 8 %N 1 %I Université Paul Sabatier. Faculté des sciences %C Toulouse %U http://archive.numdam.org/item/AFST_1999_6_8_1_173_0/ %G en %F AFST_1999_6_8_1_173_0
Vasconcellos, Carlos Frederico; Teixeira, Lucia Maria. Existence, uniqueness and stabilization for a nonlinear plate system with nonlinear damping. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 8 (1999) no. 1, pp. 173-193. http://archive.numdam.org/item/AFST_1999_6_8_1_173_0/
[1] On exponential stability for von Kármán equations in the presence of thermal effects, Math. Methods in the Applied Science 21 (1998), pp. 393-416. | MR | Zbl
), ), ) and ) .-[2] Free vibrations and dynamic buckling of the extensible beam, J. Math. Anal. Appl. 29 (1970), pp. 443-454. | MR | Zbl
) .-[3] Nonlinear vibrations of beams and rectangular plates, Z. Angew Math. Phys. 15 (1964), pp. 167-175. | MR | Zbl
) .-[4] Semilinear Hyperbolic Problems in Bounded Domains, Math. reports 3, Part 1, Harwood Academic Publishers, Gordon & Breach (1987). | Zbl
) .-[5] Nonlinear boundary stabilization of a von Kármán plate equation, Lecture Notes in Pure and Appl. Math. 152 (1994), pp. 581-604. | MR | Zbl
) .-[6] Global existence and uniqueness of regular solutions to the dynamic von Kármán system with nonlinear boundary dissipation, Lecture Notes in Pure and Appl. Math. 165 (1994), pp. 99-119. | MR | Zbl
) and ) .-[7] Exact Controllabilty and Stabilization. The Multiplier Method, RAM, Masson and John Willey (1994). | MR | Zbl
) .-[8] Modelling and stabilization of nonlinear plates, Int. Ser. of Numerical Math. 100 (1991), pp. 247-264. | MR | Zbl
) .-[9] Boundary Stabilization of Thin Plates, SIAM Studies in Applied Mathematics. Philadelphia (1989). | MR | Zbl
) .-[10] Uniform stabilization of a nonlinear beam by nonlinear boundary feedback, J. Diff. Eqs 91 (1991), pp. 355-388. | MR | Zbl
) and ) .-[11] On the nonlinear vibrations equation with a coefficient containing an integral, Comp. Maths Math. Phys. 33, n° 9 (1993), pp. 1171-1178. | MR | Zbl
), ), ), ), ) and ) . -[12] Stabilization of wave and plate-like equations with nonlinear dissipation on the boundary, J. Diff. Eqs 79 (1989), pp. 340-381. | MR | Zbl
) .-[13] Uniform stabilization of the wave equation with Dirichlet feedback control without geometrical conditions, Appl. Math. Optim. 25 (1992), pp. 189-224. | MR | Zbl
) and ) .-[14] On Some Questions in Boundary Value Problems of Mathematical Physics, in: International Symposium on Continuum Mechanics and Partial Differential Equations, North-Holland (1978). | MR | Zbl
) . -[15] On a new class of nonlinear wave equations, J. Math. Anal. and Appl. 69 (1979), pp. 252-262. | MR | Zbl
) .-[16] On a nonlinear wave equations with damping, Revista Matematica de la Universidad Complutense de Madrid 3, n° 2 (1990), pp. 213-231. | EuDML | MR | Zbl
) and ) .-[17] On classical solutions of a quasi-linear hyperbolic equations, Nonlinear Anal. 3 (1979), pp. 613-627. | MR | Zbl
) . -[18] Explicit exponential decay rates for solutions of von Kármán system of thermoelastic plates, Differential and Integral Equation 11 (1998), pp. 755-770. | MR | Zbl
) and ). .-[19] Nonlinear Oscillations, John Willey (1979). | MR | Zbl
) and ) .-[20] On a class of quasilinear hyperbolic equations, Math. Sb. 25 (1975), pp. 145-158. | MR | Zbl
) . -[21] Boundary stabilization of the von Kármán equations, SIAM J. Control and Opt. 33 (1995), pp. 255-273. | MR | Zbl
) and ) .-[22] On local strong solutions of a nonlinear partial differential equation, Applicable Analysis 10 (1980), pp. 93-104. | MR | Zbl
) .-[23] The Energy Method in Nonlinear Partial Differential Equations, IMPA (1969). | MR | Zbl
) . -[24] Weak solutions of semilinear hyperbolic equations, Anais da Acad. Bras. Ciências 42 n° 4 (1970). | MR | Zbl
) .-[25] Strong solution and exponential decay for a nonlinear hyperbolic equation, Applicable Analysis 51 (1993), pp. 155-173. | MR | Zbl
) and ) . -[26] Stability and decay for a class of nonlinear hyperbolic problems, Asymptotic Analysis 1 (1988), pp. 141-185. | MR | Zbl
) . -[27] Uniform stabilization of the wave equation by nonlinear boundary feedback, SIAM J.Control Optim. 28, n° 2 (1990), pp. 466-477. | MR | Zbl
) . -[28] Controlabilidad Exact a y Estabilización de la Ecuación de Ondas, Textos de Métodos Matemáticos 23, IM-UFRJ (1992).
) . -